用户名: 密码: 验证码:
中华鲟海水适应过程中生理变化及盐度选择行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中华鲟(Acipenser sinensis Gray)是大型溯河洄游鱼类,国家一级保护动物,主要分布在我国东海、黄海和长江。成熟最大个体全长400cm,体重452kg。中华鲟淡水中出生后,本能地要洄游到大海中生活,待8~10龄性成熟后,再上溯洄游到出生地进行繁殖。在长江口,中华鲟幼鱼的集群时间为5~9月,这一水域所发现的中华鲟幼鱼以1龄个体为主。1981年长江葛洲坝水利工程的修建阻隔了中华鲟产卵洄游通道,加上过度捕捞,中华鲟物种数量锐减。调查证实葛洲坝下已形成中华鲟新的产卵场。到本世纪初,关于中华鲟产卵群体的个体形态结构、繁殖生物学习性,特别是葛洲坝下中华鲟产卵群体繁殖生态学和资源评估的研究,取得了明显的进展。但有关中华鲟渗透生理和盐度选择行为方面还未见报道。本课题围绕中华鲟1龄幼鱼在外界环境盐度刺激下渗透生理变化过程及其调控机制,以及在这一变化过程中中华鲟盐度选择行为的变化规律等内容展开工作,主要得到以下结果:
     1、海水适应过程中中华鲟血清渗透压、血清离子浓度及Na~+/K~+-ATPase活力变化
     将7月龄中华鲟幼鱼(128.8±15 g)从淡水环境(0%‰,46 mmol kg~(-1))转入半咸水环境(10‰,273 mmol kg~(-1))后:Na~+、Cl~-对血清渗透压的贡献率增高;幼鱼血清渗透压最初12h升高,12~24h维持高渗状态(300 mmol kg~(-1)),24~216h逐渐下降到新的稳定水平(272 mmol kg~(-1)),此水平等渗于环境,而显著高于淡水对照组(264.14±0.72mmol kg~(-1))(p<0.05);血清[Na~+]、[Cl~-]和[Ca~(2+)]变化趋势与血清渗透压相似,前24h浓度升高,24~216h浓度下降,216~480h重新稳定,且显著高于淡水对照组(p<0.05);血清[K~+]变化明显滞后于血清[Na~+]、[Cl~-]和[Ca~(2+)],最初12h内浓度保持稳定,24~216h逐渐上升到最高值(3.62±0.10mmol L~(-1))之后持续下降,480h时下降到淡水对照组水平;鳃Na~+/K~+-ATPase活力最初3h内受到抑制,3~(-1)24h持续上升到最高值(3.20±0.20U)后至72h一直维持约为淡水对照组(1.45±0.03U)2倍的高活力水平,之后持续下降,216h以后保持稳定(2.39±0.082U)且显著高于淡水对照组水平(p<0.05);瓣肠Na~+/K~+-ATPase活力前3h酶活力有所升高,3~24h酶活力持续下降到最低值(0.12±0.02U)且显著低于淡水对照组水平(p<0.05),之后缓慢回升,480h时回升到淡水对照组水平;直肠Na~+/K~+-ATPase活力前3h酶活力保持稳定,之后酶活力下降,12~72h酶活力显著低于淡水对照组(p<0.05),216~480h酶活力低于淡水对照组,但差异不显著(p>0.05);肾Na~+/K~+-ATPase活力显著下降,各时间段酶活力均显著低于淡水对照组(p<0.05)。
     2、海水适应过程中中华鲟血清激素水平变化
     从淡水环境(0‰,46 mmol kg~(-1))转入半咸水环境(10‰,273 mmol kg~(-1))后,机体迅速抑制了催乳素的分泌,加强了皮质醇和甲状腺素的分泌:最初12h内,血清催乳素水平直线下降近3倍,达0.24±0.03ng ml~(-1),此后一直保持显著低于淡水对照组水平(0.85±0.11ng ml~(-1))的低水平稳定状态(p<0.05);血清皮质醇最初3h内急剧上升到最高值(56.12±15.40 ng ml~(-1)),显著高于淡水对照组(8.66±1.56 ng ml~(-1))(p<0.05),之后快速下降,24h以后回落到淡水对照组水平并保持稍高于淡水对照组的稳定状态;血清总甲状腺素(四碘甲腺原氨酸,TT_4)3h内上升到最大值(3.87±0.40ng ml~(-1)),显著高于淡水对照组(1.54±0.31 ng ml~(-1))(p<0.05),之后逐渐下降,216h以后下降到淡水对照组水平;血清总三碘甲腺原氨酸(TT_3)3h内上升到最大值0.18±0.03 ng ml~(-1),显著高于淡水对照组(0.04±0.01 ng ml~(-1))(p<0.05),之后快速下降,但始终保持显著高于淡水对照组水平(p<0.05);血清游离甲状腺素(FT_4)和游离三碘甲腺原氨酸(FT_3)在最初3h内均迅速升高(p<0.05),之后快速下降,24h后回落到淡水对照组水平。
     3、不同盐度驯化下中华鲟幼鱼鳃泌氯细胞结构变化
     在淡水中,中华鲟幼鱼鳃中的泌氯细胞数量较少,且主要分布在近鳃小片基部,胞体与核均较大而明显,胞内含大量线粒体;泌氯细胞中有网管和囊管,但网管欠发达,囊管分布面积小,细胞表面有顶隐窝。表现为典型的淡水型泌氯细胞特征。与淡水组相比,半咸水组鳃泌氯细胞的分布和结构变化明显,泌氯细胞集中分布在鳃小片基部;超微结构显示,细胞内线粒体数量明显增加,胞质中网管颇为发达,囊管丰富,顶隐窝扩大,表面有微绒毛,表现为α-型(海水型)泌氯细胞特征。泌氯细胞具有分泌体内过多Na~+、Cl~-以及调节体液渗透平衡的功能,其数量和结构变化与幼鱼所处的高渗环境相适应。
     4、海水适应过程中中华鲟主要消化酶活性的变化
     从淡水环境(0‰,46 mmol kg~(-1))转入半咸水环境(10‰,273 mmol kg~(-1))后,蛋白酶和淀粉酶在12h内降到最低,48h后酶活力持续回升,216h后酶活力回升到淡水对照组水平;脂肪酶活力在48h内降到最低,72h后持续上升,216h后酶活力上升到淡水对照组水平。脂肪酶活力受盐度影响较蛋白酶和淀粉酶更大。外界盐度环境的变化并未显著影响中华鲟肝脏对消化酶的合成与分泌。中华鲟消化器官蛋白酶和淀粉酶活性由高到低的顺序为:幽门盲囊>十二指肠>瓣肠>胃>肝脏;脂肪酶活性由高到低的顺序为:瓣肠>十二指肠>胃>肝脏>幽门盲囊。
     5、中华鲟盐度选择实验装置的设计
     当两种不同盐度的水相遇时产生垂直分层扩散,形成上层为低比重水、下层为高比重水的垂直分层,并出现一个稳定的分界面。据此盐度扩散规律,作者设计出六分室盐度选择实验装置用于中华鲟盐度喜好性实验。装置圆形,高1m,直径6m,中央区为过渡区域,含六个盐度分室,结构均匀。静态下各分室盐度可稳定10d以上;在不间断曝气和有实验动物扰动情况下,各分室盐度可稳定1d。实验时,受试鱼可单尾或多尾从中央区域放入,也可从各分室均匀放入。从受试鱼主动选择的盐度分室(或者在各盐度分室里活动频率、时间上的差异)即可直观了解鱼类的盐度喜好性。
     6、中华鲟幼鱼盐度喜好行为
     未接触过咸水的淡水8月龄幼鱼,显著趋向淡水;生活在长江口,还未完成渗透生理转变的野生中华鲟幼鱼,最喜5‰的盐度;而驯养于盐度10‰环境中一定时间的中华鲟幼鱼,最喜其驯化盐度10‰。环境盐度的持续刺激可改变中华鲟幼鱼盐度喜好性。正是这种可塑的盐度喜好性驱动着中华鲟幼鱼最终从河口半咸水水域进入到大海之中。
Chinese sturgeon, Acipenser sinensis Gray, a class I endangered species by the Chinese government, is an anadromous species that presently only remains in the Yangtze (=Changjiang) River, the East China Sea and Yellow Sea. Adult Chinese sturgeon, which are a maximum of 400 cm total length (TL) and 452 kg body weight (BW), are one of the largest fish to enter fresh water. Juveniles hatched in the Yangtze River migrate to the sea and return to spawn at the age of 8-10 years. Chinese sturgeon juveniles concentrate at the river estuary during the period of May-September, and almost all of the young fish found in the estuary are younger than 1 year old. As a result of overfishing and construction of Gezhouba Dam in 1981 at Yichang, Hubei Province, 1766 km from the river estuary, blocked the spawning migration of Chinese sturgeon to the Yibin spawning reach, populations of Chinese sturgeon have greatly declined in abundance. Some successful spawning occurs in the short reach below the dam (Gezhouba spawning site) as verified by the capture of early-life stages in 1982 and during 1996-1999. By the beginning of this century, research on Chinese sturgeon has focused on the fields of morphology, reproductive biology and, especially, reproductive ecology and stock assessment of the spawning population below the Gezhouba Dam. To date, little information has been gathered concerning the osmoregulatory physiology and salinity preference of Chinese sturgeon. The author studied the development of osmoregulatory mechanisms and salinity preference behavior of 1-year-old juvenile Chinese sturgeon during seawater adaptation. Conclusions from the studies are as follows:
