用户名: 密码: 验证码:
编解码技术在安全光纤通信网络中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着光纤通信网络容量的不断提升,光网络的安全性受到了广泛关注。光纤通信网络面临众多信息安全威胁,需要从网络的各个不同方面加强信息安全。本论文通过理论分析、仿真研究和实验验证等方法研究了编解码技术在安全光纤通信网络中的几种应用。
     多用户OCDMA系统通过将不同用户的信息在光域编码后同时传输,从而避免窃听者直接获得特定用户信息。本论文研究了具有较高安全性的多用户光码分多址复用技术及系统。为了增加OCDMA系统用户数,我们提出了一种基于非线性偏振旋转的光阈值器。本文详细的分析了该阈值器的原理,并通过4个用户、每个用户2.5Gb/s的OCDMA实验验证了其能有效地抑制多用户串扰(MAI)。该阈值器具有大波长范围内(C波段)无色(Colorless)的特点,并且避免了超连续谱型光阈值器滤波引入的频谱切割噪声。
     光隐匿通信技术通过将秘密信号隐藏在宿主通道中,避免窃听者发现隐匿传输的信号的存在,从而增强信息安全。本文提出了一维时域相位编码信号为隐匿信号,波分复用通道为宿主通道的光隐匿通信系统。本文通过仿真和实验系统的研究了一维时域相位编解码系统对谱域滤波的容忍度,并在此基础上提出采用凹陷滤波来抑制光隐匿通信系统中宿主通道信号对隐匿通道信号的串扰。本文通过实验演示了单个2.5Gb/s光隐匿通道和单个25Gb/s WDM光宿主通道的光隐匿通信系统。
     光学虚拟私有网络(OVPN)利用现有的光网络硬件设施实现一个虚拟的私有网络,且能够结合网络高层的信息加密协议提供高安全性、低延时的信息传输。本论文提出基于线路编码谱域整形技术在时分复用无源光网络(TDM-PON)中提供OVPN新服务的方案。本方案能对老服务的用户不需做修改,从而实现有选择性的提供新服务。本论文提出了相应的通信协议,并通过实验和仿真研究验证了在155Mb/s上行的TDM-PON中提供2.5Gb/s OVPN服务的可行性。
     随着“云”概念应用的普及,网络中点到点的安全通信技术越来越重要。本论文提出了采用超密集谱域相位编解码(UD-SPC)技术,并结合AES(?)口密的Gold序列和低密度奇偶校验(LDPC)技术,实现点到点的长距离、高安全性信息传输的方案。本文详细分析了基于码分多址编解码(CDM)和正交频分复用(OFDM)的UD-SPC的原理和AES加密得到的衍生Gold序列相关特性。本文验证了LDPC编码能有效地补偿衍生Gold序列间的码间串扰,从而增加同时传输的码字数目及通信速率。本论文提出了进一步提升系统安全性的循环移位的动态编解码方案,并分析了系统的安全性能。本文通过蒙特卡洛仿真研究了5.15Gb/s采用160个511码长衍生Gold序列的LDPC-UD-SPC系统背靠背和无色散光纤补偿传输200km及400km标准单模光纤的性能。
Network security of high-capacity fiber-optical networks has become an important issue. Various methods from different aspects have to be taken to cope with security threats the fiber-optical network faced. In this thesis, we present some applications of coding technologies to security-enhanced fiber-optical networks. Theoretical analysis together with system simulation and experimentations are carried out.
     Multi-user optical code-division multiple-access (OCDMA) system transmits multiple optically encoded signals simultaneously. Therefore, the eavesdropper cannot get access to specific user information directly. Part of the thesis focuses on multi-user OCDMA system and subsystem technologies. We propose a novel optical thresholder based on nonlinear polarization rotation (NPR) to mitigate the multiple access interference (MAI). The theoretical analysis of the thresholder is presented. The effectiveness of the NPR thresholder is experimentally investigated in a4-user,2.5Gb/s per user OCDMA system. The NPR thresholder has the advantage of colorless operation over C bands and avoids the spectrum-slicing noise compared with the super-continuum based thresholder.
