用户名: 密码: 验证码:
闽江河口沼泽湿地土壤甲烷产生潜力及其影响因子
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
闽江河口沼泽湿地是我国东南沿海最具代表性的河口湿地之一,芦苇和咸草是主要的本地优势植物,互花米草为外来入侵种。本文采用室内厌氧培养法,研究了闽江河口以上植物占优势的湿地土壤CH4产生潜力,探讨了不同环境因子对CH4产生的影响。研究成果填补了我国在河口湿地CH4产生方面研究的不足。
     本文研究结果如下:
     (1)3种植物沼泽湿地土壤的CH4产生率在培养前期达到最大值后,随培养时间逐渐降低。不同植物湿地土壤CH4产生率不同,互花米草湿地>芦苇湿地>咸草湿地。不同质地土壤CH4的产生率不同,粒径较小的土壤CH4产生率较大。
     (2)3种植物沼泽湿地土壤CH4产生量中有31.8%-62.4%被氧化,在土壤表层最大并随着土壤深度逐渐变小。不同深度土壤的CH4氧化率和产生率具有显著相关性。
     (3)3种植物沼泽湿地表层土壤醋酸发酵途径产CH4的比重占到了60%-70%,而底层土壤醋酸途径产CH4所占比重降至30%左右。
     (4)土壤中添加甲醇、醋酸、甲胺、三甲胺和H2/CO2对CH4产生有不同程度的促进作用。甲醇和三甲胺能够显著提高CH4产生率,而H2/CO2效果不明显。
     (5)湿地土壤温度在一定范围内与CH4产生率成正相关,氧化还原电位和盐度与CH4产生率成负相关;土壤pH值在接近中性时CH4产生率最大。
The Minjiang River Estuary wetland is one of the most typical estuarine tidal wetlands in southeast seashore of China. Cyperus malaccensis and Phragmites australis (common reed) are the two main native dominant species, and Spartina alterniflora is a alien invasive plant. Methane production from different marshes soil in the Minjiang River Estuary wetland were measured using laboratory incubation. The effects of environmental factors on methane production were discussed. The results showed:
     (1) The methane production rates reached the maximum on the third day in three kinds of plant marsh soil,then gradually decreased with incubation time. The methane production rates were different from thr three kinds of plant marsh soil:Spartina alterniflora> Phragmites australis> Cyperus malaccensis. The methane production rates were also different from different soil texture, small soil particle-size can support more methane production.
     (2) Methane oxidation rates were determined during incubation of soil from marshes of the Minjiang River Estuary. About 31.8%-62.4% of the methane production was oxidated.The methane oxidation rate of 0-10 cm soil layer was higher than that of 40-50cm soil layer. Methane oxidation rate and production rate have a significant correlation in the different layers of soil.
     (3) The methane production by acetate fermentation was up to 60%-70% of 0-10cm soil layer in the three kinds of marshes,40-50cm soil layer only account for 30%.
     (4) The addition of H2/CO2 did not increase the methane production, the applying of methanol, acetate, methylamine and trimethylamine enhance methane production. The methanol and trimethylamine increased significantly the methane production.
     (5) The marsh soil temperature was related to the methane production rate within a certain range.The marsh soil salinity and Eh have a negative correlation with the methane production. Also it's helpful to methane produce when the soil pH is close to neutral.
引文
[1]Houghton J H,Ding Y, Griggs D J, et al. Climate Change 2001:The Scientific Basis[M]. Cambridge University Press, New York, USA,2001,326-331.
    [2]Rodhe H. A comparison of the contribution of various gases to the green house effect[J]. Science,1990,248:1217-1219.
    [3]Lelieveld J, Crutzenand P, Dentener F J. Changing concentration, lifetime and climate forcing of atmospheric methane[J]. Tellus,1998,5:128-150.
    [4]Matthes E, Fung I. Methane emission from natural wetlands:global distribution area and environment characteristics of sources[J]. Global Biogeochem Cycles, 1987,1:61-86.
    [5]Watson RT, Neira Filho LG, Sanhueza E. Sources and Sinks. In:Houghton JJ, Callander JT, Vamey SK eds. The Supplementary Report to the IPCC Scienti-fic Assessment[M]. Cambridge:Cambridge Universitv Press,1992,24-46.
    [6]Kruger M, Treude T, Wolters H, et al. Microbial methane turnover in different marine habitats[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2005, 227(1-3):6-17.
    [7]Kaku N, Ueki A, Ueki K, et al. Methanogenesis as an important terminal electron accepting process in estuarine sediment at the mouth of Orikasa River[J]. Microbes and Environments,2005,20(1):41-52.
    [8]Yavitt J B, Lang G E. Methane production in cont rasting wetland sites:response to organic-chemical components of peat and to sulfate reduction [J]. Geomicrobi-logy Journal,1990,8:27-46.
