用户名: 密码: 验证码:
不对称有机催化反应:金鸡纳生物碱衍生物催化不对称“中断的”Feist-Bénary反应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机小分子催化的不对称有机合成可简称为不对称有机催化反应。与生物酶催化剂和过渡金属配合物的催化剂相比,有机小分子催化剂有诸多优点——稳定、廉价、容易制备、催化反应条件温和、容易负载等。
     Feist-Bénary反应是制备多取代呋喃类衍生物的简便而有效的方法。该反应是在碱催化下,α-卤代酮与β-二羰基化合物发生亲核取代和环化反应生成二氢呋喃衍生物,后者进一步脱水生成多取代呋喃类衍生物。控制反应条件使反应停止在生成二氢呋喃衍生物阶段的反应称为“interrupted”Feist-Bénary(IFB)反应。由于二氢呋喃衍生物是非常重要的合成中间体,广泛存在于多种具有重要生物活性的天然产物和手性药物的结构中。因此,IFB反应在有机合成及药物合成中应用广泛。2005年,Calter研究小组首次报道了有机小分子催化的不对称IFB反应,以取代的嘧啶-双金鸡纳生物碱衍生物为催化剂,得到了多取代的手性2,3-二氢呋喃衍生物,产物的光学纯度为17~96% ee。在国内,我们课题组从2006年开始进行不对称IFB反应的研究。我们将一系列金鸡纳生物碱衍生物用于环己二酮和溴乙酰甲酸乙酯的不对称IFB反应中。在研究中我们发现催化剂结构的微小变化会引起产4物对映体过量值的明显变化。而且,影响该催化反应的因素也较复杂。为此,我们改变催化剂的结构,通过调节其电子效应和立体效应以寻求活性高、立体选择性好的新型催化剂。
     本论文设计、合成并表征了四类共计31种金鸡纳生物碱衍生物有机催化剂,包括:吡啶二甲酸酯类,磺酸酯类,三氮唑醚类,蒽醌醚类,胺(伯胺、仲胺)类以及硫脲类,并将其应用于二酮与溴乙酰甲酸乙酯的不对称IFB反应,在反应中都获得了很高的化学产率。
     1、金鸡纳生物碱酯类衍生物
     (1)以吡啶二甲酸为原料合成了6个新化合物A1-A6,产率高(90-95%),反应条件温和,磺酸酯化合物A7-A8,合成方法简单,后处理方便;
     (2)将酯类衍生物A1-A8应用于环己二酮/环戊二酮/链状二酮的IFB反应中,其不对称诱导作用依次降低。在β-苯基溴乙酰甲酸乙酯与环戊二酮的不对称IFB反应中,立体选择性最好,DHQ的衍生物A3可以获得最高94%ee的立体选择性。而在底物为β-丙基溴乙酰甲酸乙酯的反应中获得了很高的非对映选择性;
     (3)将反应中催化剂的用量从5mol%增加至10mol%时,立体选择性可以提高3-5个百分点,而对化学产率和非对映选择性影响不大;
     (4)对于磺酸酯A7和A8来说,催化的不对称诱导作用普遍比吡啶二甲酸酯逊色。
     2、金鸡纳生物碱醚类衍生物
     (1)用Willisom醚合成法合成了醚类化合物B1-B8,柱层析分离的产物纯品,方法简单;
     (2)醚类衍生物B1-B8能够催化不对称IFB反应,但是立体选择性均不甚理想,蒽醌醚类B1-B6和三氮唑类B7-B8催化活性没有明显区别,对于无取代、β-苯基和β-丙基溴乙酰甲酸乙酯ee值大部分在60-70%左右;
     (3) QN,QD,DHQ和DHQD的衍生物立体选择性普遍优于CN和CND的衍生物,说明在有机催化剂的结构中,喹啉环上-OCH3起到了一定的空间限制作用,从而有利于不对称诱导;
     (4)在β-丙基底物的不对称IFB反应中,八种醚类催化剂都表现了优秀的非对映选择性(>95:5),而对β-苯基取代的底物而言,反应的非对映选择性一般(63:37~80:20)。
     3、金鸡纳生物碱胺类衍生物
     (1)合成了金鸡纳生物碱伯胺类衍生物C1-C6,仲胺类衍生物C7-C8,以及磺酰胺类衍生物C9,并对所得到的化合物进行了结构表征;
     (2)金鸡纳生物碱胺类衍生物C1-C9催化不对称IFB反应时,立体选择性不如以上的醚类和酯类,大多数ee值在30%左右;
     (3)将伯胺转化为仲胺时,催化剂的立体选择性无明显改变,说明催化时的-NH2上的取代基对催化中间体的形成以及亲核试剂的进攻并无太大影响;
     (4) 9位-NH2的绝对构型是(R)还是(S)对非对映选择性和对映选择性影响并不大,说明9位基团的绝对构型并不是反应立体诱导的关键因素。
     4、金鸡纳生物碱硫脲类衍生物
     (1)合成了金鸡纳生物碱硫脲类衍生物D1-D6,并进行了结构表征;
     (2)硫脲类的衍生物D1-D6在不对称IFB反应中结果不尽人意,尤其是将与NH2相连的9位C由非天然的构型转化为天然构型后形成的硫脲,其不对称诱导作用减弱;
     (3)在此催化剂结构中,喹啉环上有无-OCH3取代并无多大影响,这点与以上酯类等衍生物不同;
     (4)与酯类A1-A8和醚类催化剂B1-B8的催化结果一样,硫脲类衍生物D1-D6对β-丙基取代底物获得了优秀的非对映选择性,而β-苯基和β-丙基的立体选择性无明显差别。
     同时,我们根据以上催化剂结构和催化反应结果,初步推测了不对称IFB反应的机理。
Asymmetric organocatalysis is asymmetric organic synthesis catalyzed by organic molecules. Compared to bioorganic catalysis and organometallic catalysis, their preparative advantages are notable: usually the reaction can be performed under an aerobic atmosphere with solvent, stable than enzymes or other bioorganic catalysts. Also, these small organic molecules can be anchored to a solid support and reused more conveniently than organomentallic/bioorganic analogs, and show promising adaptability to high-throughout screening and process chemistry.