     In optical stealth communication, the secure information is hided underneath the host channel signal to avoid the awareness of eavesdropper. We propose optical stealth transmission of temporal phase encoded (TPC) signal in a public WDM network. We systemically study the tolerance of1D TPC system to spectral filtering with simulation and experiments. Based on the above results, spectral notch filtering is proposed to reject the interference on stealth channel from host channel. We experimentally demonstrate a2.5Gb/s stealth transmission of TPC signal with a2.5Gb/s WDM channel.
     Optical virtual private network (OVPN) technologies can provide low-latency and private communications with public network infrastructures. With some higher-layer encryption methods, a high-security OVPN service can be achieved. We propose to selectively provide OVPN service in a TDM-PON with spectral shaping line coding. In our scheme old service users are not affected. Corresponding protocol is also provided. The feasibility of providing2.5Gb/s OVPN service in155Mb/s upstream TDM-PON is investigated with simulation and experiments.
     Secure point-to-point (P2P) communication is becoming increasingly important with the prevalent of so-called'cloud'based applications. We propose a long distance P2P secure transmission scheme with CDM and orthogonal frequency division multiplexing (OFDM) based ultra-dense spectral phase coding (UD-SPC) technology. The proposal also employs AES encrypted Gold (AES-Gold) sequences and low-density parity-check (LDPC) coding technology. The principle of UD-SPC system and the correlation property of AES-Gold sequences are presented. The LDPC coding can largely compensate the cross-talk among non-orthogonal AES-Gold sequences as shown by simulation. Therefore, with LDPC coding the number of simultaneously transmitted codes can be increased to increase the transmission rate. We also propose and analyze a dynamic encoding/decoding method with circularly shifted AES-Gold sequences. The performance of5.15Gb/s LDPC-UD-SPC system with160511-length AES-Gold sequences in back to back scenario as well as transmissions over200km and400km standard single mode fiber without fiber dispersion compensation scenarios are investigated by simulation.
引文
1. Tkach, R.W. Network Traffic and System Capacity:Scaling for the Future, in Proceedings of 36th European Conference and Exhibition on Optical Communication (ECOC).2010.
    2. Kao, K.C. and Hockham, G.A. Dielectric-Fibre Surface Waveguides for Optical Frequencies, in Proceedings of the Institution of Electrical Engineers London.1966.
    3. Sakaguchi, J., et al.109-Tb/s (7x97x172-Gb/s SDM/WDM/PDM) QPSK transmission through 16.8-km homogeneous multi-core fiber, in Proceedings of Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC).2011.
    4. Lam, C.F., Passive optical networks:principles and practice. Amsterdam; Boston: Elsevier/Academic Press.2007.
    5. Chang, G.K., et al., Key Technologies of WDM-PON for Future Converged Optical Broadband Access Networks [Invited]. Journal of Optical Communications and Networking,2009.1(4):p. C35-C50.
    6. Prince, K., et al., Converged Wireline and Wireless Access Over a 78-km Deployed Fiber Long-Reach WDM PON. IEEE Photonics Technology Letters,2009.21(17):p.1274-1276.
    7. Yu, X.B., et al., Converged Wireless and Wireline Access System Based on Optical Phase Modulation for Both Radio-Over-Fiber and Baseband Signals. IEEE Photonics Technology Letters,2008.20(21-24):p.1814-1816.
    8. Agrawal, G.P., Fiber-optic communication systems. New York:Wiley-Interscience.2002.
    9. Cvijetic, M., Optical transmission systems engineering. Boston:Artech House.2004.
    10. Djordjevic, I., Ryan, W.E., and Vasic, B., Coding for optical channels. New York London:Springer.2010.
    11. Ramaswami, R. and Sivarajan, K.N., Optical networks:a practical perspective. San Francisco:Morgan Kaufmann Publishers.2002.
    12. Winzer, P.J. and Essiambre, R.J., Advanced modulation formats for high-capacity optical transport networks. Journal of Lightwave Technology,2006.24(12):p.4711-4728.