     1. Changes of serum osmolality, serum ion concentrations and Na~+, K~+-ATPase activities in juvenile Chinese sturgeon during seawater adaptation
     The osmoregulation capabilities of 7-month-old juvenile Chinese sturgeon (128.8±15 g) transferred directly from freshwater (0%o, 46 mOsmol kg~(-1)) to brackish water (10‰, 273 mOsmol kg~(-1)) were studied over a 20-day period. Changes in serum osmolarity, chloride (Cl~-), sodium (Na~+), potassium (K~+) and calcium (Ca~(2+)) ion concentrations, as well as gill, spiral valve, rectal and renal Na~+, K~+-ATPase activities were measured at 3, 12, 24, 72, 216 and 480 h after transfer to BW. The serum osmolarity and ion concentrations (Na~+, Cl~- and Ca~(2+)) increased immediately after the transference to BW, reaching maximum at 24 h and returned to a new steady state at 216 h, while the FW control group maintained basal levels which showed lower (p<0.05) than the BW group. Serum potassium ion concentration lagged behind the chloride, sodium, potassium and calcium ion concentrations after exposure to BW. K~+ ion concentration of BW group maintained steady state in the first 12 h after transfer, but began to increase at 24 h, reaching maximum at 216 h after transference and returned to the levels of FW control at 480 h. Gill Na~+, K~+-ATPase activity of BW group exhibited an abrupt decrease in the first 3 h after transfer, but began to increase at 3 h, reaching a peak value at 24 h, and returned a new steady state at 216 h. The differences between gill Na~+, K~+-ATPase activity of BW and FW fish were significant (p< 0.05) after 12 h. In contrast, Na~+, K~+-ATPase activity of the spiral valve showed transient increase after transference from FW to BW, and then decreased rapidly at 3 h, reaching the lowest at 24 h after transference. At 216h after exposure to BW, Na~+, K~+-ATPase activities of the spiral valve increased slowly to the levels of FW control. Rectal Na~+, K~+-ATPase activity of BW group maintained steady state in the first 3 h after transfer, but began to decrease at 3 h, and returned slowly to the levels of FW control at 216 h. Renal Na~+, K~+-ATPase activity decreased rapidly after exposure to BW, and the differences between renal Na~+, K~+-ATPase activity of BW and FW fish were significant (p< 0.05).
     2. Changes in serum hormone levels in juvenile Chinese sturgeon during seawater adaptation
     After exposure to BW, the fish bated rapidly its secretion of prolactin (PRL), and accelerated to secrete cortisol and thyroxine. The serum PRL level decreased immediately after the transference to BW, and reached a new steady low state at 12 h which was significantly lower than in the FW control fish (p<0.05). The serum cortisol level of BW group exhibited an abrupt increase after transfer, reaching a peak value at 3 h and returned rapidly to the steady level at 24 h. The new steady level of cortisol in BW group was higher than the level of the FW control group, and did not show significant differences. After transference from FW to BW, Serum total thyroxine (TT_4) level showed transient increase, reaching maximum at 3 h and returned slowly to the level of the FW control group at 216 h. Serum total triiodothyronine (TT_3) increased immediately after the transference to BW, reaching a peak value at 3 h and returned to a new steady state which was significantly higher than in the FW control fish (p<0.05). Serum free thyroxine (FT_4) and free triiodothyrinine (FT_3) increased immediately in the first 3 h after the transference to BW, and returned rapidly to the level of the FW control group at 24 h.
