用户名: 密码: 验证码:
沿程油雾颗粒粒度损失机理及其数学建模
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在国内,油雾润滑技术作为一种较先进的润滑方式,已经应用在很多行业,如石化,冶金行业等等。人们更多的关心油雾润滑设备的研究,而对于油雾颗粒在管线内的传输情况尚无人研究,至于油雾颗粒在管线内传输是不是有变化?怎样变化也没有人知道。如果有损失,是什么因素导致油雾颗粒在管线内的损失?如果我们知道了导致颗粒损失的原因,将对我们改进油雾润滑管线是有益的。基于此,进行了本课题的研究。
     由于油雾颗粒在管线传输情况对于分支管内油雾润滑的情况至关重要。因此,本论文就油雾颗粒在管线传输过程中的情况进行了实验,发现油雾颗粒粒度沿管线逐渐变小的,油雾颗粒的衰减会导致后面距离主机较远的设备润滑能力下降。通过查找资料,从理论上分析了影响油雾颗粒粒度减小的三个主要因素:沿程压力降的损失;油雾颗粒在管壁上的附着情况也容易导致油雾颗粒的损失;油雾颗粒在传输过程中相互之间的碰撞和聚合等会导致油雾颗粒粒度沿程逐渐减少。总之,正是由于上述三个原因导致了油雾颗粒随着传输距离的增加使颗粒粒度越来越小。
     同时,在本篇论文中,从上面所讨论的三个影响因素中抽象出了能够表达的物理参数,使用多元线性回归方法建立了沿程油雾颗粒粒度与三个物理参数的数学模型,从而能够借助于所建立的数学模型,计算出沿程油雾颗粒的粒度大小。
In China, the oil mist lubrication technology as an advanced lubrication theory, has been used in many industries, such as petrochemical industry, metallurgy industry, etc. People are more care of oil mist lubrication technology than oil mist particles changes in the transmission line. But if oil mist particles are changing less in transmission line ? No one knows what changes. If have, whatfactors causes loss of oil mist particles in the line? If we know the cause of the loss of particles, we will improve our beneficial form oil mist lubrication pipeline. Based on these reasons, I study this subject.
     It is very crucial that oil mist lubrication condition in branch pipe for oil mist particles in the pipeline transmission. Therefore, oil mist particles in the pipeline transport process condition is proved with experiment in this paper, the result is the oil mist grain size along the pipeline became smaller and smaller. But attenuation of oil mist particles will lead to lubricating ability decrease of far behind the main equipment, By looking for information, it found the three major factors lead to oil mist grain size change theoretically: loss of the pressure drop; oil mist particle attach to wall; oil mist, oil mist particles collision and cohesion in the process of transmission. All in all, it is precisely because the above three causes the oil mist particles with the transmission distance increased to lead to oil mist grain size smaller and smaller.
     At the same time, in this paper, from what has been discussed above three factors of abstraction to express out of physical parameters, we use multiple linear regression method to establish the frictional oil mist grain size and three physical parameters of the mathematical model, which can help the established mathematical model, calculate the particle size of the oil mist.
引文
1.胡邦喜.设备润滑基础[M],北京:冶金工业出版社,2002,1—3
    2.Timothy Wayne Paschall,Paul A.Gaynor Oil Mist bearing[J],Ieee Industry Applications Magazine,2005,24-30
    3.Heinz P.Bloch.Closed-loop oil mist systems are a viable lubrication option[J],Hydrocarbon Processing,1999,78(6):21-2
    4.Douglas.C.Branham.Fit for purpose:Oil mist Lubrication Fuels & lubes international[J],2005,(21-23)
    5.董浚修.润滑原理及润滑油[M],北京:冶金工业出版社,1987,10-205
    6.杨伦,谢一华.气力输送工程[M],北京:机械工业出版社,2006,60-66
    7.杨庆慧.油雾润滑[J],润滑与密封,1992,60-63
    8.Don Ehlert.Machinery Lubrication Oil Mist Lubrication in the Hydrocarbon[J],Processing Industry,2001,25-31
    9.陈建文,宋锦春,张志伟,邱晔.关于油雾润滑中油雾浓度的影响因素分析[J],东北大学学报(自然科学版),2007,28(4):566-568
    10.S H.Yeo a,K,Ramesh b,Z W.Zhong.Ultra-high-speed grinding spindle characteristics upon using oil/air mist lubrication[J],International Journal of Machine Tools &Manufacture,2002,42:815-823
    11.卢正永.气溶胶科学引论[M],北京:原子能出版社,2000,195-206
    12.A T Simpson,M D Wright.Diffusive Sampling of C7-C16 Hydrocarbons in Workplace Air:Uptake Rates Wall Effects and Use in Oil Mist Measurements[J],Ann.Occup.Hyg,2008,PP.1-9
    13.李会雄,车得福.多相流及其应用[M],西安:西安交通大学出版社,2005,244-251.