    [9]Wagner D, Pfeiffer E M. Two temperature optima of methane production in a typical soil of the Elbe river marshland [J]. FEMS Microbiology Ecology,1997, 22:145-153.
    [10]叶勇,卢昌义,林鹏.厦门东屿白骨壤林土壤甲烷产生量、氧化量、传输率与库量[J].台湾海峡,2001,20(2):236-244.
    [11]卢昌义,叶勇,林鹏等.海南海莲红树林土壤CH4的产生及其某些影响因素[J].海洋学报,1998,20(6):132-138.
    [12]王维奇,曾丛盛,仝川.闽江口芦苇湿地土壤甲烷产生与氧化能力研究[J]. 湿地科学,2008,6(1):60-67.
    [13]Wassmann R, Neue H U, Bueno C, et al. Methane production capacities of diferent rice soil derived from inherent and exogenous substrates[J]. Plant and Soil,1998,203:227-237.
    [14]Van der Nat FW A, Middelburg J J.1998. Efects of two common macrophytes on methane dynamics in freshwater sediments [J]. Biogeochemistry,43:79-104.
    [15]徐华,蔡祖聪,八木一行.水稻土CH4产生潜力及其影响因素[J].土壤学报,2008,45:98-104.
    [16]Avery G B J R, Shannon R D, White J R, et al. Controls on methane production in a tidal reshwater estuary and a peatland:methane production via acetate fermentation and CO2 reduction [J]. Biogeochemistry,2003,62:19-37.
    [17]Chasar L S, Chanton J P. Radiocarbon and stable carbon isotopic evidence for transport and transformation of dissolved organic carbon, dissolved inorganic carbon and CH4 in a northern Minnesota peatland[J]. Global Biogeochem. Cycles,2000,14(4):1095-1108.
    [18]丁维新,蔡祖聪.温度对甲烷产生和氧化的影响[J].应用生态学报,2003,14(4):604-608.
    [19]丁维新,蔡祖聪.沼泽产甲烷能力和途径差异的机制[J].农村生态环境2002,18(2):53-57.
    [20]Avery G B J R, Shannon R D, White J R, et al. Controls on methane production in a tidal reshwater estuary and a peatland:methane production via acetate fermentation and CO2 reduction [J]. Biogeochemistry,2003,62:19-37.
    [21]Hornibrook EDC, Longstaffe FJ, Fyfe WS. Spatial distribution of microbial met-hane production pathways in temperate zone wetland soils:stable carbon and hydrogen isotope evidence. Geochimica et Cosmochimica Acta,1967,61: 745-753.
    [22]Chasar L S, Chanton J P. Radiocarbon and stable carbon isotopic evidence for transport and transformation of dissolved organic carbon, dissolved inorganic carbon and CH4 in a northern Minnesota peatland[J]. Global Biogeochem. Cycles,2000,14(4):1095-1108.
    [23]Van der Nat F J W, Middelburg J J. Effects of two common macrophytes on methane dynamics in freshwater sediments[J]. Biogeochemistry,1998, 43:79-104.
    [24]王长科,吕宪国,蔡祖聪等.东北三江平原土壤氧化CH4研究[J].环境科学学报,2004,24(5):939-941.
    [25]王长科,吕宪国,周华荣等.若尔盖高原沼泽土壤氧化甲烷的研究[J].中国环境科学,2004,24(6):646-649.
    [26]Lyimo TJ, Pol A, Den Canp Hjmo. Sulfate reduction and methanogenesis in sediments of Mtoni mangrove forest, Tanzania[J]. Ambio,2002,31(7).
    [27]Ronald S. Oremland, Sandra Polcin. Methanogenesis and Sulfate Reduction: Competitive and Noncompetitive Substrates in Estuarine Sediments[J]. Applied and Environmental Microbiology,1982,44(6):1270-1276.
    [28]Epp MA, Chanton JP. Rhizospheric methane oxidation determined via the methyl-fluoride inhibition technique[J]. Geophys Res,1993,98:18422-18423.
    [29]Lu Y, Wassmann R, Neue H U. Methanogenic responses to exogenous substrates in anaerobic rice soil[J]. Soil Biology and Biochemistry,2000,32:1683-1690.
    [30]Kettunen A, Kaltala V, Lehtinen A, et al. Methane production and oxidation potentials in relation to water table fluctuations in two boreal mires. Soil Biology and Biochemistry,1999,31:1741-1749.
    [31]蔡祖聪Mosi. AR.土壤水分状况对CH4氧化,N20和CO2排放的影响[J].土壤,1999,31(6):289-294.
    [32]Conrad R. Control of microbial methane production in wetland rice fields[J]. Nutrient Cycling in Agroecosystens,2002,64:59-69.