     3. Structural changes of gills chloride cell of juvenile Chinese sturgeon acclimated to various salinities
     Modifications in the chloride cells of gill epithelia of juvenile Chinese sturgeon in FW and BW were examined by light and transmission electron microscopy. In freshwater, a few chloride cells were present on the base of lamellae and in the interlamellar region of the filament with undeveloped tubular network and vesicle-tubular as freshwater-type chloride cells. While in brackish water, fish showed a marked increase in the number and size of chloride cells. On the lamellae of these fish, chloride cells were generally centralizing to the base of lamellae. Ultrastructural modifications included: presence of a more compact tubular network, a greater development vesicle-tubular and an enlarged apical crypt bearing some short microvilli asα-subtypes (seawater-type) chloride cells. The gill chloride cell, with increasing in the number and modifying structure, participate in extruding excess Na~+, Cl~- and adjusting osmolality of body fluid in the hyperosmotic medium.
     4. The activities of digestive enzymes of juvenile Chinese sturgeon during seawater adaptation
     The protease, amylase and lipase activities of the alimentary canal in 7-month-old juvenile Chinese sturgeon were increased in the few hours after exposure to BW, and then decreased rapidly. The minimum activities of protease and amylase occurred at 12h after exposure to BW. The protease and amylase activities were increased continually after 48h after exposure to BW, and were the same as activities of freshwater control group at 216h. The minimum activity of lipase occurred at 48h after exposure to BW. The lipase activity was increased continually after 72h, and was the same as lipase activity of freshwater control group at 216h after exposure to BW. The activity of lipase was affected strongly by salt. Environment salinity didn't affect secrete of digestive enzymes in liver. The activities of protease and amylase were from high to low: pylorus vesica > duodenum > ileum > stomach > liver. The lipase activity was from high to low: ileum > duodenum > stomach > liver > pylorus vesica.
     5. Design a device for the study of salinity preference in Chinese sturgeon
     When two kinds of different salinity water met, there showed vertical stratification phenomenon and appeared a stable interface, forming the light water in the upper layer and the heavy water in the lower layer. According to the law of salinity diffusion, a six-chambered device for the study of salinity preference in Chinese sturgeon was designed. The device, including six salinity chambers, was circular, 1-m-high, 6-m-diameter, and the center area was the transition region. The structure was even. Salinities in the six chambers could steady 10 days without disturbing, while those salinities only steadied one day in the state of continuing bubbling or fish turbulence. To test salinity preference, fish were placed in the testing device from six chambers or the center area. We could perceive salinity preference, or behavioral selection of a particular concentration of dissolved salts, according to the difference of the frequency or duration in six salinity chambers.
     6. Salinity preference behavior of juvenile Chinese sturgeon
     Juvenile Chinese sturgeon which was strictly confined to freshwater showed preference for fresh water. While, wild juvenile Chinese sturgeon which concentrated at the river estuary without completing conversion from hyper-osmoregulatory to hypo-osmoregulatory chose salinity 5%o. In contrast, juvenile Chinese sturgeon which had been acclimated in 10‰BW "preferred" salinity 5‰. In the present study, condition salinity appeared to have affected the salinity preference of juvenile Chinesesturgeon. It is the plasticity of salinity preference to drive juvenile Chinese sturgeoninto the sea.
引文
1.曹文宣.鱼类资源的保护[M].见:刘健康,何碧梧主编,中国淡水鱼类养殖学,第三版.北京:科学出版社,1992,64-66.
    2.柴毅,谢从新,危起伟,等.中华鲟视网膜早期发育及趋光行为观察[J].水生生物学报,2007,31(6):920-922.
    3.柴毅.中华鲟感觉器官的早期发育及其行为机能[D].华中农业大学博士论文,2006.
    4.长江水系渔业资源调查协作组.长江水系渔业资源[M].北京:海洋出版社,1990.
