用户名: 密码: 验证码:
青藏高原湖泊表层沉积物磁化率特征及环境意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
湖泊沉积物作为环境信息的载体,记录全球、区域及局部地区的环境信息。本文通过对青藏高原湖泊表层沉积物磁化率的分析,并结合粒度组成和矿物特征,对青藏高原湖泊表层沉积物中磁化率及环境意义进行研究。主要结论如下:
     (1)青藏高原湖泊表层沉积物中磁化率值较低,平均值为1.64×10-8m3kg-1。可可西里湖泊表层沉积物中磁化率平均值为0.95×10-8m3kg-1;藏北高原湖泊表层沉积物中磁化率平均值为2.33×10-8m3kg-1,这表明青藏高原不同地区,湖泊表层沉积物中磁性矿物总体含量存在着一定的差异。频率磁化率百分含量较低,平均值为2.97%,可可西里湖泊表层沉积物和藏北高原湖泊表层沉积物中频率磁化率百分含量相差不大。
     (2)青藏高原湖泊表层沉积物中粒度组分以粉砂和砂为主,粘土含量较低。粘土平均含量为12.81%,粉砂平均含量为30.43%,砂平均含量57.76%。青藏高原湖泊表层沉积物粒度分布图表明碎屑物主要来源于风力作用。
     (3)青藏高原湖泊表层沉积物中粘土矿物主要为伊利石与绿泥石;非粘土矿物包括石英、长石、方解石、文石、白云石等,这些矿物主要来源于流域周围基岩的风化。在青藏高原水体较大的湖泊中存在自生作用生成的黄铁矿。
     (4)通过对青藏高原湖泊表层沉积物中磁化率与不同粒径组分相关性分析可知,磁化率与不同粒径组分相关性不明显,可可西里湖泊表层沉积物中磁化率与亚粘土存在很弱的相关性,与其他粒径组分基本不相关;藏北高原湖泊表层沉积物中磁化率与不同粒径组分基本不相关,这说明青藏高原湖泊表层沉积物中磁性矿物不集中于某一粒径范围,同时表明磁性矿物的来源存在多源性。青藏高原湖泊表层沉积物中磁化率与矿物百分含量基本不相关,表明逆磁性的矿物对磁磁化率反作用较小,对沉积物中磁性矿物影响较小。
     (5)青藏高原湖泊表层沉积物中磁性矿物来源存在多源性,外源的碎屑矿物通过风力的搬运作用进入湖泊沉积,是湖泊表层沉积物中磁性矿物主要影响因素;内源为湖泊自生的磁性矿物。
Lake sediments as a carrier of environmental information, record global, regional and local environmental information. Based on the magnetic susceptibility of Tibet Plateau lake surface sediment as the research object, combined with the particle sizes and different mineral characteristics. The environmental significance of magnetic susceptibility were researched. The main conclusions were summed up as follows:
     (1)The content of the magnetic susceptibility in the lake surface sediment of the Tibet Plateau is low, the overall average of value is1.64×10-8m3kg-1, but the general average content of the magnetic susceptibility in lake surface sediment of the Koh Xil is0.95×10-8m3kg-1; the average content of magnetic susceptibility of the lake surface sediment in the northern Tibet Plateau is2.33×10-8m3kg-1,which suggests in different region, the content of the magnetic mineral of lake surface sediment in Tibet Plateau is differences.The percentage content of the frequency magnetic susceptibility is low, the average of value is2.97%. It indicates the content of fine particles in magnetic mineral of lake surface sediment in the Koh Xil and the Tibetan plateau has little difference.
     (2)The lake surface sediment of the Tibet Plateau is mainly composed of silty sand and sand particle. The average proportion is12.81%for clay,30.43%for silty sand, and57.76%for the sand particle. The particle size distribution of the lake surface sediment in the Tibet Plateau indicates that the particle size in the lakes comes mainly from the action of the wind.
     (3)The clay minerals of the lake surface sediments in the Tibet Plateau are mainly illite and chlorite, the non-clay minerals include quartz, feldspar, calcite, aragonite and dolomite. The source of the mineral is mainly weathering products around the basin bedrock. In the deeper water of the lakes in the Tibet plateau has pyrite from the authigenesis generating.