    14.Heinz P.Bloch,Chris Rehmann.Dual magnetic hermetic sealing devices for oil mist lubricated pumps and electric motors[J],WORLD PUMPS,2004
    15.闫通海,弓海霞.气液两相流体润滑技术的研究[J],中国机械工程学会摩擦学分会润滑技术专业委员会第七届学术年会论文集,2000,70-74
    16.Takashi Ueda,Akira Hosokawa,Keiji Yamada.Effect of Oil Mist on Tool Temperature in Cutting[J],Journal of Manufacturing Science and Engineering,2006,128,130-135
    17.由长福等.Basset力研究进展与应用分析[J],应用力学学报,2002,19(2):31-33
    18.廖春明.柴油机喷雾场可视化研究及数值模拟[D],大连:大连理工大学,2006
    19.赵菊恒.尘粒在二维通道中输运特性的数值模拟[D],西安:西安建筑科技大学,2005
    20.黄军有.机泵集群集中油雾润滑系统综合技术分析[J],通用机械2005,(6):79-81
    21.王中伟.傅茂林.液雾碰壁对环形喷嘴雾化质量的影响[J],燃烧科学与技术,1998,4(2):178-182
    22.Heinz P.Bloch Closed-loop oil mist systems are a viable lubrication option[J]Hydrocarbon Processing,1999,21
    23.田爱华,王毅坚,关金贵,田驰.气液两相流体润滑技术在滚动轴承中的试验研究[J],吉林化工学院学报,2003,20(3):73-75
    24.宋锦春,苏东海,张志伟.液压与气压传动[M],北京:科学出版社,2006,23-36
    25.T.Uedal,R.Nozaki,A.Hosokawa.Temperature Measurement of Cutting Edge in Drilling Effect of Oil Mist[J],Annals of the CIRP Vol.2007,56(1):93-96
    26.闫通海,田爱华.气液两相流体润滑技术及其应用[J],实用技术,1998,(9):3-4
    27.王彦林.油雾润滑装置研发及工程软件研究[D],沈阳:东北大学,2004
    28.任福琳.油雾润滑装置开发及润滑机理的研究[D],沈阳:东北大学,2004
    29.陈建文,宋锦春,李雪莲.油雾润滑中局部油雾损失实验研究[J],液压与气动,2007,(4):31-32
    30.王治彬.油雾润滑系统中凝缩嘴凝缩机理的研究[D],沈阳:东北大学,2008
    31.柏实义.二项流动[M],北京:国防工业出版社,1985,53,150-151.