    [33]郝庆菊,王跃思,江长胜,王长科,王明星.湿地甲烷排放研究若干问题的探讨[J].生态学杂志,2005,24(2):170-175.
    [34]杨红霞,王东启,陈振楼,等.长江口崇明东滩潮间带甲烷(CH4)排放及其季节变化[J].地理科学,2007,27(3):408-413.
    [35]杨红霞,王东启,陈振楼,等.长江口潮滩湿地—大气界面碳通量特征[J].环境科学学报,2006,26(4):667-673.
    [36]Wang. Z. P, DeLaune. R. D and Patrick. W. H. Soil redox and pH effects on methane production in a flooded rice soil[J]. Soil Science Society of America, 1993,57:382-385.
    [37]Peters V, Conrad R. Sequential reduction processes and initiation of CH4 production upon flooding of oxic upland soils[J]. Soil Biology and Bioche-mistry.1996,28:371-382.
    [38]蔡祖聪,沈光裕,颜晓元.土壤质地、温度和Eh对稻田甲烷排放的影响[J]土壤学报,1998,35(2):145-154.
    [39]陈槐,周舜,吴宁等.湿地甲烷的产生、氧化及排放通量研究进展[J].应用与环境生物学报,2006,12(5):726-733.
    [40]Mer J, Roger P. Production, oxidation, emission and consumption of methane by soils:a review[J]. European Journal of Soil Biology.2001.37(1):25-50.
    [41]Segers R. Methane production and methane consumption:a review of process underlying wetland methane fluxes[J]. Biogeochemist,1998,41:23-51.
    [42]J Le Mer, P Roger. Production, oxidation, emission and consumption of methane by soils:a review[J]. European journal of soil biology,2001,37:25-50.
    [43]RonaldS. Oremland, Sandra Polcin. Methanogenesis and sulfate reduction:comp-etitive and noncompettive substrates in estuarine sediments[J]. Applied and Environmental Microbiology,1982,44 (6):1270-1276.
    [44]Kuivila KM, Murray JW, Devol AH.Methane production, sulfate reduction and competition for substrates in the sediments of Lake Washington [J]. Geochemica et Cosmochimica Acta,1989,53(2):409-416.
    [45]Conrad R, Claus P. Contribution of methanol to the production of methane and its 13C-isotopic signature in anoxic rice field soil[J]. Biogeochemistry,2005, 73(2):381-393.
    [46]王维奇,曾从盛,仝川.湿地甲烷产生的测定方法及主要控制因子研究综述[J].亚热带资源与环境学报,2007,2(2):48-56.
    [47]Bergman I, Klarqvist M, Nilsson M. Seasonal variation in rates of methane production from peat of various botanical origins:effects of temperature and substrate quality[J]. FEMS Microbiology Ecology,2000,33:181-189.
    [48]Popp T J, Chan ton J P, Whiting G J, et al. Evaluation of methane oxidation in the rhizosphere of a Carex dominated fen in north central Alberta [J]. Biogeochemistry,2000,51:259-281.
    [49]Inubushi K, Sugii H, Nishino S, et al. Effect of aquatic weeds on methane emission from submerged paddy soil [J]. American Journal of Botany, 2001,88(6):975-979.
    [50]Freeman C, Nevison G B, Kang H, et al. Contrasted effects of simulated drought on the production and oxidation of methane in a mid-Wales wetland [J]. Soil Biology and Biochemistry,2002,34:61-67.
    [51]徐华,蔡祖聪,八木一行.水稻土甲烷产生、氧化和排放过程的相互影响—以水分历史处理为例[J].土壤,2006,38(6):671-675.
    [52]刘剑秋,曾从盛,陈宁.闽江河口湿地研究[M].北京:科学出版社.2006.
    [53]张锦新,福州盆地土壤特征的研究[J].福建师专学报(自然科学版),2001,21(5):80-83.
    [54]贾瑞霞.闽江河口湿地沉积物碳、氮、磷含量及储量特征[D].福建师范大学硕士论文,2009:21-26.
    [55]Ralf Conrad, Melanie Klose. Selective inhibition of reactions involved in methanogenesis and fatty acid production on rice roots[J]. FEMS Microbiology Ecology,2000,34:27-34.
    [56]Conrad, R. and Klose, M. Anaerobic conversion of carbon dioxide to methane, acetate and propionate on washed rice roots[J]. FEMS Microbiology Ecology, 1999,30:147-155.
    [57]Denier van der Gon HAC, Neue HU. Oxidation of methane in the rhizosphere of rice plants[J]. Biology and Fertility of Soils,1996,22:359-366
    [58]Banker BC, Kludze HK, AIford D Delaune RD, Lindau CW. Methane sources and sinks in paddy rice soils:Relationship to emissions. Agriculture, Ecosystems and Environment,1995,53(3):243-251.