     The Feist-Bénary reaction is a convenient method to synthesis multi- substituted furanderivatives. This reaction generally involved the base-promoted condensation ofα- dicarbonyl compounds withβ-haloketones to produce furans. The reaction can be stopped at the hydroxydihydrofuran stage as the“interrupted”Feist-Bénary (IFB) reaction. Hydroxydihydrofuran derivatives are important intermediate for their existing many biologically active natural products and chiral medicine. In 2005, Calter et al reported organocatalytically asymmetric IFB reaction by commercially available diphenylpyrimidinyl derivative and obtained multisubstitued chiral 2,3-dihydrofuran derivatives, and the enantioselectivity was 17-96%.
     Our group started the asymmetric IFB research in 2006 and adopted a serials of cinchona alkaloids derivatives to the reaction of ethyl bromopyruvate with 1,3-cyclohexadione. We found the subtle change of the catalyst structure can influence the enantioselectivity dramatically. Furthermore, the catalytic results were controlled by many factors. So we want to search for more potent organocatalyst by changing the electronic effect and stereo effect.
     In this thesis, we designed, synthesized and characterized 31 cinchona alkaloids derivatives, including 2,6-pyridinedicarboxylic esters, sulfonic esters, triazole ethers, anthraquinone ethers, amines and thioureas. we further applied them to the IFB reaction of 1,2-diones and ethyl bromopyruvate. Excellent chemical yield were obtained in almost all reactions.
     1. Ester derivatives of cinchona alkaloids
     (1) Six new compounds A1-A6 were prepared by the 2,6- dipyridicaboxylic acid as the starting materials with high yields, mild condition and less side-reaction;
     (2) The ester compounds A1-A8 were applied to IFB reaction of 1,3-cyclohexadione, 1,3-cyclopentanedione and acyclic dione, the ee value increased gradually. One hand, the highest enantioselectivity were obtained in the reaction ofβ-phenyl ethyl bromopyruvate by dihydrquinine derivative A3 and the ee value was 94%. On the other hand, when the substrate wasβ-propyl ethyl bromopyruvate, the highest diastereoselectivity were obtained (more than 95:5);
     (3) When the catalyst amounts were improved from 5%mol to 10%mol, the enantioselectivity were increased by 3-5%, and the change had no influence on the chemical yields and diastereoselectivities;
     (4) The asymmetric inductions of sulfonic esters A7-A8 were inferior to that of the pyridinedicarboxylic esters A1-A6.
     2. Ether derivatives of cinchona alkaloids
     (1) Ether derivatives of cinchona alkaloids B1-B8 were synthesized and purified;
     (2) The enantioselectivities of ethers B1-B8 were dissatisfying and there were no notably difference between triazole ethers B1-B6 anthraquinone ethers B7-B8. The ee values were about 60-70% of all the three substrate: no-substituted,β-phenyl andβ-propyl ethyl bromopyruvate;
     (3) The derivatives of QN, QD, DHQ and DHQD had better asymmetric induction than those of CN, CND, Which demonstrated that the–OCH3 substitution in the catalyst structure have spatial fixation effect and it is beneficial to stereoselectivity;
     (4) The eight organocatalyst had excellent diastereoselectivities to the substrate ofβ-propyl ethyl bromopyruvate. And moderate diastereoselectivities to theβ-phenyl substrate, which were similar to the previous ester catalysts.
     3. Amino derivatives of cinchona alkaloids
     (1) Ether derivatives of cinchona alkaloids C1-C9 were synthesized and purified;
     (2) The enantioselectivities of cinchona alkaloids amino derivatives C1-C9 were inferior to those of ethers and esters in the asymmetric IFB reaction. The ee values were mostly about 30%;
     (3) When the primary amines were converted to secondry amines, there were no improvement in stereoselectivities, which showed the substitute of–NH2 have little influence on the formation of intermediate and the attack of nucleophilic reagent;
     (4) The absolute configuration of 9-NH2 is (R) or (S) did not influent the diastereoselectivity and stereoselectivity and it was not the key factor of asymmetric induction.
     4. Thioureas derivatives of cinchona alkaloids
     (1) Thiourea derivatives of cinchona alkaloids D1-D6 were synthesized and purified;
     (2) The asymmetric results of thioureas D1-D6 in the IFB reactions were very disappointing. And the thiourea of 9-natural configuration had lower stereoeffect than that of 9-epi configuration;
     (3) Whether there are–OCH3 substitute on quinoline ring have no effect on the catalytic results, which was different from the ester derivatives;
     (4) Similar to the ester A1-A8 and the ether B1-B8, the thioureas D1-D6 have excellent diastereoselectivities towards the substrate ofβ-propyl ethyl bromopyruvate and no distinctly stereoselective difference between theβ-propyl andβ-pheyl substrate.
     Furthermore, we purposed the mechanism of asymmetric IFB reaction by the previous catalyst structure and catalytic results.
引文
[1] Dalko P.I.; Moisan L., In the Golden Age of Organocatalysis, Angew. Chem. Int. Ed., 2004, 43: 5138-5175.
    [2] Marckwald W., Ber. Dtsch. Chem. Ges., 1904, 37: 349-354.
    [3] Bredig G.; Fiske P.S., Biochem. Z., 1912, 46: 7-10.
    [4] Pracejus H.; Matje H., Organische Katalysatoren. LXXI Asymmetrische Synthesen mit Ketenen. IV. Zusammenh?nge zwischen dem r?umlichen Bau einiger alkaloidartiger Katalysatoren und ihren stereospezifischen Wirkungen bei asymmetrischen Estersynthesen, J. Prakt. Chem. 1964, 24(3): 195-205.
