用户名: 密码: 验证码:
W玻色子极化和t(?)自旋关联在t(?)双轻子衰变道中的蒙特卡罗研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自从人类文明诞生以来,人们对自然界的探索就从未停止过。直至上世纪七十年代,随着标准模型理论的建立,人们对自然界物质有了一个较为全面和系统的认识。迄今为止,标准模型的许多预言已被实验证实,标准模型理论也获得了巨大的成功。然而,标准模型理论尚有很多问题等待解决,它所预言的黑格斯(Higgs)粒子也仍未从实验上发现。因此,在更高的能区内,寻找Higgs粒子并精确检验标准模型是当今粒子物理实验的重要内容之一。
     LHC(Large Hadron Collider)是正在CERN建造的大型强子对撞机,为质子-质子对撞,其对撞质心能量达到14TeV,对撞粒子束流亮度高达10~(34)cm~(-2)s~(-1),建成后将成为世界上能量最高的粒子对撞机。ATLAS(A Toroidal LHCApparatuS)是建在LHC其中一个对撞点上的大型多用途粒子探测器,它主要由内部径迹探测器、磁铁系统、电磁量能器、强子量能器、μ子谱仪、数据获取和触发系统几部分组成。寻找黑格斯粒子是ATLAS最主要的目的,同时它也将用来寻找较重的类W、Z玻色子、超对称粒子,研究基本费米子的结构,研究重夸克(如top夸克)的性质并寻找其共振态,研究B衰变中的CP破坏等。
     在低亮度(10(33)cm~(-2)s~(-1))工作时,LHC每年就可产牛800万个top夸克对事例,因此是一个名副其实的“t夸克工厂”,可以开展top夸克多方面的研究,例如精确测定top夸克的质量,研究top夸克衰变过程中W玻色子的极化等。
     在top夸克的相关研究中,对正反top夸克对(t(?))的研究是一项有趣而富有重大意义的工作。根据标准模型理论,几乎所有的t夸克都将衰变为W玻色子和b夸克,而按照W衰变末态的不同,t(?)的衰变过程可分为三种:单轻子和粒子喷注衰变道(t(?)→w~+w~-b(?)→(lv)(jj)b(?)),双轻子衰变道(t(?)→w~+w~-b(?)→(lv)(lv)b(?))和全强子衰变道(t(?)→w~+w~-b(?)→(jj)(jj)b(?))。其中,双轻子衰变道因末态中含有两个孤立轻子而较为特别。由于轻子的易测量性使得该衰变道的研究具有重要意义。
     在top夸克的衰变中,W玻色子的极化信息被标准模型精确预言了。通过对t→Wb衰变道内W玻色子极化的测量,我们可以完善top自旋的研究,验证我们对tWb顶角的理解并深入的理解V-A结构。W玻色子按其“螺旋度”(helicity)可分为纵向W,左手W和右手W三种,任何不同于标准模型的t→Wb极化理论(如电弱对称破缺中的动力学模型差异,新的相互作用,额外维度的存在等)将改变三种螺旋度的W玻色子所占的分数。据此,我们可以验证标准模型,判断新物理存在的证据。
     top夸克的极化和t(?)的自旋关联都被标准模型精确预言了,我们可以通过其衰变产物直接进行top自旋的相关研究。同W极化一样,t(?)自旋关联的研究也是寻找新物理的敏感探针。
     本论文最主要的工作就是在t(?)双轻子衰变道中,利用ATLAS实验模拟数据对W的极化和t(?)的自旋关联进行了模拟研究。本论文从t(?)衰变道的模拟开始,建立了从衰变道的重建,到W极化和t(?)自旋关联的实验测量方法,再到最后结果的误差分析这样一个完整的过程。在本论文中,主要工作包括:独立重建了t(?)双轻子衰变过程,并利用权重(weight)法对重建出的多个t(?)对进行最优选择;给出了一套实验上测量W极化和t(?)自旋关联的可行方法;通过模拟数据,对W极化和t(?)自旋关联实验测量过程中可能的系统误差来源和影响进行了分析研究。
     本论文共分6个部分:第1部分,高能物理的发展和LHC,简要介绍了高能物理实验及理论的发展,高能粒子加速器LHC和ATLAS实验研究;第2部分,ATLAS探测器,介绍ATLAS探测器的结构;第3部分,top物理及t(?)衰变过程的模拟,简单介绍了top物理研究及t(?)衰变过程的蒙特卡罗模拟;第4部分,t(?)双轻子衰变道的重建,介绍了t(?)双轻子衰变道的重建方法;第5部分,t(?)双轻子衰变道中W极化的模拟研究,介绍了W极化在t(?)双轻子衰变道中的实验测量方法及可能的系统误差分析;第6部分,t(?)双轻子衰变道中t(?)自旋关联的模拟研究,介绍了t(?)双轻子衰变道中t(?)自旋关联的实验测量方法及可能的系统误差分析。
Since the appearance of human civilization,the exploration of nature has never stopped.Until 1970s in the last century,as the foundation of Standard Model,we had a comprehensive and systematic understanding of our natural world.Till now,many experiments have already shown impressive agreements with the Standard Model's predictions.Though the Standard Model has a great success,still many questions need solving,and the Higgs particle which is predicted by the Standard Model is still not discovered in experiments.To discover the Higgs particle and prove the Standard Model accurately in a much higher energy scale are important tasks for present particle physics.