    5.常剑波,曹文宣.中华鲟物种保护的历史与前景[J]。水生生物学报,1999,23(6),712-720。
    6.常剑波.长江中华鲟产卵群体结构和资源变动[D].武汉:中国科学院水生生物研究所,博士学位论文.1999
    7.陈惠群,王国良.硬骨鱼类的渗透压调节[J].海洋科学,2002,26(1),24-26.
    8.陈细华,杨德国,危起伟等.葛洲坝下中华鲟自然产卵胚胎正常发育的证据[J].淡水渔业,2004.34(2),3-5.
    9.单保党,何大仁.黑鲷感觉发育与摄食行为的关系[M].见:曹文宣主编.鱼类学论文集(第六辑).北京:科学出版社,1997,112-119.
    10.单保党,何大仁.黑鲷化学感受发育与摄食关系[J].厦门大学学报(自然科学版),1995a,9,34(5),835-839.
    11.单保党,何大仁.黑鲷视觉发育与摄食的关系[J].台湾海峡,1995b,14(2),169-173.
    12.邓昕.中华鲟的保护生物学研究进展[J].动物学研究,1997.18(1),113-120.
    13.邓中粦,余志堂.中华鲟年龄鉴别和繁殖群体结构的研究[J].水生生物学报,1985,10(6),99-100.
    14.顾孝连.长江口中华鲟幼鱼实验行为生态学研究[D].上海水产大学博士论文,2007.
    15.何大仁,蔡厚才.鱼类行为学[M],厦门:厦门大学出版社,1998,第一版
    16.何大仁,俞文钊译(普罗塔索夫,B.P.著).鱼类的行动[M].北京:科学出版社,1984,第一版.
    17.何大仁,几种幼鱼是觉运动反应研究[J].水生生物学报,1985,9(4),365-373.
    18.胡德高,柯福恩,张国良.葛洲坝下中华鲟产卵场的第二次调查[J].淡水渔业,1985,15(3),22-24,33.
    19.胡德高,柯福恩,张国良.葛洲坝下中华鲟产卵场的调查研究[J].淡水渔业,1992,22(5),6-10.
    20.胡德高,柯福恩,张国良.葛洲坝下中华鲟产卵情况初步调查及探讨[J].淡水渔业,1983,13(3),15-18.
    21.蒋志刚主编.动物行为原理与物种保护方法[M],北京:科学出版社.2004.
    22.李明德.鱼类生理学[M].天津:天津科技翻译出版社,1990,29-32,294
    23.李思发.长江重要鱼类生物多样性和保护研究[M].上海:上海科学技术出版社,2001.
    24.梁旭方.中华鲟吻部腹面罗伦氏囊结构与功能的研究[J].海洋与湖沼,1996,27(1):1-5.
    25.林浩然.鱼类生理学[M].广州:广东高等教育出版社,2002,128-131.
    26.林浩然编著.鱼类生理学(第一版)[M].广州:广东高等教育出版社,1999.
    27.刘鉴毅,危起伟,陈细华,杨德国,杜浩,朱永久,郑卫东,甘芳.葛洲坝下中华鲟繁殖生物学特性及其人工繁殖效果[J].应用生态学报,2007,18(6):1397-1402.
    28.刘小春,何大仁,李大勇.真鲷早期发育阶段行为生态学研究[J].热带海洋,1993,12(3),17-22.
    29.茅绍廉.鱼类行动与捕鱼技术[M].北京:海洋出版社,1985.
    30.潘炯华,刘成汉.长江及珠江鲟鱼形态特征的初步比较[J].华南师范大学学报(自然科学版),1986,2,35-39.
    31.施德龙,龚志高.长江口中华鲟幼鱼的保护[J].海洋渔业,1993.15(2),72-73.
    32.施瑔芳编著.鱼类生理学(第一版)[M].北京:农业出版社,1991.
    33.四川长江水产资源调查组.长江鲟类生物学及人工繁殖研究[M]成都:四川省科技出版社,1988.
    34.王彩理,滕瑜,刘丛力,朱伯清.中华鲟的繁育特性及开发利用[J].水产科技情报,2002,29(4),174-1761.
    35.危起伟,陈细华,杨德国,等.葛洲坝截流24年来中华鲟产卵群体结构的变化[J].中国水产科学,2005,12(4),452-4571.
    36.危起伟,柯福恩,庄平,罗俊德,杨文华,周瑞琼.论长江口中华鲟幼鱼的保护[M].见:第一届东亚地区国家公园与保护区会议暨CNPPA/IUCN第41届会议.北京:中国环境科学出版社,1994,786-793
    37.危起伟.中华鲟繁殖行为生态学与资源评估[D].武汉:中国科学院水生生物研究所,博士学位论文.2003.
    38.杨德国,危起伟,王凯,陈细华,朱永久.人工标志放流中华鲟幼鱼的降河洄游[J].水生生物学报,2005,29(1),26-30
    39.杨德国,朱永久,危起伟,陈细华,刘鉴毅,王凯.淡水人工培育中华鲟亚成体的海水驯化试验[J].海洋水产研究,2007,28(3),120-124.
    40.杨秀平编著.动物生理学(第一版)[M].北京:高等教育出版社,2002.
    41.杨滋泉,李淑芳.中华鲟资源的保护与增殖[J].葛洲坝水电,1990,1,35-37.
    42.易继舫,常剑波,唐大明.长江中华鲟繁殖群体资源现状的初步研究[J].水生生物学报,1999,23(6),554-559.
    43.易继舫.长江中华鲟幼鲟资源调查[J].葛洲坝水利.1994,1,53-58.
    44.易雨君,王兆印,姚仕明.栖息地适合度模型在中华鲟产卵场适合度中的应用[J].清华大学学报(自然科学版),2008,48(3),340-343.
    45.殷名称.海洋鱼类仔鱼在早期发育和饥饿期的巡游速度[J].海洋与湖沼,1989,20(1),1-8.
    46.余志堂,许蕴轩,邓中粦.葛洲坝水利枢纽下游中华鲟繁殖生态的研究[M].鱼类学论文集(第五辑).北京:科学出版社.1986,1-13.
    47.张辉,危起伟,杨德国,杜浩,张慧杰,陈细华.葛洲坝下游中华鲟(Acipenser sinensis)产卵场地形分析[J].生态学报,2007,27(10),3945-3955.
    48.张世光.中华鲟在西江的分布及产卵场调查[J].动物学杂志,1987,22(5),50-52.
    49.张世义.中国动物志2硬骨鱼纲:鲟形目海鲢目鲱形目鼠鱚目[M].北京:科学出版社,2001,209.
    50.赵传洇,唐小曼,陈思行.鱼类的行动(第二版)[M].北京:农业出版社,1989.
    51.赵峰,庄平,章龙珍,黄晓荣,田宏杰,张涛,冯广朋.盐度驯化对史氏鲟鳃Na~+/K~+-ATP酶活力、血清渗透压及离子浓度的影响[J].水产学报,2006,30(4),444-449.
    52.赵燕,黄绣,余志堂.中华鲟幼鱼现状调查[J].水利渔业,1986,6,38-41.
    53.周显青,孙儒泳,牛翠娟.应激对水生动物生长、行为和生理活动的影响[J].动物学研究,2001,22(2),89-92.
    54.庄平,章龙珍,罗刚,张涛,冯广朋,刘健.长江口中华鲟幼鱼感觉器官在摄食行为中的作用[J].水生生物学报,2008,32(4),476-481.
    55.庄平.鲟科鱼类个体发育行为学及其在进化与实践上的意义[D].中国科学院水生生物 研究所博士论文,1999.
    56.Adams S R,Hoover J J,Killgore K J.Swimming Endurance of Juvenile Pallid Sturgeon,Scaphirhynchus albus[J].Copeia.1999,3,802-807.
    57.Alderdice D F.Osmotic and ionic regulation in teleost eggs and larvae[M].In:Hoar W S,Randall D J(eds).Fish Physiology,Vol.11A.Academic Press,San Diego.1988,163-251.
    58.Altinok I,Sara M G,Frank A C.Ionic and osmotic regulation capabilities of juvenile Gulf of Mexico sturgeon,Acipenser oxyrinchus de Sotoi[J].Comp Biochem Physiol,1998,120,609-616.
    59.Anathy V,Meenakumari S,Mathavan S and Pandian T J.NCBI Genbank submission,accession number AAK53436.2001.
    60.Aprahamian M W,Martin Smith K,McGinnity P.Restocking of salmonids-opportunities and limitations[J].Fisheries Research.2003,62,211-227.
    61.Ayson FG,Kaneko T,Hasegawa S,Hirano T.Development of mitochondfion-rich cells in the yolk-sac membrane of embryos and larvae of tilapia,Oreochromis mossambicus,in fresh water and seawater[J].J Exp.Zool.1994,270:129-135.