    [5] Pracejus H.; Kohl G., Asymmetric syntheses with ketenes.7.Tertiary amines ontaning an asymmetric C atom as catalysts for asymmetric synthesis of methyl alpha- phenylpropionate, Anal. Chim., 969, 722: 1-&.
    [6] Hajos Z. G.; Parrish D. R., Asymmetric synthesis of bicyclic intermediates of natural product chemistry, J. Org. Chem., 1974, 39(12): 1615 -1621.
    [7] List B.; Lerner R. A.; Barbas III C. F., Proline -Catalyzed Direct Asymm- -etric Aldol Reactions, J. Am. Chem. Soc., 2000, 122: 2395-2396.
    [8] List B., The direct catalytic asymmetric three-component Mannich reaction, J. Am. Chem. Soc., 2000, 122(38): 9336-9337.
    [9] Turner J. M.; Bui T.; Lerner R. A., An efficient benchtop system for multigram-scale kinetic resolutions using aldolase antibodies, Chem.-A Eur. J., 2000, 6(15): 2772-2774.
    [10] Notz W.; List B., Catalytic asymmetric synthesis of anti-1,2-diols, J. Am. Chem. Soc., 2000 , 122(30): 7386-7387.
    [11] List B.; Lerner R.A., Barbas CF, Proline-catalyzed direct asymmetric aldol reactions, J. Am. Chem. Soc., 2000, 122(10): 2395-2396.
    [12] List J.A.; Mason C.F., Spatial aspects of pollution control when pollutants havesynergistic effects: Evidence from a differential game with asymmetric information, Annal of Regional Science, 1999, 33(4): 439-452.
    [13] Zhong G.F.; Shabat D., List B., Catalytic enantioselective retro-aldol reactions: Kinetic resolution of beta-hydroxyketones with aldolase antibodies, Angew. Chem. Int. Ed., 1998, 37 (18): 2481-2484.
    [14] List B.; Pojarliev P.; Castello C., Proline-catalyzed asymmetric aldol reactions between ketones and alpha-unsubstituted aldehydes, Org. Lett., 2001, 3(4): 573-575.
    [15] List B.; Pojarliev P.; Martin H.J., Efficient proline-catalyzed Michael additions of unmodified ketones to nitro olefins, Org. Lett., 2001, 3(16): 2423-2425.
    [16] List B.; Castello C., A novel proline-catalyzed three-component reaction of ketones, aldehydes, and Meldrum's acid, Synthlett., 2001, 11: 1687-1689.
    [17] List B., Asymmetric aminocatalysis, Synthlett., 2001,11: 1675-1686.
    [18] List B.; Pojarliev P.; Biller W.T., The proline-catalyzed direct asymmetric three-component Mannich reaction: Scope, optimization, and application to the highly enantioselective synthesis of 1,2-amino alcohols, J. Am. Chem. Soc., 2002, 124(5): 827-833.
    [19] List B., Direct catalytic asymmetric alpha-amination of aldehydes, J. Am. Chem. Soc., 2002, 124(20): 5656-5657.
    [20] Almasi D.; Alonso D.A., Gomez-Bengoa E., Asymmetric conjugate addition of ketones to beta-nitrostyrenes by means of 1,2-amino-alcohol-derived prolinamides asbifunctional catalysts, Eur. J. Org. Chem., 2007,14: 2328-2343.
    [21] Qin B.; Liu X.H.; Shi J., Enantioselective cyanosilylation of alpha, alpha-dialkoxy ketones catalyzed by proline-derived in-situ-prepared N-oxide as bifunctional organocatalyst, J. Org. Chem., 2007, 72(7): 2374-2378.
    [22] (a)Yalalov D.A.; Tsogoeva S.B.; Schmatz S., Chiral thiourea-based bifunctional organocatalysts in the asymmetric nitro-Michael addition: A joint experimental-theoretical study, Advan. Synth.& Catal., 2006, 348 (7-8): 826-832; (b)Tsogoeva S.B.; Yalalov D.A.; Hateley M.J., Asymmetric organocatalysis with novel chiral thiourea derivatives: Bifunctional catalysts for the Strecker and nitro-Michael reactions, Eur. J. Org. Chem., 2005, 23: 4995-5000.
    [23] Tummatorn J.; Khorphueng P.; Petsom A., Convenient synthetic route to a dehydrorotenoid via selective intramolecular aldol condensation of 1,2-diaryl diketone, Tetrahedron, 2007, 63 (48): 11878-11885.
    [24] Bahmanyar S.; Houk K.N., The origin of stereoselectivity in proline- catalyzed intramolecular aldol reactions, J. Am. Chem. Soc., 2001, 123(51): 12911-12912.
    [25] Kanger T.; Kriis K.; Laars M., Bimorpholine-mediated enantioselective intramolecular and intermolecular aldol condensation, J. Org. Chem., 2007, 72(14): 5168-5173.
    [26] Bernard A.M.; Frongia A.; Guillot R., L-proline-catalyzed direct intermolecular asymmetric aldol reactions of 1-phenylthiocycloalkyl carboxaldehydes with ketones. Easy access to spiro- and fused-cyclobutyl tetrahydrofurans and cyclopentanones, Org. Lett., 2007, 9 (3): 541-544.
    [27] Bahmanyar S.; Houk K.N.; Martin H.J., Quantum mechanical predictions of the stereoselectivities of proline-catalyzed asymmetric intermolecular aldol reactions, J. Am. Chem. Soc., 2003 ,125(9): 2475-2479.
    [28] Ramachary D.B.; Barbas C.F., Towards organo-click chemistry: Development of organocatalytic multicomponent reactions through combinations of Aldol, Wittig, Knoevenagel, Michael, Diels-Alder and Huisgen cycloaddition reactions, Chem. Eur. J., 2004, 10(21): 5323-5331.