     (4)Through correlation analysis of the magnetic susceptibility content and the composition of different particle size of the lake surface sediment in the Tibet Plateau shows that the magnetic susceptibility content is not obvious correlation with different particle size composition. The correlation of magnetic susceptibility content and the clay is very weak of the lake surface sediment in the Koh Xil, and other basic is not related to particle size; the magnetic susceptibility and the composition different particle size in lake surface sediments northern Tibet plateau were not associated with, it shows that magnetic minerals of the lake surface sediment in Tibetan plateau is not in a certain particle size, at the same time also shows that the source of the magnetic mineral exist different source. Through the correlation of the magnetic mineral content and mineral content of the lake surface sediment in the Tibet Plateau is not relevant, shows that the inverse magnetic mineral of magnetic mineral side effect is less, it small affected the magnetic minerals in sediments.
     (5)The magnetic minerals of the lake surface sediment in the Tibet Plateau exist multi-source, the outer edge of detrital minerals is the main influence factor of magnetic minerals, they are carried by wind transportation into the lake. The authigenic magnetic minerals in the lakes surface sediment.
引文
Canfield D E,Bemer R A. Dissolution and pyritization of magnetite in anoxic marine sediments[J]. Geochimica et Cosmochimica Acta.1987,51(3):645-659.
    Chan L S, Yeung C H,Yin W S et al. Correlation between magnetic susceptibility and distribution of heavy metals in contaminated sea floor sediments of Hong Kong Harbour[J]. Environmental Geology.1998,36(1-2):77-86.
    Chamley H.Geodynamic control on Messinian clay sedimentation in the central mediterranean sea[J].Geomarine Letters.1989,9(3):179-184.
    Dekkers M J. Environmental magnetism:an introduction[J]. Geologie en Mijnbouw.1997,76(1-2): 163-182.
    Hassold N,Rea D K,Philip A M.Grain size evidence forvariations in delivery of terrigenous sediments to a Middle Pleistocene interrupted sapropel from ODP Site 969, Mediterranean Ridge[J].Palaeogeography Palaeoclimatology Palaeoecology.2003,190:211-21.
    Jelenska M, Hasso-Agopswicz A, Kopcewicz B et al.Magnetic properties of the profiles of polluted and non-polluted soils. A case study from Ukraine[J].Geophysical Journal International.2004,159(1):104-116.
    Karlin R,Levi S.Diagenesis of magnetic minerals in recent haemipelagic sediments[J]. Nature. 1983,303(5915):327-330.
    Karlin R, Lyle M, Heath G R. Authigenic magnetite formation in suboxic marine sediments[J]. Nature.1987,326(6112):490-493.
    Lecoanet H, Leveque F, Ambrosi J P.Magnetic properties of salt-marsh soils contaminated by iron industry emissions southeast France [J]. Journal of Applied Geophysics,2001,48(2):67-81.
    Mohamed K J,Rey D,Rubio B et al. Onshore-offshore gradient in reductive early diagenesis in coastal marine sediments of the Ria de Vigo, Northwest Iberian Peninsula[J].Continental Shelf Research.2011,31(5):433-447.
    Morris W A,Versteeg J K, Bryant D W et al. Preliminary comparisons between mutagenicity and magnetic susceptibility of respirable airborne particulate [J]. Atmospheric Environment. 1995,29(23):3441-3450.
    Oldfield F. Environmental magnetism-a personal perspective[J].Quaternary Science Reviews. 1991,10(1):73-85.
    Peck J A, King J W,Colman S M et al.A rock magnetic record from Lake Barkal,Siberia:Evidence of Late Quaternary climate change[J].Earth Planet Science Letters.1994,122(1-2):221-238.
    Petrovsky E,Kapicka A, Zapletal K et al. Correlation between magnetic parameters and chemical composition of lake sediments from Northern Bohemia preliminary study [J]. Physics and Chemistry of the Earth.1998,23(9-10); 1123-1126.
    Pye K. Aeolian Dust and Dust Deposits[M]. London:Academic Press.1987.
    Roberts A P, Turner G M. Diagenetic formation of ferrimagnetic iron sulphide minerals in rapidly deposited marine sediments[J].Earth Planet Science Letters.1993,115(1-4):257-273
    Rowan C J,Roberts A P,Broadbent T. Reductive diagenesis, magnetite dissolution,greigite growth and paleomagnetic smoothing in marine sediments:A new view[J].Earth and Planetary Science Letters.2009,277(1-2):223-235.