    13. Savory, S.J., Digital filters for coherent optical receivers. Optics Express,2008.16(2):p. 804-817.
    14. Ip, E., et al., Coherent detection in optical fiber systems. Optics Express,2008.16(2):p. 753-791.
    15. Winzer, P.J. and Essiambre, R.J. Electronic pre-distortion for advanced modulation formats, in in Proceedings of 31st European Conference on Optical Communication (ECOC).2005.
    16. Lowery, A.J., Du, L., and Armstrong, J. Orthogonal frequency division multiplexing for adaptive dispersion compensation in long haul WDM systems, in Proceedings of Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC).2006.
    17. Agrawal, G.P., Nonlinear fiber optics. Amsterdam; Boston:Elsevier/Academic Press. 2007.
    18. Weber, H.G., et al., Ultrahigh-speed OTDM-transmission technology. Journal of Lightwave Technology,2006.24(12):p.4616-4627.
    19. Prucnal, P.R., Optical code division multiple access:fundamentals and applications. Boca Raton, FL:CRC Taylor & Francis.2006.
    20. Kotani, Y., et al., Demonstration of 1.25 Gb/s x 8-Channels ECDM Using Eight-Chip Electrical Coding. IEEE Photonics Technology Letters,2010.22(12):p.875-877.
    21. Dai, B. and Wang, X., Security Improvement Using+/-pi/2-Phase-Shifted SSFBG En/Decoder in Time-Spreading OCDMA. IEEE Photonics Technology Letters,2010. 22(12):p.881-883.
    22. Leaird, D.E., Jiang, Z., and Weiner, A.M., Experimental investigation of security issues in OCDMA:a code-switching scheme. Electronics Letters,2005.41(14):p.817-819.
    23. Shake, T.H., Security performance of optical CDMA against eavesdropping. Journal of Lightwave Technology,2005.23(2):p.655-670.
    24. Tancevski, L., Andonovic, I., and Budin, J., Secure optical network architectures utilizing wavelength hopping/time spreading codes. IEEE Photonics Technology Letters,1995.7(5):p.573-575.
    25. Shieh, W. and Athaudage, C., Coherent optical orthogonal frequency division multiplexing. Electronics Letters,2006.42(10):p.587-589.
    26. Lowery, A.J. and Armstrong, J., Orthogonal-frequency-division multiplexing for dispersion compensation of long-haul optical systems. Optics Express,2006.14(6):p. 2079-2084.
    27. Xu, W., et al.10-user, truly-asynchronous OCDMA experiment with 511-chip SSFBG en/decoder and SC-based optical thresholder, in Proceedings of Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC).2005.
    28. Hamanaka, T., et al., Ten-User Truly Asynchronous Gigabit OCDMA Transmission Experiment With a 511-Chip SSFBG En/Decoder. Journal of Lightwave Technology, 2006.24(1):p.95.
    29. Kravtsov, K., et al. Stealth transmission over a WDM network with detection based on an all-optical thresholder, in Proceedings of IEEE LEOS Annual Meeting Conference. 2007.
    30. Nadarajah, N., et al., Novel schemes for local area network emulation in passive optical networks with RF subcarrier multiplexed customer traffic. Journal of Lightwave Technology,2005.23(10):p.2974-2983.
    31. Wong, E. and Chae, C.J., CSMA/CD-based Ethernet passive optical network with optical internetworking capability among users. IEEE Photonics Technology Letters,2004. 16(9):p.2195-2197.
    32. Tran, A.V., Chae, C.J., and Tucker, R.S., Bandwidth-efficient PON system for broad-band access and local customer internetworking. IEEE Photonics Technology Letters,2006. 18(5-8):p.670-672.
    33. Nadarajah, N., Wong, E., and Nirmalathas, A., Implementation of multiple secure virtual private networks over passive optical networks using electronic CDMA. IEEE Photonics Technology Letters,2006.18(1-4):p.484-486.
    34. Wang, Z.X., et al., Secure Optical Transmission in a Point-to-Point Link With Encrypted CDMA Codes. IEEE Photonics Technology Letters,2010.22(19):p.1410-1412.