    [29] Northrup A.; MacMillan D.W., The First Direct and Enantioselective Cross-Aldol Reaction of Aldehydes, J. Am. Chem. Soc., 2002, 124: 6798-6799.
    [30] Bogevig A.; Kumaragurubaran N.; Jorgensen K. A., Direct catalytic asymmetric aldol reactions of aldehydes, Chem. Commun., 2002, 6: 620-621.
    [31] Wrdova A.; Notz W.; BarbasIII C. F., Direct organocatalytic aldol reactions in buffered aqueous media, Chem.Commun., 2002, 6: 3024-3025.
    [32] Wrdova A. C., One-Pot Organocatalytic Direct Asymmetric Synthesis ofγ-Amino Alcohol Derivatives, Synlett., 2003, 1651-1654.
    [33] Notz W.; Tanaka F.; Watanabe S.; Chowdari N. S.; Turner J. M.; Thayumanavan R.; BarbasIII C. F., The Direct Organocatalytic Asymme- -tric Mannich Reaction: Unmodified Aldehydes as Nucleophiles, J. Org. Chem., 2003, 68: 9624-9634.
    [34] Hayashi Y.; Tsuboi W.; Ashimine I.; Uroshima T.; Shoji M.; Sakai K., The Direct and Enantioselective, One-Pot, Three-Component, Cross- Mannich Reaction of Aldehydes, Angew. Chem., 2003, 115(31): 3805-3808.
    [35] Hayashi Y.; Tsuboi W.; Ashimine I.; Urushima T.; Shoji M.; Sakai K., The Direct and Enantioselective, One-Pot, Three-Component, Cross-Mannich Reaction of Aldehydes Angew. Chem. Int. Ed., 2003, 42(31): 3677-3680.
    [36] Zhuang W.; Saaby S.; Jorgensen K. A., Direct Organocatalytic Enantio- -selective Mannich Reactions of Ketimines: An Approach to Optically Active Quaternary -Amino Acid Derivatives, Angew. Chem. Int. Ed., 2004, 43(34): 4476-4478.
    [37] List B.; Pojarliev P.; Biller W. T.; Martin H. J., The Proline-Catalyzed Direct Asymmetric Three-Component Mannich Reaction: Scope, Optimization, and Application to the Highly Enantioselective Synthesis of 1,2-Amino Alcohols, J. Am. Chem. Soc., 2002, 124: 827-833.
    [38] Merino P.; Tejero T., Organocatalyzed Asymmetricα-Aminoxylation of Aldehydes and Ketones-An Efficient Access to Enantiomerically Pureα- Hydroxycarbonyl Compounds, Diols, and Even Amino Alcohols, Angew. Chem. Int. Ed., 2004, 43(23): 2995-2997.
    [39] Wrdova A. C.; BarbasIII C. F., anti-Selective SMP-catalyzed direct asymmetric Mannich-type reactions: synthesis of functionalized amino acid derivatives, Tetrahedron Lett., 2002, 43: 7749-7752.
    [40] Halland N.; Aburel P. S., Jorgensen K. A., Highly Enantio- and Diastereoselective Organocatalytic Asymmetric Domino Michael-Aldol Reaction ofβ-Ketoesters andα,β-Unsaturated Ketones, Angew. Chem. Int. Ed., 2004, 43(10): 1272-1277.
    [41] Brown S. P.; Goodwin N. C.;. MacMillan D. W, The First Enantio- -selective Organocatalytic Mukaiyama-Michael Reaction: A Direct Method for the Synthesis of Enantioenrichedγ-Butenolide Architecture, J. Am. Chem. Soc., 2003, 125: 1192-1194.
    [42] Paras N. A.; MacMillan D.W., The Enantioselective Organocatalytic 1,4-Addition of Electron-Rich Benzenes toα,β-Unsaturated Aldehydes, J. Am. Chem. Soc., 2002, 124: 7894-7895.
    [43] Pederson R. L.; Fellows I. M.; Ung T. A.; Ishihara H.; Hajela S. P., Applications of Olefin Cross Metathesis to Commercial Products, Adv. Synth. Catal., 2002, 344(6-7): 728-735.
    [44] Halland N.; Aburel P. S.; Jorgensen K. A., Highly Enantioselective OrganocatalyticConjugate Addition of Malonates toAcyclic,α,β- Unsaturated Enones, Angew. Chem. Int. Ed., 2003, 42(6): 661-665.
    [45] Aggarwal V. K.; Lopin C.; Sandrinelli F., New Insights in the Mechanism of Amine Catalyzed Epoxidation: Dual Role of Protonated Ammonium Salts as Both Phase Transfer Catalysts and Activators of Oxone, J. Am. Chem. Soc., 2003, 125: 7596-7601.
    [46] Shioiri T.; Bohsako A.; Ando A., Importance of the hydroxymethyl -quinuclidine fragment in the catalytic asymmetric aldol reactions utilizing quaternary ammonium fluorides derived from cinchona alkaloids, Heterocycles, 1996, 42(1): 93-97
    [47] Ogawa S.; Shibata N.; Inagaki J., Cinchona-alkaloid-catalyzed enantioselective direct aldol-type reaction of oxindoles with ethyl trifluoropyruvate, Angew. Chem. Int. Ed., 2007, 46(45): 8666-8669.
    [48] Zheng B.L.; Liu Q.Z.; Guo C.S., Highly enantioselective direct aldol reaction catalyzed by cinchona derived primary amines, Org. Biomol. Chem., 2007, 5(18): 2913-2915.
    [49] Ma B.; Parkinson J.L.; Castle S.L., Novel Cinchona alkaloid derived ammonium salts as catalysts for the asymmetric synthesis of beta-hydroxy alpha-amino acids via aldol reactions, Tetrahedron Lett., 2007, 48(12): 2083-2086.