    Shu J, Dearing J A, Morse AP et al. Determining the sources of atmospheric particles in Shanghai,
    China, from magnetic and geochemical properties[J]. Atmospheric Environment.2001,35(15): 2615-2625.
    Thompson R, Oldfield F. Environmental Magnetism[M]. London:Allen&Unwin,1986.
    Tsoar H, Pye K. Dust transport and questions of desert loess formation[J]. Sedimentology.1987, 34(1):139-154.
    Verosub K L, Roberts A P. Environmental magnetism:past, present,and future[J]. Journal of Geophysical Research.1995,100(B2):2175-2192.
    Williams T M.A sedimentary record of the deposition heavy metals and magnetic oxides in the Loch Dee basin, Galloway, Scotland, since c. AD 1500[J]. The Holocene.1991,1(2):142-150.
    Windom H L. Aeolian contributions tomarine sediments [J] Journal of Sedimentary Petrology. 1975,45:520-529.
    Yu L Z, Oldfield F, Wu Y S et al. Paleoenvironmental implications of magnetic measurements on sediment core from Kunming Basin, South-west China [J]. Journal of Paleolimnology.1990,3: 95-110.
    Zheng Y,Kissel C,Zheng H B,et al.Wang K. Sedimentation on the inner shelf of the East China Sea:
    Magnetic properties, diagenesis and paleoclimate implications[J]. Marine Geology.2010,268(1-4): 34-42.
    陈国英,孙淑荣,方小敏等.青藏高原及邻区马兰黄土重矿物特征与黄土来源的研究[J].沉积学报.1997,15(4):134-142.
    崔军文,李朋武,李莉.青藏高原的隆升:青藏高原的岩石圈结构和构造地貌[J].地质论评.2001,47(2):157-163.
    崔建新,周尚哲,韩海涛等.河北任丘剖面河湖相沉积及全新世水文气候事件[J].海洋地质与第四纪地质.200525(4):107-113.
    邓成龙,刘青松,潘永信等.中国黄土环境磁学[J]第四纪研究.2007,27(3)193-209.
    董艳,张卫国,钱鹏等.南通市任港河底泥重金属污染的磁学诊断[J].环境科学学报.2012,32(3):696-705.
    方小敏,韩永翔,马金辉等.青藏高原沙尘特征与高原黄土堆积:以2003-03-04拉萨沙尘天气过程为例[J].科学通报.2004,49(11):1084-1090.
    葛淑兰,石学法,韩贻兵.南黄海海底沉积物的磁化率特征[J].科学通报.2001,46:34-38.
    韩华玲,陈静,孙千里等.埃及Faiyum盆地沉积物中粒度和磁化率对风沙活动的指示意义[J].湖泊科学.2011,23(2):303-310.
    侯红明,王保贵,汤贤赞.南极15ka以来海洋沉积物的环境磁学研究[J].极地研究.1997,9(1):35-43.
    胡东生.可可西里地区湖泊概况[J]盐湖研究.1994,2(3):17-21.
    胡东生.可可西里地区湖泊水体地球化学特征[J]海洋与湖沼.1997,28(2):153-164.
    胡东生,陈克造,许志强.三万年来可可西里地区湖泊环境演化序列[J].地质科学.1994,29(4):229-338.
    胡守云,吉磊,王苏民等.呼伦湖地区扎费诺尔晚第四纪湖泊沉积物的磁化率变化及其影响因素[J].湖泊科学.1995,7(1):33-40.
    胡守云,王苏民,E.Appel等.呼伦湖湖泊沉积物磁化率变化的环境磁学机制[J]中国科学(D辑).1998,28(4):334-339.
    胡守云,邓成龙,E.Appel等.湖泊沉积物磁学性质的环境意义[J].科学通报.2001,46(17):1491-1494.
    胡守云,E.Appel,V.Hoffinann等.湖泊沉积物中胶黄铁矿的鉴出及其磁学意义[J]中国科学(D辑).2002,32(3):234-238.
    吉云平,夏正楷.不同类型沉积物磁化率的比较研究和初步解释[J].地球学报.2007,28(6):541-549.