    35. Wu, B.B. and Narimanov, E.E., A method for secure communications over a public fiber-optical network. Optics Express,2006.14(9):p.3738-3751.
    36. Su, Y., et al., All-optical virtual private network in passive optical networks. Laser & Photonics Reviews,2008.2(6):p.460-479.
    37. Prucnal, P.R. and Santoro, M.A., Spread Spectrum Fiberoptic Local Area Network Using Optical-Processing. Journal of Lightwave Technology,1986.4(5):p.547-554.
    38. Weiner, A.M., Heritage, J.P., and Salehi, J.A., Encoding and Decoding of Femtosecond Pulses. Optics Letters,1988.13(4):p.300-302.
    39. Zaccarin, D. and Kavehrad, M., An Optical Cdma System Based on Spectral Encoding of Led. IEEE Photonics Technology Letters,1993.5(4):p.479-482.
    40. Pfeiffer, T., Witte, M., and Deppisch, B., High-speed transmission of broad-band thermal light pulses over dispersive fibers. IEEE Photonics Technology Letters,1999.11(3):p. 385-387.
    41. Tancevski, L. and Andonovic, I., Wavelength Hopping Time Spreading Code-Division Multiple-Access Systems. Electronics Letters,1994.30(17):p.1388-1390.
    42. Kitayama, K., Sotobayashi, H., and Wada, N., Optical code division multiplexing (OCDM) and its applications to photonic networks. IEICE Transactions on Fundamentals of Electronics Communications and Computer Sciences,1999. E82a(12):p.2616-2626.
    43. Sotobayashi, H., Chujo, W., and Kitayama, K.I., Highly spectral-efficient optical code-division multiplexing transmission system. IEEE Journal of Selected Topics in Quantum Electronics,2004.10(2):p.250-258.
    44. Sotobayashi, H., Chujo, W., and Kitayama, K.I.,1.6-b/s/Hz 6.4-Tb/s QPSK-OCDM/WDM (4 OCDMx 40 WDMx 40 Gb/s) transmission experiment using optical hard thresholding. IEEE Photonics Technology Letters,2002.14(4):p.555-557.
    45. Salehi, J.A., Weiner, A.M., and Heritage, J.P., Coherent Ultrashort Light-Pulse Code-Division Multiple Access Communication-Systems. Journal of Lightwave Technology, 1990.8(3):p.478-491.
    46. Etemad, S., et al. Optical-CDMA incorporating phase coding of coherent frequency bins: concept, simulation, experiment, in Proceedings of Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC).2004.
    47. Chung, F.R.K., Salehi, J.A., and Wei, V.K., Optical Orthogonal Codes-Design, Analysis, and Applications. IEEE Transactions on Information Theory,1989.35(3):p.595-604.
    48. Shaar, A.A. and Davies, P.A., Prime Sequences-Quasi-Optimal Sequences for or Channel Code Division Multiplexing. Electronics Letters,1983.19(21):p.888-890.
    49. Titlebaum, E.L., Time-Frequency Hop Signals.1. Coding Based Upon the Theory of Linear Congruences. IEEE Transactions on Aerospace and Electronic Systems,1981. 17(4):p.490-493.
    50. Yang, G.C. and Fuja, T.E., Optical Orthogonal Codes with Unequal Auto-Correlation and Cross-Correlation Constraints. IEEE Transactions on Information Theory,1995. 41(1):p.96-106.
    51. Yang, G.-C. and Kwong, W.C., Prime codes with applications to CDMA optical and wireless networks. Boston:Artech House.2002.
    52. Kwong, W.C. and Yang, G.C., Extended carrier-hopping prime codes for wavelength-time optical code-division multiple access. IEEE Transactions on Communications, 2004.52(7):p.1084-1091.
    53. Wan, S.P. and Hu, Y, Two-dimensional optical CDMA differential system with prime/OOC codes. IEEE Photonics Technology Letters,2001.13(12):p.1373-1375.
    54. Dinan, E.H. and Jabbari, B., Spreading codes for direct sequence CDMA and wideband CDMA cellular networks. IEEE Communications Magazine,1998.36(9):p.48-54.