    62.Balm P H M,Pepeis P,Helfrich S,Hovens M L M and Wendelaar Bonga S E.Adrenocorticotropic hormone in relation to interrenal function during stress in Tilapia (Oreochromis mossambicus)[J].Gen.Comp.Endocrinol.1994,96,347-360.
    63.Bartels H.Freeze-fracture study of the pavement cell in the lamprey gill epithelium.Analogy of membrane structure with the granular cell in the amphibian urinary bladder[J].Biol Cell,1989,66:165-171.
    64.Barton,B.A.Stress in finfish:past,present and future-a historical perspective[M].In:Fish Stress and Health in Aquaculture,(Iwama G K,Pickering A D,Sumpter J P & Schreck CB Eds.).Cambridge Univ.Press,New York.1997,1-33.
    65.Belanger J M,Son J H,Laugero K D,Moberg G P,Doroshov S I,Lankford S E & Cech Jr.J J.Effects of short-term management stress and ACTH injections on plasma cortisol levels in cultured white sturgeon,Acipenser transmontanus[J].Aquaculture 2001,203,165-176.
    66.Bentley P J.Comparative Vertebrate Endocrinology[M],third ed.Cambridge University Press,Cambridge.1998,89-93.
    67.Bern H A & Madsen S S.A selective survey of the endocrine system of the rainbow trout (Oncorhynchus mykiss) with emphasis on the hormonal regulation of ion balance[J].Aquaculture 1992,100,237-262.
    68.Birtwell I K & Kruzynski G M.In situ and laboratory studies on the behaviour and survival of Pacific salmon(genus Oncorhynchus)[J].Hydrobiol.1989,188/189:543-560.
    69.Blanco G & Mercer R W.Isozymes of the Na~+/K~+-ATPase:heterogeneity in structure,diversity in function[J].Am.J.Physiol.1998,275,F633-F650.
    70.Boeuf G,Le Bail P Y and Prunet P.Growth hormone and thyroid hormones during Atlantic salmon,Salom salar L,smolting and after transfer to seawater[J].Aquaculture,1989,82(1-4),257-268.
    71.Boeuf G.Salmonid smolting:a pre-adaptation to the the oceanic environment[M].In:Fish Ecophysiology,(Rankin J C & Jensen F Beds.),pp.105-135.London:Chapman & Hall Press,New York.1993.
    72.Bole-Feysot C,Goffin V,Edery M,Binart N,and Kelly P A.Prolactin(PRL) and its receptor:Actions,signal transduction pathways and phenotypes observed in PRL receptor knockout mice[J].Endocr.Rev.1998,19,225-268.
    73.Bordner C E,Doroshov S I,Hinton D E.Evaluation of marking techniques for juvenile and adult white sturgeons reared in captivity[J].Am.Fisheries Society Symposium.1990,7,293-303.
    74.Borski R J,Helms L M H,Richman N H & Grau E G.Cortisol rapidly reduces prolactin release and cAMP and ~(45)Ca~(2+) accumulation in the cichlid fish pituitary in vitro[J].Proc.Natl.Acad.Sci.USA 1991,88,2758-2762.
    75.Borski R J,Hyde G N,Fruchtman S,Tsai W S.Cortisol suppresses prolactin release through a non-genomic mechanism involving interactions with the plasma membrane[J].Gen.Comp.Endocrinol.2001,Part B 129,533-541.
    76.Borski R J.The regulation of prolactin release from the pituitary of the tilapia,Oreochromis mossambicus,by cortisol and environmental salinity[D].Ph.D.dissertation.Dept.of Zoology,University of Hawaii,Honolulu.1992,129.
    77.Bowen S H.Detritivory in neotropical fish communities[J].Environ.Biol.Fish,1983,9:137-144.
    78.Bradford C S,Fitzpatrick M S and Schreck C B.Evidence for ultra-short-loop feedback in ACTH-induced interrenal steroidogenesis in coho salmon:Acute self-suppression of cortisol secretion in vitro[J].Gen.Comp.Endocrinol.1992,87,292-299.
    79.Brown P S & Brown S C.Osmoregulatory actions of prolactin and other adenohypophysial hormones[M].In:Vertebrate Endocrinology:Fundamentals and Biomedical Implications,Vol.2,(P.K.T.Pang and M.P.Schreibman,Eds.).Academic Press,San Diego.1987,45-84.
    80.Buckley J & Kynard B.Habitat use and behavior of pre-spawning and spawning shortnose sturgeon,Acipenser brevirostrum,in the Connecticut River[M].In:Binkowski F P &Doroshov S I(eds.).North American Sturgeons,Dordrecht:Dr.W.Junk Publisher,1985,111-117.
    81.Buckley J & Kynard B.Spawning and rearing of shortnose sturgeon from the Connecticut River[J].Prog.Fish-Cult.1981,48:74-76.
    82.Burrows M T.Depth selection behavior during activity cycles of juvenile plaice on a simulated beach slope[J].J.Fish Biol.,2001,59,116-125.
    83.Carmona R,Garci A-Gallego M,Sanz,A.Chloride cells and pavement cells in gill epithelia of Acipenser naccarii:ultrastructural modifications in seawater-acclimated specimens[J].J.Fish Biology,2004,64,553-566.