    姜月华,殷鸿福,王润华.环境磁学理论、方法和研究进展[J].地球学报.2004,35(6):357-362.
    蒋宏耀.岩石和矿物的物理性质[M].北京:科学出版社,1985.
    金炯,董光荣,邵立业等.阿里地区狮泉河镇风沙危害与整治规划[J].中国沙漠.1991,11(3):20-28.
    金炯,董光荣,邵立业等.西藏土地风沙化问题的研究[J].地理研究.1994,13(1):60-69.
    金章东.湖泊沉积物的矿物组成、成因、环境指示及研究进展[J].地球科学与环境学报.2011,33(1):34-44.
    琚宜太,王少怀,张庆鹏等.福建三明地区被污染土壤的磁学性质及其环境意义[J]地球物理学报.2004,47(2):282-288.
    李炳元.青海可可西里地区自然环境[M].北京:科学出版社,1996.
    李明慧,康世昌.青藏高原湖泊沉积物对古气候环境变化的响应[J].盐湖研究.200715(1):63-72.
    李萍,李培英,徐兴永等.冲绳海槽现代沉积物磁学性质分布特征与环境的关系[J].沉积报.2007,25(5):753-758.
    李鹏,强小科,唐艳荣等.西安市街道灰尘磁化率特征及其污染指示意义[J].中国环境科学.2010,30(3):309-314.
    李晓,龙昱,中燕萍.武汉东湖现代沉积物磁组构特征及意义[J].世界地质.2002,21(3):223-227.
    郎元强,胡大干,刘畅等.南海北部陆区岩石磁化率的矿物学研究[J].地球物理学报.2011,54(2):573-587.
    刘建.磁性矿物还原成岩作用述评[J].海洋地质与第四纪地质.2000,20(4):103-107.
    刘健,朱日祥,李绍全等.南黄海东南部冰后期泥质沉积物中磁性矿物的成岩变化及其对环境变化的响应[J].中国科学(D辑),2003,33(6):583-592.
    刘振东,刘庆生,汪汉胜等.武汉市东湖沉积物的磁性特征与重金属含量之间的关系[J].中国地质大学学报.2006,31(2):266-272.
    鹿化煜,安芷生.前处理方法对黄土沉积物粒度测量影响的实验研究[J].科学通报.1997,42(24):2535-2538.
    卢升高.土壤频率磁化率与矿物粒度的关系及其环境意义[J].应用基础与工程科学学报.2000,8(1):9-15.
    罗攀,郑卓,杨小强.海南岛双池玛珥湖全新世磁化率及其环境意义[J].热带地理.2006,26(3):211-217.
    孟庆勇,李安春.海洋沉积物的环境磁学研究简述[J].海洋环境科学.2008,27(1):86-90.
    孟庆勇,李安春,徐方建等.东海内陆架EC2005孔沉积物磁化率与粒度组分的相关性研究[J].科技导报.2009,27(10):32-36.
    潘永信,朱日祥.环境磁学研究现状和进展[J].地球物理学进展.1996,11(4):87-99.
    庞小朋,韩凤清,吕亚平等.可可西里盐湖及其沉积特征初步研究[J].盐湖研究.2010,18(1)9-14.
    任明达,王乃梁.现代沉积环境概论[M]北京:科学出版社.1985.
    沈吉,吕厚远,王苏民等.错鄂孔深钻揭示的青藏高原中部2.8MaBP以来环境演化及其对构造事件响应[J]中国科学(D辑)2004,34(4):359-366.
    申慧彦,李世杰,于守兵等.青藏高原兹格塘错沉积物粒度组成及其环境记录的研究[J].第四纪研究.2007,27(4):613-619.
    盛文萍,高清竹,李玉娥等.藏北地区气候变化特征及其影响分析[J].高原气象.2008,27(3):509-516.
    舒强,李吉均,赵志军等.苏北盆地XH-1#钻孔沉积物磁化率与粒度组分相关性变化特征及其意义研究[J].沉积学报.2006,24(2):276-281.
    舒强,李才林,赵志军等.苏北盆地浅钻沉积物磁化率与粒度记录的末次冰消期以来的环境变化[J].沉积学报.2009,27(2):111-116.