    55. Komo, J.J. and Yuan, C.C. Evaluation of code division multiple access systems, in Proceedings of IEEE Energy and Information Technologies in the Southeast.1989.
    56. Gold, R., Optimal Binary Sequences for Spread Spectrum Multiplexing. IEEE Transactions on Information Theory,1967.13(4):p.619-621.
    57. Cincotti, G., Wada, N., and Kitayama, K.-i., Characterization of a Full Encoder/Decoder in the AWG Configuration for Code-Based Photonic Routers-Part Ⅰ:Modeling and Design. Journal of Lightwave Technology,2006.24(1):p.103.
    58. Xu, W., et al., Demonstration of over 128-gb/s-capacity (12-User/spl times/10.71-gb/s/user) asynchronous OCDMA using FEC and AWG-based multiport optical encoder/decoders. IEEE Photonics Technology Letters,2006.18(15):p.1603-1605.
    59. Wang, X. and Wada, N., Experimental Demonstration of OCDMA Traffic Over Optical Packet Switching Network With Hybrid PLC and SSFBG En/Decoders. Journal of Lightwave Technology,2006.24(8):p.3012.
    60. Wang, X., et al., High-performance optical code generation and recognition by use of a 511-chip,640-Gchip/s phase-shifted superstructured fiber Bragg grating. Optics Letters 2005.30(4):p.355-357.
    61. Dockney, M.L., James, S.W., and Tatam, R.P., Fibre Bragg gratings fabricated using a wavelength tuneable laser source and a phase mask based interferometer. Measurement Science & Technology,1996.7(4):p.445-448.
    62. Meltz, G., Morey, W.W., and Glenn, W.H., Formation of Bragg Gratings in Optical Fibers by a Transverse Holographic Method. Optics Letters,1989.14(15):p.823-825.
    63. Sokoloff, J.P., et al., A Terahertz Optical Asymmetric Demultiplexer (Toad). IEEE Photonics Technology Letters,1993.5(7):p.787-790.
    64. Lee, J.H., et al., Reduction of interchannel interference noise in a two-channel grating-based OCDMA system using a nonlinear optical loop mirror. IEEE Photonics Technology Letters,2001.13(5):p.529-531.
    65. Jiang, Z., et al., Four-user,2.5-Gb/s, spectrally coded OCDMA system demonstration using low-power nonlinear processing. Journal of Lightwave Technology,2005.23(1): p.143-158.
    66. Wang, X., et al., Dispersion-flattened-fiber based optical thresholder for multiple-access-interference suppression in OCDMA system. Optics Express,2005.13(14):p. 5499-5505.
    67. Morioka, T., et al., Multiwavelength Picosecond Pulse Source with Low Jitter and High Optical Frequency Stability Based on 200nm Supercontinuum Filtering. Electronics Letters,1995.31(13):p.1064-1066.
    68. Okuno, T., Onishi, M., and Nishimura, M., Generation of ultra-broad-band supercontinuum by dispersion-flattened and decreasing fiber. IEEE Photonics Technology Letters,1998.10(1):p.72-74.
    69. Xu, W., et al., Field Trial of 3-WDM × 10-OCDMA × 10.71-Gb/s Asynchronous WDM/DPSK-OCDMA Using Hybrid E/D Without FEC and Optical Thresholding. Journal of Lightwave Technology,2007.25(1):p.207-215.
    70. Stolen, R.H., Botineau, J., and Ashkin, A., Intensity Discrimination of Optical Pulses with Birefringent Fibers. Optics Letters,1982.7(10):p.512-514.
    71.郁道银,谈恒英,工程光学.北京:机械工业出版社.2005.
    72. Guo, C.J., Hong, X.Z., and He, S.L., Elimination of Multiple Access Interference in Ultrashort Pulse OCDMA Through Nonlinear Polarization Rotation. IEEE Photonics Technology Letters,2009.21(20):p.1484-1486.
    73. Keating, A.J. and Sampson, D.D., Reduction of excess intensity noise in spectrum-sliced incoherent light for WDM applications. Journal of Lightwave Technology,1997.15(1): p.53-61.