     A great proton-proton collider LHC(Large Hadron Collider)with 14-TeV center of mass energy and 10~(-34)cm~(-2)/s luminosity is under construction at CERN(European Organization for Nuclear Research).When finished,it will be the largest hadron collider in the world.ATLAS(A Toroidal LHC ApparatuS)is a huge general-purpose particle detector which will be installed on one colliding point of LHC.While aims mainly at the discovery of the Higgs particles,the ATLAS detector will also try to search for much heavier W-like and Z-like bosons,super-symmetric particles,and to study the structure of the fundamental fermions、CP violation,and so on.The ATLAS detector is composed by an inner detector,a magnetic system,a calorimetric system, a muon spectrometer,a trigger and data acquisition(DAQ)system.
     While running at low luminosity,there will be 8 million top quark events produced each year on LHC,it's really a big "top factory".Many researches on top quark can be carried out,such as accurate measurement of top mass,W polarization measurement in top quark decay channels.
     During the related top works,study of top quark pairs(t(?))is an interesting and meaningful work.From the Standard Model's prediction,almost all the top quarks decay to W bosons and b quarks,and according to the different final particles of W decay,t(?)events can be divided into 3 kinds:single lepton plus jets events (t(?)→w~+w~-b(?)→(lv)(jj)b(?)),dilepton events(t(?)→w~+w~-b(?)→(lv)(lv)b(?)), fully hadronic decay events(t(?)→w~+w~-b(?)→(jj)(jj)b(?)).The dilepton events are especially interesting for its two isolated leptons.
     For the W boson in top decay chain,its polarization information is precisely predicted by the Standard Model,it is a sensitive probe of new physics in top production and decay.The W polarization measurement complements top spin studies, provides a direct test of tWb vertex understanding,and more particularly of its V-A structure.
     There are three possible helicities for a spin-one W boson,-1,0,+1,that will be called left-handed(F_L),longitudinal(F_0)and right-handed(F_R).Any deviation of F_L, F_R,F_0 from their theoretical values could point to a non-Standard-Model.
     The polarization of top quark and spin correlation of t(?)are also precisely predicted by Standard Model,we can get top' s spin information by studying its children.The same with W polarization,t(?)spin correlation is a sensitive probe to new physics.
     In my thesis,the main work is the studies of W polarization and t(?)spin correlation in dileptonic channel using Monte Carlo(MC)data samples.My thesis starts from the MC data production,and then presents a whole process from channel reconstruction to the measurements of W polarization and t(?)spin correlation in experiment,and then to the analysis of systematic errors.Reasonable results are given at last.
     In this thesis,my work is as following:reconstruct the t(?)dileptonic channel independently;give an experimental method to extract the W polarization parameters and t(?)spin correlation parameters;for the possible systematic errors in the measurements,I give a reasonable estimation.
     There are 6 parts in my thesis:first,"The History of High Energy Physics and LHC",which tells the development of high energy physics and gives a simple introduction of LHC;second,"The ATLAS detector",which gives an introduction of the ATLAS detector;third,"Top Physics and Data Production of t(?)Decay",in which top physics researches and MC production of t(?)sample are described;fourth, "The Reconstruction of t(?)Dileptonic Decay Channel",in which the reconstruction of t(?)dileptonic decay channel are described in detail;fifth,"W polarization Study in t(?)Dileptonic Decay Channel",in which the measurement of W polarization is detailedly presented and the possible systematic errors are estimated; sixth,"t(?)Spin Correlation Study in t(?)Dileptonic Decay Channel",in which the measurement of t(?)correlation are detailedly presented and the possible systematic errors are estimated.