    84.Cataldi E,Ciccotti E,Di Marco P,Di Santo O,Bronzi P & Cataudella S.Acclimation trials of juvenile Italian sturgeon to different salinities:morpho-physiological descriptors[J].J.Fish Biol,1995,47,609-618.
    85.Cataldi E,Barzaghi C,Di Marco P,Boglione C,Dini L,McKenzie D J,Bronzi P and Cataudella S.Some aspects of osmotic and ionic regulation in Adriatic sturgeon Acipenser naccarii.Ⅰ:Ontogenesis of salinity tolerance[J].J.Appl.Ichthyol.1999,15,57-60.
    86.Cataldi E,Di Marco P,Mandich A.& Cataudella S.Serum parameters of Adriatic sturgeon Acipenser naccarii(Pisces:Acipenseriformes):effects of temperature and stress[J].Comp.Biochem.Physiol.A 1998,121,351-354.
    87.Chang Y S,Huang F L,and Lo T B..Molecular cloning of silver carp and bighead carp prolactin[J].Gen.Comp.Endocrinol.1992,87,260-265.
    88.Chao S C,Pan F M,and Chang W C.Nucleotide sequence of carp prolactin cDNA[J].Nucleic Acids Res.1988,16,9350.
    89.Chen T T,Marsh A,Shamblott M,Chan K-M,Tang Y-L,Cheng C M,and Yang B-Y.Structure and evolution of fish growth hormone and insulinlike growth factor genes[M].In:Fish Physiology,(N.M.Sherwood and C.L.Hew,Eds.),Vol.ⅩⅢ.Academic Press,San Diego.1994,179-209.
    90.Cioni C,De Merich D,Cataldi,E.Fine structure of chloride cells in freshwater-and seawater-adapted Oreochromis niloticus(Linnaeus) and Oreochromis mossambicus (Peters)[J].J.Fish Biology,1991,39:197-209.
    91.Clements S & Schreck C B.Central administration of corticotropin-releasing hormone alters downstream movement in an artificial stream in juvenile chinook salmon(Oncorhynchus tshawytscha)[J].Gen.Comp.Endocrinol.2004,137,1-8.
    92.Clements S,Larsen D A,Dickhoff W W and Schreck C B.Central administration of corticotropin-releasing hormone stimulates locomotor activity in juvenile Chinook salmon (Oncorhynchus tshawytscha)[J].Gen.Comp.Endocrinol.2002,125,319-327.
    93.Clements S,Moore F L and Schreck C B.Evidence that acute serotonergic activation potentiates the locomotor stimulating effects of CRH in juvenile Chinook salmon (Oncorhynchus tshawytscha)[J].Horm.Behav.2003,43,214-221.
    94.Colgan P.The motivational basis of fish behavior[M].In:Pitcher T J(ed.).The behavior of teleost fishes.London & Sydeney:Croom Helm.1986,23-46.
    95.Daborn K,Cozzi R R F,Marshall W S.Dynamics of pavement cell-chloride cell interactions during abrupt salinity change in Fundulus heteroclitus[J].J Exp Biol,2001,204:1889-1899.
    96.Dange A D.Branchial Na~+/K~+-ATPase activity in freshwater or saltwater acclimated tilapia,Oreochromis(Sarotherodon) mossambicus:effects of cortisol and thyroxine[J].Gen.Comp.Endocrinol.1986,62,341-343.
    97.David H,Evans,Peter M,et al.The multifunctional fish gill:dominant site of gas exchange,osmoregulation,acid-base regulation,and excretion of nitrogenous waste[J].Physiol Rev,2005,85,97-177.
    98.Dean D B,Whitlow Z W and Borski R J.Glucocorticoid receptor upregulation during seawater adaptation in a euryhaline teleost,the tilapia(Oreochromis mossambicus)[J].Gen.Comp.Endocrinol.2003,132,112-118.
    99.Deng X & Deng Z L.Progress in the conservation biology of Chinese sturgeon[J].Zool.Res.1997,18(1),113-112.
    100.Di Marco P,McKenzie DJ,Mandich A,Bronzi P,Cataldi E and Cataudella S.Influence of sampling conditions on blood chemistry values of Adriatic sturgeon Acipenser naccarii[J].J.Appl.Ichthyol.1999,15,73-77.
    101.Doliana R,Argentini C,Segat D,Santarossa P,Mucignat M T,Colombo L and Bortolussi M.The prolactin of European sea bass(Dicentrarchus labrax L.):Cloning of cDNA and efficient expression in Escherichia coli[J].Biochem.Mol.Biol.Int.1994,33,1117-1126.
    102.Donaldson E M.The pituitary-interrenal axis as an indicator of stress in fish[M].In:Stress and Fish,(Pickering,A.D.Ed.).Academic Press,New York.1981,11-47.
    103.Eales J G & Brown S B.Measurement and regulation of thyroidal status in teleost fish[J].Rev.Fish Biol.Fishery,1993,50,395-406.
    104.Eales J G & Shostok S.Free T_4 and T_3 in relation to total hormone,free hormone indices,and protein in plasma of rainbow trout and Arctic charr[J]. Gen. Comp. Endocrinol. 1985, 58,291-302.
    