    [50] Cortez G. S.; Tennyson R. L.; Romo D., Intramolecular, Nucleophile- Catalyzed Aldol-Lactonization (NCAL) Reactions: Catalytic, Asymmetric Synthesis of Bicyclicβ-Lactones, J. Am. Chem. Soc., 2001, 123: 7945-7946.
    [51] Shinichi O.; Norio S.; Junji I.; Shuichi N.; Takeshi T.; Motoo S., Cinchona- Alkaloid-Catalyzed Enantioselective Direct Aldol-Type Reaction of Oxindoles with Ethyl Trifluoropyruvate, Angew. Chem. Int. Ed., 2007, 46(45):8666-8669.
    [52] Rogers L. M.; Rouden J.; Lecomte L.; Lasne M.C., Enantioselective decarboxylation–reprotonation of anα-amino malonate derivative as a route to opticallyenriched cyclicα-amino acid, Tetrahedron Lett., 2003, 44: 3047-3050.
    [53] Poisson T.; Dalla V.; Marsais F., Organocatalytic enantioselective protonation of silyl enolates mediated by cinchona alkaloids and a latent source of HF, Angew. Chem. Int. Ed., 2007, 46(37): 7090-70932007.
    [54] Amere M.; Lasne M.C.; Rouden J., Highly enantioselective decarboxylative protonation of alpha-aminomalonates mediated by thiourea Cinchona alkaloid derivatives: Access to both enantiomers of cyclic and acyclic alpha-aminoacids, Org. Lett., 2007, 9(14): 2621-2624.
    [55] Wang Y.; Liu X.F.; Deng L., Dual-function cinchona alkaloid catalysis: Catalytic asymmetric tandem conjugate addition-protonation for the direct creation of nonadjacent stereocenters, J. Am. Chem. Soc., 2006, 128(12): 3928-3930.
    [56] Poisson T.; Dalla V.; Marsais F.; Levacher V., Organocatalytic enantioselective protonation of silyl enolates mediated by cinchona alkaloids and a latent source of HF, Angew. Chem. Int. Ed., 2007, 46(37): 7090-7093.
    [57] Poisson T.; Dalla V.; Marsais F.; Dupas G.; Oudeyer S.; Levacher V., Organocatalytic Enantioselective Protonation of Silyl Enolates Mediated by Cinchona Alkaloids and a Latent Source of HF, Angew. Chem., 2007, 119: 7220 -7223.
    [58] Mizuta S.; Shibata N.; Akiti S.,Cinchona Alkaloids/TMAF combination- catalyzed nucleophilic enantioselective trifluoromethylation of aryl ketones, Org. Lett., 2007, 9(18): 3707-3710.
    [59] Ogawa S.; Shibata N.; Inagaki J., Cinchona-alkaloid-catalyzed enantioselective direct aldol-type reaction of oxindoles with ethyl trifluoropyruvate, Angew. Chem. Int. Ed., 2007, 46(45): 8666-8669.
    [60] Caron S.; Do N. M.; Arpin P.; Te A. L., Enantioselective Addition of a TrifluoromethylAnion to Aryl Ketones and Aldehydes, Synthesis 2003, 11: 1693-1698.
    [61] Lou S.; Taoka B. M.; Ting A.; Schaus S. E., Asymmetric Mannich Reactions ofβ-Keto Esters with Acyl Imines Catalyzed by Cinchona Alkaloids, J. Am. Chem. Soc., 2005, 127: 11256-11257.
    [62] Lou S.; Taoka B.M.; Ting A.; Schaus S.E., Asymmetric Mannich reactions of beta-keto esters with acyl imines catalyzed by cinchona alkaloids, J. Am. Chem. Soc., 2005, 127(32): 11256-11257.
    [63] Lou S.; Taoka B.M.; Ting A.; Schaus S.E., Asymmetric Mannich reactions of beta-keto esters with acyl imines catalyzed by cinchona alkaloids, Abstract Paper of Amer. Chem. Soc., 2005, 230: U3477-U3477.
    [64] Lou S.; Dai P.; Schaus S.E., Asymmetric Mannich reaction of dicarbonyl compounds with alpha-amido Sulfones catalyzed by cinchona alkaloids and synthesis of chiral dihydropyrimidones, J. Org. Chem., 2007, 72(26): 9998-10008.
    [65] Ting A.; Lou S.; Schaus S. E., Highly Diastereoselective Asymmetric Mannich Reactions of 1,3-Dicarbonyls with Acyl Imines, Org.Lett., 2006, 8: 2003-2006.
    [66] Lou S.; Dai P.; Schaus S.E., Asymmetric Mannich Reaction of Dicarbonyl Compounds with -Amido Sulfones Catalyzed by Cinchona Alkaloids and Synthesis of Chiral Dihydropyrimidones, J. Org. Chem., 2007, 72 (26): 9998- 10008.
    [67] Singh R. P.; Bartelson K.; Wang Y.; Su, H.; Lu X.; Deng L. Enantio- -selective Diels-Alder Reaction of Simpleα,β-Unsaturated Ketones with a Cinchona Alkaloid Catalyst, J. Am. Chem. Soc., 2008, 130(8): 2422-2423.
    [68] Liu T.Y.; Cui H.L.; Zhang Y.; Jiang K.; Du W.; He Z.Q.; Chen Y.C., Organocatalytic and Highly Enantioselective Directα-Amination of Aromatic Ketones, Org. Lett., 2007, 9(18): 3671-3674.
    [69] Lygo B.; Andrews B.I.; Hirst J.D., Rapid screening of cinchona alkaloid derived phase-transfer catalysts. Application in the optimization of a glycine imine alkylation, Chimica. Oggi-Chem. Today, 2004, 22(9): 8-10.
    [70] Lee Y.J.; Lee J.Y.; Kim M.J., Highly enantioselective synthesis of (R)- alpha-alkylserines via phase-transfer catalytic alkylation of o-biphenyl-2 -oxazoline-4-carboxylic acid tert-butyl ester using Cinchona-derived catalysts, Org. Lett., 2005, 7(8):1557-1560.