    74. Taccheo, S. and Ennser, K., Investigation of amplitude noise and timing jitter of supercontinuum spectrum-sliced pulses. IEEE Photonics Technology Letters,2002. 14(8):p.1100-1102.
    75. Kim, J., Boyraz, O., and Islam, M.N.150+channel ultra-DWDM source with Nx10 GHz spacing utilizing longitudinal mode slicing of supercontinuum, in Proceedings of Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC).2000.
    76. Wu, B.B. and Narimanov, E.E., Analysis of stealth communications over a public fiber-optical network. Optics Express,2007.15(2):p.289-301.
    77. Huang, Y.K., et al., Combining cryptographic and steganographic security with self-wrapped optical code division multiplexing techniques. Electronics Letters,2007. 43(25):p.1449-1451.
    78. Wu, B., et al., Steganographic Fiber-Optic Transmission using Coherent Spectral-Phase-Encoded Optical CDMA.2008 Conference on Lasers and Electro-Optics & Quantum Electronics and Laser Science Conference,2008:p.76-77.
    79. Fok, M.P. and Prucnal, P.R., Compact and low-latency scheme for optical steganography using chirped fibre Bragg gratings. Electronics Letters,2009.45(3):p.179-180.
    80. Erdogan, T., Fiber grating spectra. Journal of Lightwave Technology,1997.15(8):p. 1277-1294.
    81. Butcher, J.C., The numerical analysis of ordinary differential equations:Runge-Kutta and general linear methods. Chichester; New York:J. Wiley.1987.
    82. Dawei, W., Liang, C., and Biao, C. Experimental investigation of colorless ONU employing superstructured fiber bragg gratings in WDM/OCDMA-PON, in Proceedings of Asia Communications and Photonics Conference and Exhibition (ACP). 2009.
    83. Huayong, Z., et al. Investigation of DWDM over OCDMA System Based on Parallelly Combined SSFBG Encoder/Decoders, in 2011 Symposium on Photonics and Optoelectronics (SOPO).2011.
    84. Hill, K.O., et al., Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask. Applied Physics Letters,1993.62(10):p.1035-1037.
    85. Lemaire, P.J., et al., Thermally Enhanced Ultraviolet Photosensitivity in Geo2 and P2o5 Doped Optical Fibers. Applied Physics Letters,1995.66(16):p.2034-2036.
    86. Effenberger, F., et al., An introduction to PON technologies. IEEE Communications Magazine,2007:p. S17-S25.
    87. Beck, M., Ethernet in the first mile:the IEEE 802.Sah EFM standard. New York: McGraw-Hill.2005.
    88. Hood, D. and Trojer, E., Gigabit-capable passive optical networks. Hoboken:Wiley. 2011.
    89. Fowler, D., Virtual private networks:making the right connection. San Francisco, Calif.: Morgan Kaufmann Publishers.1999.
    90. Day, J.D. and Zimmermann, H., The OSI reference model Proceedings of the IEEE, 1983.71(12):p.1334-1340.
    91. Cohen, R., On the establishment of an access VPN in broadband access networks. IEEE Communications Magazine,2003.41(2):p.156-163.
    92. Knight, P. and Lewis, C, Layer 2 and 3 virtual private networks:taxonomy, technology, and standardization efforts. IEEE Communications Magazine,2004.42(6):p.124-131.
    93. Chae, C.J., et al., A PON system suitable for internetworking optical network units using a fiber Bragg grating on the feeder fiber. IEEE Photonics Technology Letters,1999. 11(12):p.1686-1688.
    94. Chae, C.J., Park, H., and Eom, J.H., An ATM PON system overlaid with a 155-Mb/s optical star network for customer networking and fiber to the premises. IEEE Photonics Technology Letters,2001.13(10):p.1133-1135.
    95. Kim, B.K., et al., Optical access network scheme with downstream Manchester coding and upstream NRZ remodulation. Electronics Letters,2006.42(8):p.484-485.