引文
1. Y. Baconnier et al., LHC: the Large Hadron Collider Accelerator Project, CERN/AC/93-03 (1993).
    2. Proceedings of the Large Hadron Collider Workshop, Aachen, 4-9 October 1990, Vol I, II, III, CERN 90-10.
    3. The LHC study group. The Large Hadron Collider, Conceptual design, CERN/AC/95-05 (LHC), 20 October 1995.
    4. G. Brianti. The Large Hadron Collider in the LEP tunnel, LHC Working group.
    5. Letter of intent for a general-purpose pp experiment at the large hadron collider at CERN, CERN/LHCC/92-4,1992.
    6. Donald. H. Perkins. Introduction to High Energy Physics, ISBN: 0-201 -12105-0, Addison- Wesley, 1987.
    7. F. Halzen, A.D. Martin. Quarks and leptons: An Introductory Course in Modern Particle Physics, John Wiley and Sons, 1984.
    8. S. L. Glashow. Partial-Symmetries of Weak Interactions. Nucl. Phys., A 22(1961) p.579.
    9. A. Salam. in Elementary Particle Theory Proc, 8th Nobel Symposium, Ed.N. Svartholm (Almquist and Wiksell, Stockholm, 1968).
    10. S. Weinberg. A Model of Leptons, Phys. Rev. lett., 19(1967), p.1264.
    11. G. Arnison et al., Experimental Observation of Isolated Large Transverse Energy Electrons with Associated Missing Energy at s = 540GeV Phys. Lett., B 122(1983), p.103.
    12. G. Arnison et al., Experimental Observation of Lepton Pairs of Invariant Mass Around 95GeV/c2 at the CERN SPS Collider, Phys. Lett., B 126(1983), p.398.
    13. P. W. Higgs. Broken Symmetries, Massless Particles and Gauge Fields. Phys. Lett., 12(1964), p.132.
    14. P. W. Higgs. Broken Symmetries and the Masses of the Gauge Bosons. Phys. Rev. Lett., 13(1964), p.508.
    15. P. W. Higgs. Spontaneous Symmetry Breakdown without Massless Bosons. Phys. Rev, 145(1966), p. 1156.
    16. CDF Collaboration. Evidence for top quark production in p-barp collisions at sqrt s =1.8 TeV, Phys. Rev. D 50(1994) p.2966.
    17. CDF Collaboration. Kinematic evidence for top quark pair production in W+ multijet events in pp-bar collisions at sqrt s =1.8 TeV, Phys.Rev. D 51(1995) p.4623.
    18. CDF Collaboration. Observation of Top Quark Production in p-barp Collisions with the Collider Detector at Fermilab, Phys. Rev. Lett.74(1995) p.2626.
    19. DO Collaboration. Search for High Mass Top Quark Production in pp-bar Collisions at sqrt[s] = 1.8 TeV, Phys. Rev. Lett. 74(1995) p.2422.
    20. R. Bonciani et al, NLL resummation of the heavy-quark hadroproduction cross-section, Nucl. Phys. B 529(1998) p.424.
    21. S.Lami et al. TOTEM: The experiment to measure the total proton-proton cross section at LHC, Nucl. Phys. B 175-176(2008) p.44.
    22. R. Openshaw et al., Tests of wire chamber ageing with CF4/Iso-butane (80:20), argon/ethane (50:50) and argon/ethane/CF4 (48:48:4), IEEE Trans. Nucl. Sci. NS-36(1989)p.567.
    23. ATLAS Collaboration. Technical Proposal for a General Purpose pp Experiment at the Large Hadron Collider at CERN, CERN/LHCC/94-43, LHCC/P2, 15 Dec. 1994.
    24. J. Wess, B. Zumino. Super Gauge Transformations in Four-dimensions, Nucl. Phys. B 70(1974) p.39.
    25. Particle Data Group. Review of Particle Physics, European Physical Journal C 3(1998) p. 1.
    26. G. Altarelli. T. Sjostrand, F. Zwirner, Physics at LEP2, CERN 96-01 (1996).
    27. D. Amidei, R. Brock. Future Electroweak Physics at the Fermilab Tevatron, FERMILAB-PUB-96/082 (1996).
    28. LEP Electroweak working group. Moriond Electro-Weak Interactions and Unified Theories, presented at 35th Rencontres, 11-18 March 2000, Les Arcs, France.