    32.任文辉,林智群,彭道林.液体表面张力系数与温度和浓度的关系[J],湖南农业大学(自然科学版),2004,30(1):77-79
    33.郭烈锦.两项与多项流动力学[M],西安:西安交通大学出版社,2002,504-508
    34.蒋勇,廖光煊,王清安,范维澄.喷雾过程液滴碰撞一聚合模型研究[J],火灾科学,2000,9(2):27-30
    35.李强,蔡体敏,何国强,刘佩进.液滴碰撞聚合模型及其在喷雾燃烧流场中的应用[J],推进技术,2005,26(5):452-457
    36.徐家刚.温度对固体颗粒沉降速度的影响[J],工业用水与废水,1991,(4):36-40
    37.乔小晶,陆政,韩晓利.烟雾颗粒沉降速度研究[J],火工品,1997,1:30-33
    38.T.Nguyen,L.C.Zhang.An assessment of the applicability of cold air and oil mist in.surface.grinding[J],Journal of Materials Processing Technology,2003,140:224-230
    39.吕子剑,曹文仲,刘今,吴若琼.不同粒径固体颗粒的悬浮速度计算及测试[J],化学工 程,1997,25(5):42-46
    40.赵莹,李茂东,裴力君.集中油雾润滑在蒸馏装置机泵上的应用[J],节能与坏保,2002,(10):42-43
    41.L G a ryL ea l Studies of Droplet Coalescence and Breakup with Application to Polymer Blending Advances in Rheology and Its Applications(2005) PP:1-4
    42.刘伟军,王作民,曹伟武.复合式电旋风除尘器中颗粒的凝聚机理与实验研究[J],电站系统工程,2007,23(1):12-14
    43.罗惕乾.流体力学第三版[M],北京:机械工业出版社,2007,90-93
    44.赵海波,柳朝晖,郑楚光.气固两相流中颗粒碰撞的Monte-Carlo数值模拟[J],计算力学学报,2005,(3):1-3
    45.李战军,田运生,郑旭,汪旭.加速粉尘凝聚减少爆破拆除扬尘的理论与实践[J],爆破,2005,22(4):14—17
    46.黄远东,吴文权.悬浮稀疏气力输送的弯管内颗粒群运动微分方程建立及求解分析[J],郑州粮食学院学报,1997,18(1):34-39
    47.李雪莲.油雾浓度损失机理的研究[D],沈阳:东北大学,2006
    48.王自亮.粉尘粒度分布规律的计算与分析[J],煤炭工程师,1994,(6):22-26
    49.任俊,沈健,卢寿慈.颗粒分散科学技术[M],北京:化学工业出版社,2005,10-18
    50.张茅根,黄志明.颗粒统计平均粒径及其分布的表征[J],高分子材料与工程,2000,16(5):2-5
    51.贺文智,孟庆.雾滴空间分布的实验研究[J],内蒙古工业大学学报,1998,17(1):20-23
    52.于水利.尚庆海.李圭白.悬浊颗粒光学检测理论[J],哈尔滨建筑大学学报,2001,34(1):49-53
    53.Toshiyuki Obikawaa,Yasuhiro Kamataa,Jun Shinozukab.High-speed grooving with applying MQL[J],International Journal of Machine Tools & Manufacture,2006,46:1854-1861
    54.孔明.颗粒粒径和形态计算机视觉测量方法研究[D],南京:东南大学,2005.
    55.CLY-2003喷雾颗粒分布测试系统用户手册,丹东超威粉体技术有限公司。
    56.K.Ramesh,S.H.Yeo,Z.W.Zhong,Akinori Yui.Ultra-high-speed thermal behavior of a rolling element upon using oil-air mist lubrication[J],Materials Processing Technology,2002,127:191-198
    57.李晓光,徐德龙,范海宏.大颗粒流化床中颗粒受力的数值模拟[J],西安交通大学学 报,2006,40(7):836—840
    58.李雪斌,伍广.旋流干燥器内的流场和分散相颗粒受力分析[J],化工装备技术,2007,28(1):15-18
    59.杨扬.汽液固三相流动沸腾传热系统的非线性建模研究[D],天津:天津大学,2005
    60.许超.若干力学系统的数学建模与稳定性研究[D],杭州:浙江大学,2005.
    61.刘严.多元线性回归的数学模型[J],沈阳工程学院院报,2005,1(2,3):2-5.
    62.包翠莲,开小明.MATLAB语言在多元线性回归中的应用[J],安徽教育学院学报,2005,23(3):55-56
    63.曲俊华,倪家明.多元回归模型分析与设计实现[J],2007年研究综述与技术论坛专刊,140-142
    64.叶峰.运用MATLAB软件进行回归分析建模[J],成都航空职业技术学院学报2006,23(2):11-16
    65.薛定宇,陈阳泉.基于MATLAB/Simulink的系统仿真技术与应用[M],北京:清华大学出版社,2002,175-180

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700