    105. Eales J G, Omeljaniuk R J & Shostak S. Reverse T_3 in rainbow trout, Salmo gairdneri[J]. Gen.Comp. Endocrinol. 1983, 50, 395-406.
    
    106. Eckert S M, Yada T, Shepherd B S, Stetson M H, Hirano T & Grau E G Hormonal Control of Osmoregulation in the Channel Catfish Ictalurus punctatus[J]. Gen. Comp. Endocrinol., 2001,122,270-286.
    
    107. Epstein F H, Manitius A, Weinstein E, Katz A I and Pickford G E. Sodium- and potassium-activated adenosine triphosphatase in kidneys of Fundulus heteroclitus adapted to fresh and salt water[J]. Yale J. Biol. Med. 1969,41, 388-393.
    
    108. Evans D H, Piermarini P M & Potts W W Ionic transport in the fish gill epithelium [Review][J]. J. Exp. Zool. 1999,283,641-652.
    
    109. Evans D H. Cell signaling and ion transport across the fish gill epithelium[J]. J. Exp. Zool.,2002, 293,336-347.
    
    110. Evans D H. Osmotic and ionic regulation[M]. In: Evans (DH ed.), The Physiology of Fishes.CRC Press, Boca Raton. 1993, 315-341.
    
    111. Fessler J I & Wagner H H. Some morphological and biochemical changes in steelhead trout Salmo gairdneri during parr smolt transformation[J]. J. Fish. Res. Bd Can., 1969, 26,2823-2841.
    
    112. Fivizzani A J & Spieler R E. Modified Staaland device with automatic recording techniques for determining salinity preference in fishes[J]. J. Fish. Res. Board Can. 1978, 35, 910-912.
    
    113. Folmar L C & Dickhoff W W. The parr-smolt transformation (smoltification) and seawater adaptation in salmonids. A review of selected literature[J]. Aquaculture, 1980,21(1), 1-37.
    
    114. Fontaine M. Physiological mechanisms in the migration of marine and amphihaline fish[J].Adv. mar. biol. 1975,13,241-255.
    
    115. Fryer J N and Peter R E. Hypothalamic control of ACTH secretion in goldfish. I.Corticotropin-releasing factor activity in teleost brain tissue extracts[J]. Gen. Comp.Endocrinol. 1977, 33,196-201.
    
    116. Gallis J L & Bourdichon M. Changes of (Na-K) dependent ATPase activity in gills and kidneys of two mullets Chelon labrosus (Risso) and Liza ramada (Risso) during fresh water adaptations[J]. Bioch. 1976, 58, 625-627.
    
    117. Gallis J L, Lasserre P and Belloc F. Freshwater adaptation in the euryhaline teleost, Chelon labrosus. I. Effects of adaptation, prolactin, cortisol and actinomycin D on plasma osmotic balance and Na~+/K~+-ATPase in gill and kidney[J]. Gen. Comp. Endocrinol. 1979, 38, 1-10.
    
    118. Gershanovich A D, Smith T I J. International Symposium on Sturgeons Proceedings [M] .Moscow : VXIRO Publ. 1995,43-61.
    
    119. Gordin J G J. Behavioural ecology of teleost fishes[M]. Oxford New York, Tokyo: Oxford University Press, 1997,108-130.
    
    120. Graham C R, Richman N H, Shimoda S K, Grau E G Changes in taurine plasma and tissue concentrations during periods of osmotic stress in the euryhaline tilapia,Oreochromis mossambicus[Z].Stress in fish Barry T, Barton B, MacKinlay D,1999,57-69.
    
    121. Gregory T O, Le Breton & Beamish F W H. The influence of salinity on ionic concentrations and osmolality of blood serum in lake sturgeon , Acipenser fulvescens [J]. Environmental Biology of Fishes, 1998, 52,477-482.
    