    [71] Siva A.; Murugan E., Syntheses of new dimeric-Cinchona alkaloid as a chiral phase transfer catalysts for the alkylation of Schiff base, J. Mol. Catal. A-Chem., 2005, 241(1-2): 111-117.
    [72] Wang X.; Yin L.; Yang T., Synthesis of new dimeric-PEG-supported cinchona ammonium salts as chiral phase transfer catalysts for the alkylation of Schiff bases with water as the solvent, Tetrahedron Asymmetry., 2007,18(1): 108-114.
    [73] Armstrong A.; Scutt J. N., Stereocontrolled Synthesis of 3-(trans-2- Aminocyclopropyl) alanine, a Key Component of Belactosin A, Org. Lett., 2003, 5: 2331-2334.
    [74] Boeckman R. K.; Clark T. J.; Shook B. C., A Practical Enantioselective Total Synthesis of the Bengamides B, E, and Z, Org.Lett., 2002, 4: 2109-2112.
    [75] Martin H. J.; List B., Mining Sequence Space for Asymmetric Aminocatalysis: N-Terminal Prolyl-Peptides Efficiently Catalyze Enantioselective Aldol and Michael Reactions, Synlett., 2003, 12: 1901- 1902.
    [76] Imbriglio J. E.; Vasbinder M. M.; Miller S. J., Dual Catalyst Control in the Amino Acid-Peptide-Catalyzed Enantioselective Baylis-Hillman Reaction, Org. Lett., 2003, 5: 3741-3743.
    [77] Papaioannou N.; Evans C. A.; Blank J. T.; Miller S. J., Enantioselective Synthesis of aMitosane Core Assisted by Diversity-Based Catalyst Discovery, Org. Lett., 2001, 3: 2879-2882.
    [78] Horstmann T. E.; Guerin D. J.; Miller S. J., Asymmetric Conjugate Addition of Azide toα,β-Unsaturated Carbonyl Compounds Catalyzed by Simple Peptides, Angew. Chem. Int. Ed., 2000, 39: 3635-3638.
    [79] (a) Okino T.; Hoashi Y.; Takemoto Y., Thiourea-catalyzed nucleophilic addition of TMSCN and ketene silyl acetals to nitrones and aldehydes, Tetrahedron Lett. 2003, 44, 2817–2821. (b) Schreiner P. R.; Wittkopp A., H-Bonding Additives Act Like Lewis Acid Catalysts, Org. Lett., 2002, 4: 217-220.
    [80] Wenzel A.G.; Jacobsen E. N., Asymmetric Catalytic Mannich Reactions Catalyzed by Urea Derivatives: Enantioselective Synthesis ofβ-Aryl-β-Amino Acids, J. Am. Chem. Soc., 2002, 124: 12964-12965.
    [81] Wenzel A.G.; Lalonde M. P.; Jacobsen E. N., Divergent Stereoinduction Mechanisms in Urea-Catalyzed Additions to Imines, Synlett., 2003, 12: 1919-1922.
    [82] Denmark S. E.; Fu J., Catalytic, Enantioselective Addition of Substituted Allylic Trichlorosilanes Using a Rationally-Designed 2,2'-Bispyrrolidine -Based Bisphosphoramide, J. Am. Chem. Soc., 2001, 123: 9488-489.
    [83] Malkov A. V.; Orsini M.; Pernazza D.; Muir K.W.; Langer V.; Meghani P.; Kocovsky P., Chiral 2,2'-Bipyridine-Type N-Monoxides as Organo catalysts in the Enantioselective Allylation of Aldehydes with Allyltrichlorosilane, Org. Lett., 2002, 4: 1047-1049.
    [84] Kobayashi S.; Ogawa C.; Konishi H.; Sugiura M., Chiral Sulfoxides as Neutral Coordinate-Organocatalysts in Asymmetric Allylation of N-Acylhydrazones Using Allyltrichlorosilanes, J. Am. Chem. Soc., 2003, 125: 6610-6611.
    [85] Cavallo A. S.; Roje M.; Isarno T.; Sunjic V.; Pyridyl V. V., Epoxides of More Than 99% Enantiomeric Purities: The Use of a Phosphazene Base, Eur. J. Org. Chem., 2000: 1077-1080.
    [86] Silva M. A.; Bellenie B. R.; Goodman J. M., Theoretical Study on the Selectivity of Asymmetric Sulfur Ylide Epoxidation Reaction, Org. Lett. , 2004, 6: 2559-2562.
    [87] Aggarwal V. K.; Richardson J., The complexity of catalysis: origins of enantio- and diastereocontrol in sulfur ylide mediated epoxidation reactions, Chem. Commun., 2003: 2644–2651.
    [88] Zanardi J.; Leriverend C.; Aubert D.; Julienne K.; Metzner P., A Catalytic Cycle for the Asymmetric Synthesis of Epoxides Using Sulfur Ylides, J. Org. Chem., 2001, 66: 5620–5623.
    [89] Aggarwal V. K.; Ferrara M.; Brien C. J.; Thompson A.; RJones. V. H.; Fieldhouse R., Scope and limitations in sulfur ylide mediated catalytic asymmetric aziridination of imines: use of phenyldiazomethane, diazoesters and diazoacetamides, J. Chem. Soc. Perkin Trans. 1., 2001: 1635-1643.
    [90] Saito T.; Sakairi M.; Akiba D., Enantioselective synthesis of aziridines from imines and alkyl halides using a camphor-derived chiral sulfide mediator via the imino Corey–Chaykovsky reaction, Tetrahedron Lett., 2001, 42: 5451-5454.
    [91] Aggarwal V. K.; Alonso E.; Fang G.; Ferrara M.; Hynd G.; Porcelloni M., Verwendung chiraler Sulfide zur katalytischen asymmetrischen Aziridinierung und Cyclopropanierung mit in situ gebildeter Diazokomponente, Angew. Chem., 2001, 113: 1482-1485.