    孙庆峰,Christophe Colin,陈发虎等.气候环境变化研究中影响粘土矿物形成及其丰度因素的讨论[J].岩石矿物学杂志.2011,30(2):291-300.
    汤奇成,何希吾,赵楚年.青藏高原的水资源[M].北京:中国藏学出版社,2003.
    汤艳杰,贾建业,谢先德.粘土矿物的环境意义[J].地学前缘.2002,9(2):337-344.
    田庆春,杨太保,张述鑫等.青藏高原腹地湖泊沉积物磁化率及其环境意义[J].沉积学报.2011,29(2):143-150.
    田庆春.青藏高原腹地湖泊沉积物记录的中更新世以来的气候变化[博士论文].甘肃:兰州大学2012.
    徐新文,强小科,安芷生等.鹤庆盆地湖相岩心磁化率记录及其古环境意义[J].地质力学学报.2010,16(4):372-382.
    王博,夏敦胜,余晔等.兰州市城区河道表层沉积物磁性特征研究[J].环境科学.201031(8):1740-1748.
    王冠.兰州市街道尘埃磁性特征研究[博士论文].甘肃:兰州大学.2008.
    王君兰,李晖,邓伟等.内蒙古嘎顺诺尔湖泊沉积物磁化率与粒度的古环境意义[J].中国沙漠.2012,32(3):661-668.
    王心源,吴立,张广胜等.安徽巢湖全新世湖泊沉积物磁化率与粒度组合的变化特征及其环境意义[J]地理科学.2008,28(4):548-553.
    王建,刘泽纯,姜文英,等.磁化率与粒度、矿物的关系及其古环境意义[J].地理学报,1996,51(2):155-163.
    王苏民,窦鸿身.中国湖泊志[M].北京:科学出版社.1998.
    汪卫国.蒙古高原北部全新世气候与环境变化研究[博士论文].甘肃:兰州大学.2004.
    旺罗,刘东生,韩家懋等.中国第四纪黄土环境磁学研究进展[J].地球科学进展,2000,15(3):335-341.
    吴瑞金.湖泊沉积物的磁化率、频率磁化率及其古气候意义--以青海湖、岱海近代沉积为例[J].湖泊科学,1993,5(2):128-135.
    谢红霞,张卫国,顾成军等.巢湖沉积物磁性特征及对沉积物动力的响应[J].湖泊科学,2006,18(1):43-48.
    杨建强,崔之久,易朝露等.云南点苍山冰川湖泊沉积物磁化率的影响因素及其环境意义[J].第四纪研究.2004,24(5):591-597.
    杨勤业,郑度.西藏地理(自然卷)[M].北京:五洲传播出版社.2002.
    杨秀海,卓嘎,罗布.藏北高原气候变化与植被生长状况[J]草业科学.2011,28(4):626-630.
    殷勇,方念乔,王倩等.云南中甸纳帕海湖泊沉积物的磁化率及环境意义[J].地理科学.2002,22 (4):413-419.
    余佳.西藏腹地第四纪典型湖泊环境演变研究[硕士论文].北京:中国地质科学院.2008.
    俞立中,许羽,许世远等.太湖沉积物的磁性特征及其环境意义[J].湖泊科学,1995,7(2).141-150.
    袁大刚,张甘霖.城市道路区土壤的磁学性质及其发生学意义[J].土壤学报.2008,45(2):216-222.
    咎金波,方小敏,聂军胜等.塔里木盆地风积物表土磁学特征及其与物源物质气候条件的关系[J].科学通报.201156(2)153-160:
    张卫国,俞立中,许羽.环境磁学研究的简介[J].地球物理学进展.199510(3):95-105.
    张卫国,俞立中,Hutchinson, S.M长江口南岸边滩沉积物重金属污染记录的磁诊断方法[J].海洋与湖沼.2000,31(6):616-623.
    张卫国,俞立中.长江口潮滩沉积物的磁学性质及其与粒度的关系[J].中国科学(D辑).2002,32(9):783-792.
    中国科学院青藏高原综合科学考察队.西藏自然地理[M].北京:科学出版社.1982.
    朱大岗.青藏高原河流湖泊生态地质环境遥感调查与研究[M].北京:地质出版社.2007.
    朱艳明,郭小蕾,周力平.北京地区表土磁性特征及其环境意义[J].科学通报.2010,55(17):1717-1725.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700