    96. Lu, Y., et al., IRZ-Manchester coding for downstream signal modulation in an ONU-source-free WDM-PON. Optics Communications,2011.284(5):p.1218-1222.
    97. Hsueh, Y.L., et al., Smooth upgrade of existing passive optical networks with spectral-shaping line-coding service overlay. Journal of Lightwave Technology,2005.23(9):p. 2629-2637.
    98. Jiang, Z., Leaird, D.E., and Weiner, A.M., Experimental investigation of security issues in O-CDMA. Journal of Lightwave Technology,2006.24(11):p.4228-4234.
    99. Shake, T.H., Confidentiality performance of spectral-phase-encoded optical CDMA. Journal of Lightwave Technology,2005.23(4):p.1652-1663.
    100. Fok, M.P., et al., Optical Layer Security in Fiber-Optic Networks. IEEE Transactions on Information Forensics and Security,2011.6(3):p.725-736.
    101. Djordjevic, I.B. and Vasic, B., Orthogonal frequency division multiplexing for high-speed optical transmission. Optics Express,2006.14(9):p.3767-3775.
    102. Lowery, A.J., Du, L.B., and Armstrong, J., Performance of Optical OFDM in Ultralong-Haul WDM Lightwave Systems. Journal of Lightwave Technology,2007.25(1):p.131-138.
    103. Shieh, W., et al., Theoretical and experimental study on PMD-supported transmission using polarization diversity in coherent optical OFDM systems. Optics Express,2007. 15(16):p.9936-9947.
    104. Shieh, W., et al., Coherent optical OFDM:has its time come? [Invited]. Journal of Optical Networking,2008.7(3):p.234-255.
    105. Qian, D.Y., et al.10-Gb/s OFDMA-PON for delivery of heterogeneous services, in Proceedings of Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC).2008.
    106. Qian, D.Y., et al.,108 Gb/s OFDMA-PON With Polarization Multiplexing and Direct Detection. Journal of Lightwave Technology,2010.28(4):p.484-493.
    107. Hernandez, V.J., et al., Spectral phase-encoded time-spreading (SPECTS) optical code-division multiple access for terabit optical access networks. Journal of Lightwave Technology,2004.22(11):p.2671-2679.
    108. Shirasaki, M., Large angular dispersion by a virtually imaged phased array and its application to a wavelength demultiplexer. Optics Letters,1996.21(5):p.366-368.
    109. Agarwal, A., et al., Fully programmable ring-resonator-based integrated photonic circuit for phase coherent applications. Journal of Lightwave Technology,2006.24(1):p.77-87.
    110. Proakis, J.G. and Salehi, M., Digital communications. Boston:McGraw-Hill.2008.
    111. Toliver, P., et al. Demonstration of High Spectral Efficiency Coherent OCDM Using DQPSK, FEC, and Integrated Ring Resonator-Based Spectral Phase Encoder/Decoders, in Proceedings of Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC).2007.
    112. Djordjevic, I.B., Arabaci, M., and Minkov, L.L., Next Generation FEC for High-Capacity Communication in Optical Transport Networks. Journal of Lightwave Technology,2009.27(16):p.3518-3530.
    113. Ryan, W.E. and Lin, S., Channel codes:classical and modern. Cambridge; New York: Cambridge University Press.2009.
    114. Arabaci, M., Nonbinary-LDPC-Coded Modulation Schemes for High-Speed Optical Communication Networks. [Ph.D. Thesis]. The University of Arizona, Tucson:USA. 2010.
    115. Xuezhi, H., Arabaci, M., and Djordjevic, I.B. An experimental investigation of high-rate nonbinary quasi-cyclic LDPC-coded modulation for coherent optical communication, in Proceedings of IEEE Photonics Conference (PHO).2011.
    116. Bahl, L.R., et al., Optimal Decoding of Linear Codes for Minimizing Symbol Error Rate. IEEE Transactions on Information Theory,1974.20(2):p.284-287.
    117. Yuqing, J., et al., An Integrated Optical Mixer Based on SU8 Polymer for PDM-QPSK Demodulation. IEEE Photonics Technology Letters,2011.23(20):p.1490-1492.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700