    [92] Aggarwal V. K.; Vasse J. L., Asymmetric Sulfur Ylide Mediated Aziridination: Application in the Synthesis of the Side Chain of Taxol, Org. Lett., 2003, 5: 3987-3990.
    [93] Papageorgiou C. D.; Ley S. V.; Gaunt M. J., Organic-Catalyst-Mediated Cyclopropanation Reaction, Angew. Chem. Int. Ed., 2003, 42: 828-831.
    [94] Bremeyer N.; Smith S. C.; Ley S. V.; Gaunt M. J., An Intramolecular Organocatalytic Cyclopropanation Reaction, Angew. Chem. Int. Ed., 2004, 43: 2681-2684.
    [95] Papageorgiou C. D.; Cubillo M. A.; Ley S. V.; Gaunt M. J., Enantioselective Organocatalytic Cyclopropanation via Ammonium Ylides, Angew. Chem. Int. Ed.,2004, 43: 4641-4644.
    [96] Enders D.; Kallfass U., An Efficient Nucleophilic Carbene Catalyst for the Asymmetric Benzoin Condensation, Angew. Chem. Int. Ed., 2002, 41: 1743-1745.
    [97] Tachibana Y.; Kihara N.; Takata T., Asymmetric Benzoin Condensation Catalyzed by Chiral Rotaxanes Tethering a Thiazolium Salt Moiety via the Cooperation of the Component: Can Rotaxane Be an Effective Reaction Field? J. Am. Chem. Soc., 2004, 126: 3438-3439.
    [98] Kerr M. S.; Alaniz J. R.; Rovis T., A Highly Enantioselective Catalytic Intramolecular Stetter Reaction, J. Am. Chem. Soc., 2002, 124: 10298- 10299.
    [99] Kerr M. S.; Rovis T.; Enantioselective Synthesis of Quaternary Stereo centers via a Catalytic Asymmetric Stetter Reaction, J. Am. Chem. Soc., 2004, 126: 8876-8877.
    [100] Armstrong A.; Moss W. O.; Reeves J. R., Asymmetric epoxidation catalyzed by esters ofα-hydroxy-8-oxabicyclo[3.2.1]octan-3-one, Tetrahedron: Asymmetry,2001, 12: 2779-2781.
    [101] Armstrong A.; Ahmed G.; Fernandez B. D.; Hayter B. R.; Wailes J. S., Enantioselective Epoxidation of Alkenes Catalyzed by 2-Fluoro-N- Carbethoxy tropinone and Related Tropinone Derivatives , J. Org. Chem., 2002, 67: 8610-8617.
    [102] Bortolini O.; Fogagnolo M.; Fantin G.; Maietti S.; Medici A., Asymmetric epoxidation of cinnamic acid derivatives using dioxiranes generated in situ from dehydrocholic acid, Tetrahedron: Asymmetry, 2001, 12: 1113-1115.
    [103] Matsumoto K.; Tomioka K.; Chiral ketone-catalyzed asymmetric epoxidation of olefins with Oxone, Tetrahedron Lett., 2002, 43: 631-633.
    [104] Okino T.; Nakamura S.; Furukawa T.; Takemoto Y., Enantioselective Aza-Henry Reaction Catalyzed by a Bifunctional Organocatalyst , Org. Lett., 2004, 6: 625-627.
    [105] Nugent B. M.; Yoder R. A.; Johnston J. N., Chiral Proton Catalysis: A Catalytic Enantioselective Direct Aza-Henry Reaction, J. Am. Chem. Soc., 2004, 126: 3418-3419.
    [106] Huang Y.; Unni A. K.; Thadani A. N.; Rawal V. H., Hydrogen bondingSingle enantiomers from a chiral-alcohol catalyst, Nature, 2003, 424: 146.
    [107] Tu Y.; Wang Z.X.; Shi Y., An Efficient Asymmetric Epoxidation Method for trans-Olefins Mediated by a Fructose-Derived Ketone, J. Am. Chem. Soc., 1996, 118: 9806.
    [108] Feist F., Chem. Ber., 1902, 35: 1537-1544.
    [109] Benary E., Chem. Ber., 1911, 44: 489-492.
    [110] Dunlop A. P.; Hurd C. D., Base-catalyzed condensation ofα- halogenated ketoned ketones withβ-ketoesters, J. Org. Chem., 1950, 15: 1160-1164.
    [111] Calter M. A.; Zhu C.; Lachicotte R. J., Rapid Synthesis of the 7-Deoxy Zaragozic Acid Core Org. Lett., 2002, 4 (2): 209-212.
    [112] Mross G.; Holtz E.; Langer P., Synthesis of 2-Alkenyl-3- (alkoxy carbonyl) furans Based on Feist-Benary Cyclocondensation of (2,4-Dioxobutylidene) phosphoraneswithα-Haloke -tones andα- Chloracetaldehyde, J. Org. Chem., 2006, 71(21): 8045-8049.
    [113] Holtz E.; Langer P., Synthesis of 2-Alkenyl- 3-alkoxycarbonylfurans by‘Feist-Benary- Cyclocondensation’of (2,4-Dioxobutylidene) phosphoranes with Chloroacetaldehyde and Subsequent Wittig Reactions, Synlett., 2004, 10: 1805-1807.
    [114] Stéphanie H.; Gilbert K., Synthesis of new furocoumarin analogues via cross-coupling reaction of triflate, Tetrahedron Lett., 2003, 44(1): 97-99.
    [115] Duffy K. J.; Haltiwanger R.C.; HuangY.A.; Beck K., A novel synthesis of 2-(2-quinoxalino)-3,5-diarylfurans, Tetrahedron Lett., 1998, 39(44): 8017-8020.