    29. A. Yamamoto et al., The ATLAS Central Solenoid, Nucl. Inst. Meth. A584 (2008) p.53.
    30. ATLAS Collaboration, Barrel Toroid Technical Design Report, CERN/LHCC/97-19 (1997).
    31. ATLAS Collaboration, End-cap Toroid Technical Design Report, CERN/LHCC/97-20 (1997).
    32. ATLAS Collaboration. Inner Detector Technical Design Report, Volume 1, CERN/LHCC/97-16, 30 April 1997.
    33. ATLAS Collaboration. Pixel Detector Technical Design Report, CERN/LHCC/98-13, 31 May 1998.
    34. ATLAS Collaboration. Inner Detector Technical Design Report, Volume 2, CERN/LHCC/97-17, 30 April 1997.
    35. ATLAS Collaboration. Calorimeter Performance Technical Design Report, CERN/LHCC/96-40, 15 December 1996.
    36. ATLAS Collaboration. Liquid Argon Calorimeter Technical Design Report, CERN/LHCC/96-41, 15 December 1996.
    37. ATLAS Collaboration. Tile Calorimeter Technical Design Report, CERN/LHCC/96-42, 15 December 1996.
    38. ATLAS Collaboration. Muon Spectrometer Technical Design Report, CERN/LHCC/97-22, 31 May 1997.
    39. ATLAS Collaboration. First-Level Trigger Technical Design Report, CERN/LHCC/98-14, 30 June 1998.
    40. ATLAS Collaboration. DAQ, EF, LVL2 and DCS Technical Progress Report, CERN/LHCC/98-16, 30 June 1998.
    41. ATLAS Collaboration. Trigger Performance Status Report, CERN/LHCC/98-15, 30 June 1998.
    42. ATLAS Collaboration. ATLAS Detector and Physics Performance Technical Design Report. CERN/LHCC/99-15, 25 May 1999.
    43. Ketevi A.Assamagan, Dario Barberis et al, Final report of the ATLAS AOD/ESD Definition Task Force. ATLAS-SOFT-2004-006,14 December 2004.
    44. G.L. Kane, G.A. Ladinsky and C.-P. Yuan, Using the Top Quark for Testing Standard-Model Polarization and CP Predictions, Phys. Rev. D 45(1992) p. 124.
    45. F. Hubaut, E. Monnier, P. Pralavorio et al., ATLAS Sensitivity to Top Quark and W Boson Polarization in ttbar Events. SN-ATLAS-2005-052, May 2005.
    46. H.S. Do et al., Electroweak and Finite Width Corrections to Top Quark Decays into Transverse and Longitudinal W-Bosons, Phys. Rev. D 67(2003) 091501, hep-ph/0209185.
    47. M.Beg et al., Manifest Left-Right Symmetry and its Experimental Consequences, Phys. Rev. Lett. 38(1977) 1252.
    48. S.Correard, V.Kostioukhine, J.Leveque et al., b-tagging with DC1 Data, ATL-PHYS-2004-006.
    49. R.Hall, Top Quark Studies and Searches for New Phenomena at the Tevatron, talk given at the SLAC Summer Institute 2000, Stanford, Auguest 2000.
    50. Erich Varnes, Jessica Leveque, Ken Johns, Measurement of the W boson helicity in top quark decays at DO, DO Note 5431-CONF, July 2007.
    51. J.Sjolin, LHC Experimental Sensitivity to CP Violating g it Couplings, J. Phys. G: Nucl. Part. Phys. 29(2003) p.543.
    52. D. Atwood, A. Kagan and T.G Rizzo, Constraining Anomalous Top Quark Coupling at the Tevatron, Phys. Rev. D 52(1995) 6264, hep-ph/9407408
    53. M. Arai et al, Top Spin Correlation in Theories with Large Extra Dimensions at the Large Hadron Collider, Phys. Rev. D 70(2004) 115015, hep-ph/0409273
    54. M. Jezabek and J.H. Kuhn, V-A Tests Through Leptons From Polarized Top Quarks, Phys. Lett. B 329(1994) p317, hep-ph/9403366.
    55. A. Czarnecki, M. Jezabek and J.H. Kuhn, Lepton Spectra from Decays of Polarized Top Quarks, Nucl. Phys. B 351(1991) p.70.
    56. A. Brandenburg, Z.G Si and P. Uwer, QCD-corrected Spin Analysing Power of Jets in Decays of Polarized Top Quarks, Phys. Lett. B 539(2002) 235, hep-ph/0205023.
    57. W. Bernreuther, A. Brandenburg and P.Uwer, Transverse Polarization of Top Quark Pairs at the Tevatron and the LHC, Phys. Lett. B 368(1996) 153, hep-ph/9510300
    58. G Malhon and S. Parke, Angular Correlations in Top Quark Pair Production and Decay at Hadron Colliders, Phys. Rev. D 53(1996) 4886,hep-ph/9512264.
    59. W.Bernreuther et al., Top Quark Spin Correlation at Hadron Colliders: Predictions at Next-to-leading Order QCD, Phys. Rev. Lett. 87(2001)242002, hep-ph/0107086.
    60. W.Bernreuther et al, Top Quark Pair Production and Decay at Hadron Collider, Nucl. Phys. B 690(2004) 81, hep-ph/0403035.
    61. K.Smolek, V.Simak, Measurement of Spin Correlations of the Top-antitop Pairs in the ATLAS Experiment, ATL-PHYS-2003-012.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700