    [59]Watanabe I, Hashimoto Shimoyama A. Methane-oxidizing activities and methanotrophic populations associated with wetland rice plants. Biology and Fertility of Soils,1997,24:261-265.
    [60]King GM. In situ analyses of methane oxida tion associated with the roots and rhizomes of a bur reed, spargainium eurycarpum, in a Maine wetland. Applied and Environmental Microbioloby,1996,62(12):4548-4555.
    [61]王爱军,陈坚,李东义.互花米草对福建泉州湾海岸湿地沉积环境影响[J].海洋工程,2008,26(4):60-69.
    [62]蔡祖聪.土壤质地,温度和Eh对稻田甲烷排放的影响[J].土壤学报,1998,35(2):145-154.
    [63]Wagner D, Pfeiffer EM, Bock E. Methane production in aerated marshland and model soils:efects of microflora and soil texture. Soil Biology and Biochemistry,1999,31:999-1006.
    [64]Dasselaar A, Oenemaa O. Methane production and carbon mineralization of size and density fractions of peat soils[J]. Soil Bioloy and Biochemistry,1999,3: 877-886.
    [65]段晓男,王效科,欧阳志云.维管植物对自然湿地甲烷排放的影响[J].生态学报,2005,25(12):3375-3381.
    [66]马静,徐华,蔡祖聪.稻田甲烷氧化研究方法进展[J].土壤,2007,39(2):153-156.
    [67]KrUger M, Frenze1 Conrad R. Microbial processes influencing methane emision from rice fields. Global Change Biology,2001,7:49-63.
    [68]王长科,吕宪国,蔡祖聪,等.东北三江平原土壤氧化CH4研究[J].环境科学学报,2004,24(5):939-941.
    [69]Winfrey, M.R. and D.M. Ward. Substrates for sulfate reduction and methane pro-duction in. intertidal sediments. Appl. Environ. Microbiol,1983,45:193-199.
    [70]Novelli PC, Michelson AR, Scranton MI, et al. Hydrogen and acetate cycling in two sulfate-reducing sediments:Buzzards Bay and Town Cove, Mass, Mass[J]. Geochimica et Cosmochimica Acta,1998,52:2477-2486.
    [71]柳铮铮.酸沉降对闽江河口湿地CH4产生排放和碳输出的影响[D].福建师范大学硕士论文,2009:33-36.
    [72]丁维新,蔡祖聪.土壤有机质和外源有机物对甲烷产生的影响[J].生态学报,2002,22(10):1672-1679.
    [73]Dunfield P, Knowles R, Dumont R. Methane production and consumption in temperate and subarctic peat soils:response to temperature and pH[J]. Soil Biology & Biochemistry,1993,25:321-326.
    [74]Epp MA, Chanton JP. Rhizospheric methane oxidation determined via the methyl-fluoride inhibition technique[J]. Journal of geophysical research,1993, 98:18422-18423.
    [75]Sass RL, Fisher FM, Turner FT, Jund MF. Methane emission from rice fields as influenced by solar radiation, temperature, and straw-incorporation[J]. Global Biogeochemical Cycles,1991,5:335-350.
    [76]HosonoT, NouchiI. Efect of gas pressure int he root and stembase zone on methane transport through rice bodies[J]. Plant Soil,1997,195:65-73.
    [77]Regine GroBkopf, Peter H. Janssen, Werner Liesack. Diversity and structure of the methanogenic community in anoxic rice paddy soil microcosms as examined by cultivation and direct 16S rRNA gene sequence retrieval [J]. Appl Environ Microbiol,1998,64:960-969.
    [78]GroBKopf R, Stubner S, Liesack W. Novel euryarchaeotal lineages detected on rice root and in the anoxic bulk soil of flooded rice microcosms[J]. Appl Environ Microbiol,1998,64:4983-4989.
    [79]Peters V, Conrad R. Sequential reduction processes and initiation of CHU produ-ction upon flooding of oxic upland soils[J]. Soil Biology & Biochemistry,1996, 28:371-382.
    [80]Singh S N. Exploring correlation between redox potential and other edaphic factors in field and laboratory conditions in relation to methane efflux [J]. Enviroment, Inc,2001,27:265-274.
    [81]Kludze H K, DeLaune RD. Methane emissions and growth of Spartina patens in response to soil redox intensity[J]. Soil Science Society of America Journal,1994,58:1838-1845.
    [81]王明星.稻田甲烷排放及产生,转化,输送机理[J].大气科学,1998,22(4):600-612.
    [82]Ojima D S, Valentine D W, Mosier A R, et al. Effect of landuse change on methane oxidation in temperate forest and grassland soil[J]. Chemosphere,1993, 26:675-685.
    [83]杨道媛,胡金明.马尔文激光粒度分析仪粒度检测方法及其优化研究[J].中国粉体技术,2002,8(5):27-30.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700