    [116] Gottlieb O. R., New Natural Products and Plant Drugs with Pharmacological, Biological, or Therapeutical ActiVity; Springer-Verlag: Berlin-Heidelberg, Germany, 1987, 227.
    [117] Ward R. S., symmetric synthesis of lignans, Tetrahedron, 1990, 46(15): 5029-5030.
    [118] Fraga B. M., Natural sesquiterpenoids, Nat. Prod. Rep., 1992, 9(3): 217-241.
    [119] Koert U., Stereoselective Synthesis of Oligo-Tetrahydrofurans, Synthesis, 1995, 2: 115.
    [120] Ward R. S., Lignans, neolignans and related compounds, Nat. Prod. Rep., 1999, 16(1): 75.
    [121] Huw M. L.; Davies A; Gulzar A.; Rebecca L.; Calvo M. R.; David G., Asymmetric Synthesis of 2,3-Dihydrofurans by Reaction of Rhodium-Stabilized Vinylcarbenoids with Vinyl Ethers, J. Org. Chem., 1998, 63: 2641-2645.
    [122] David A. E.; Zachary K. S.; Tomislav R.; Jason S. T., Highly Enantioselective Syntheses of Homopropargylic Alcohols and Dihydrofurans Catalyzed by aBis(oxazolinyl)pyridine-Scandium Triflate Complex, J. Am. Chem. Soc., 2001, 123: 12095-12096.
    [123] Calter M. A.; Phillips R. M.; Flaschenriem C., Catalytic, Asymmetric, "Interrupted" Feist-Bénary Reactions, J. Am. Chem. Soc., 2005, 127: 14566-14567.
    [124] McLaughlin M.; Rubio S. G.; Tilstam U.; Muthyala R., Some Items of Interest to Process R&D Chemists and Engineers, Org. Process. Res. Dev., 2006, 10(1): 2-18.
    [125] Jin Y.; Liu X. Y; Jing L. L;, He W.; Sun X. L.; Zhang S. Y., Investigation on 1,4-dichlorophthalazine-derivatized cinchona alkaloids-catalyzed asymmetric“interrupted”Feist-Bénary reaction, Chirality, 2007, 19: 386-390.
    [126]金瑛,姚志军,刘鹏,姜茹,张生勇, 3,6-二氯哒嗪-金鸡纳生物碱衍生物催化不对称“中断的”Feist-Bénary反应的研究,有机化学,2008, 28(1), 94-98.
    [127] Okanya J.; Hoffman R.; Johnson M. C., Synthesis of 2-Oxazolone -4-carboxylates from 3-Nosyloxy- and 3-Bromo-2- ketoesters. J. Org. Chem., 2002, 67(4): 1102-1108.
    [128] Creary X. J., Reaction of organometallic reagents with ethyl trifluoroacetate and diethyl oxalate. Formation of trifluoromethyl ketones and .alpha.-keto esters via stable tetrahedral adducts. J. Org. Chem., 1987, 52(22): 5026-5030.
    [129] McNamara C. A.; King F.; Bradley M., A triazine core for a new class of Sharpless asymmetric dihydroxylation ligands, Tetrahedron Letters, 2004, 45 (8): 8527-8529.
    [130] Becker H.; Sharpless K. B., A new ligand for the asymmetric dihydroxylation of olefins, Angew. Chem. Int. Ed. Engl., 1996, 35(4): 448-450.
    [131]程司堃,潜手型烯烃催化不对称氨羟化反应研究, 2005,第四军医大学博士论文
    [132] Brunner H.; Bügler J.; Nuber B., Enantioselective catalysis 98. Preparation of 9-amino (9-deoxy)cinchona alkaloids Tetrahedron: Asymmetry, 1995, 6(7): 1699-1702
    [133] Brunner H.; Schmidt P., Asymmetric Catalysis, 131 Naproxen Derivatives by Enantioselective Decarboxylation, Eur. J. Org. Chem., 2000, 2119-2120.
    [134] Vakulya B.; Varga S.; Csámpai A.; Soós T., Highly enatioselective conjugate addition of nitromethane to chalcones using bifunctional cinchona organocatalysts, Org. Lett., 2005, 7(10): 1967-1969.
    [135] Li H.; Zu L.; Wang J.; Wang W., Organocatalytic enantioselective Michael addition of thioacetic acid to enones, Tetrahedron Lett., 2006, 47(18): 3145-3148.
    [136]何炜金鸡纳生物碱衍生的新型手型催化剂的构建及其在催化不对称反应中的应用,2006,第四军医大学博士论文
    [137] McCooey S. H.; Connon S.J., Urea- and Thiourea-Substituted cinchona alkaloid derivatives as hignly efficient bifunctional organocatalysts for the asymmetric addition of malonate to nitroalkenes: inversion of configuration at C9 dramatically improves catalyst performance, Angew. Chem. Int. Ed. Engl., 2005, 44: 6367-6370
    [138] Bernardi L., Fini F., Herrera R.P.; Ricci A.; Sgarzani V., Enatioselective aza-Henry reaction using cinchona organocatalyst, Tetrahedron, 2006, 62: 375-380
    [139] Hoashi Y.; Okino T.; Takemoto Y., Enantio- selective Micheal addition toα,β-unsaturated imides catalyzed by a bifunctional organocatalyst, Angew. Chem. Int. Ed. Engl., 2005, 44: 4032-4035
    [140] Biddle M. M.; Lin M.; Scheidt K. A., Catalytic enantioselective synthesis of flavanones and chromanones, J. Am. Chem. Soc., 2007,129: 3830-3831
    [141] Ye J.; Dixon D.J.; Hynes P.S., Enantioselective organocatalytic Michael addition of malonate esters to nitro olefins using bifunctional cinchonine derivatives, Chem. Commun., 2005, 4481-4483.
    [142]金瑛,金鸡纳生物碱及其衍生物催化不对称中断的Feist-Benary反应的研究, 2007,第四军医大学博士论文

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700