    122. Harden-Jones F R. Fish migration[M]. London: Edward Arnold, 1968,213-246.
    123.Hartzler J R.The effects of half-log covers on angler harvest and standing crop of brown trout in McMichaels Creek,Pennsylvania[J].N.Amer.J.Fish Manage.1983,31,228-238.
    124.Hasler A D & Scholz A T.Olfactory imprinting and homing in salmon[M].Berlin:Springer-Verlag,1983,95-123.
    125.Hazona N,Wells A,Pillans R D,Good J P,Anderson W G & Franklin C G.Urea based osmoregulation and endocrine control in elasmobranch fish with special reference to euryhalinity[J].Comp.Biochem.Physiol.,Part B 2003,136,685-700.
    126.Hegab S A & Henque W.The significance of cortisol for osmoregulation in carp(Cyprinus carpio) and tilapia(Sarotherodon mossambicus)[J].Gen.Comp.Endocrinol.1984,54,409-417.
    127.Hendricks ML,Hoopes R L,Arnold D A.Homing of hatchery-reared American shad to the Lehigh River,a Tributary to the Delaware River[J].North Am.J.Fisheries Management.2002,22(1):243-248.
    128.Higgins P J.Metabolic differences between Atlantic salmon Salmo salar parr and smolts[J].Aquaculture,1985,45(1-4),33-53.
    129.Hirai N,Tagawa M,Kaneko T.Distributional changes in branchial chloride cells during freshwater adaptation in Japanese sea bass Lateolabrax japonicus[J].Zool Sci,1999,16:43-49.
    130.Hirano,T.The spectrum of prolactin action in teleosts[M].In:Comparative Endocrinology:Developments and Directions(Ralph C LEd.),A.R.Liss,New York.1986,53-74.
    131.Hiroi J,Kaneko T,Seikai T,Tanaka M.Developmental sequence of chloride cells in the body skin and gills of Japanese flounder(Paralichthys olivaceus) larvae[J].Zool.Sci.1998,15:455-460.
    132.Hoar W S.Smolt transformation:evolution,behavior and physiology[J].J.fish.Res.Bd Can,1976,33,1233-1252.
    133.Hoar W S.The physiology of smoling salmonids[M].In:Fish Physiology,Vol.11B(Hoar W S and Randall D J),Academic Press,New York.1988,275-343.
    134.Hocutt C.Power plants effects on fish and shellfish behavior[M].New York:Academic Press,1980,45-74.
    135.Hootman S R,Philpott C W.Accessory cells in teleost branchial epithelium[J].Am.J.Phy.Regul Integr Comp Physiol,1980,238:R199-R206.
    136.Hynes H B N.The ecology of running waters[M].Liverpool:Liverpool University Press,1970,53-62.
    137.Ilan Z and Yaron Z.Stimulation of cortisol secretion in vitro from the interrenal tissue of the cichlid fish,Sarotherodon aureus,by adrenocorticotrophin or cyclic AMP[J].J.Endocrinol.1980,86,269-277.
    138.J(u|¨)rss K,Bittorf T and Volker T.Influence of salinity and ratio of lipid to protein in diets on certain enzyme activities in rainbow trout(Salmo gairdneri Richardson)[J].Comp.Biochem.Physiol.1985,81B,73-79.
    139.Jury S H,Kinnison M T,Howell W H & Watson Ⅲ W H.The behavior of lobsters in response to reduced salinity[J].J.Exp.Mar BioL Ecol.1994,180,23-37.
    140.Kansumyan A O & Kazhlayev A A.Formation of searching behavioral reaction and olfactory sensitivity to food chemical signals during ontogeny of sturgeon(Acipenseridae)[J].J.Ichthyol.1993,33(8):51-65.
    141.Kansumyan A O.Olfaction and taste senses in sturgeon behavior[J].J.Appl.Ichthyol.1999, 15(4-5):228-232.
    142.Karnaky K J Jr,Kinter L B,Kinter W B & Stirling C E.Teleost chloride cell Ⅱ.Autoradiographic localization of gill Na~+/K~+-ATPase in killifish Fundulus heteroclitus adapted to low and high salinity environments[J].J.Cell Biol.1986,70,157-177.
    143.Karnaky,K.J.Osmotic and ionic regulation[M].In:The Physiology of Fishes,(Second edition),(Evans D H.Ed.),CRC Press,New York.1998,157-176.
    144.Keenleyside M H A.Diversity and adaptation in fish behavior[M].Berlin,Heidelberg,New York:Springer-Verlay,1979.
    145.Kelly S P,Chow I N K and Woo N Y S.Effects of prolactin and growth hormone on strategies of hypoosmotic adaptation in a marine teleost,Sparus sarba[J].Gen.Comp.Endocrinol.1999,113,9-22.
    146.Kelsall C J and Balment R J.Native Urotensins Influence Cortisol Secretion and Plasma Cortisol Concentration in the Euryhaline Flounder,Platichthys flesus[J].Gen.Comp.Endocrinol.1998,112,210-219.
    147.Keys A B & Willmer E N.'Chloride secreting cells' in the gills of fish with special reference to the common eel[J].J.Physiolo,1932,76,368-378.
    148.Kim Y T and Lee S Y.NCBI Genbank submission,accession number AAD15746.1998.
    149.Kobayashi H,Takei Y,Itatsu N,Ozawa M & Ichinohe K.Drinking induced by angiotensin Ⅱin fishes[J].Gen.Comp.Endocrinol.1983,49,295-306.
    150.Konstantinov A S & Zdanovich V G.Some characteristics of young fish behavior in a thermo gradient field[J],Vestn.Mosk.Univ.Biol.1993,1:32-38.
    151.Krayushkina L S,Ports A A & Gerasimov A A.Peculiarities of ionic regulation in young sturgeons(Acipenscridae) during adaption to sea water[C].In:A.D.Gershanovich & T.I.J.Smith(ed.) International Symposium on Sturgeons Proceedings[C],VXIRO Publ.,Moscow.1995,43-51.
    152.Krayushkina L S.Characteristics of osmotic and ionic regulation in marine diadromous sturgeons Acipenser brevirostrum and A.oxyrhynchus(Acipenseridae)[J].J.Ichthyol.1998,38,660-668.
    153.Kudtz D & Onken H.Long-term acclimation of the teleost Oreochromis mossambicus to various salinities:Two different strategies in mastering hypertonic stress[J].Mar Biol,1993,117(3):527-533.
    154.Kulczykowska E.A review of the multifunctional hormone melatonin and a new hypothesis involving osmoregulation[J].Fish Biology and Fisheries,2002,11:321-330.
    155.Kuwana Y,Kuga T,Sekine S,Sato M,Kawauchi H and Itoh S.Cloning and expression of cDNA for salmon prolactin in Escherichia coli[J].Agric.Biol.Chem.1988,52,1033-1039.
    156.Larsen D A,Swansen P,Dickey J T,Rivier J and Dickhoff W W.In vitro thyrotropin-releasing activity of corticotropin-releasing-hormone-family peptides in coho salmon,Oncorhynchus kisutch[J].Gen.Comp.Endocrinol.1998,109,276-285.
    157.Lasserre P.Increase of(Na~++K~+)-dependent ATPase activity in gills and kidneys of two euryhaline marine teleosts,Crenimugil labrosus(Risso,1826) and Dicentrarchus labrax (Linnaeus,1758),during adaptation to fresh water[J].Life Sci.1971,10(Part Ⅱ),113-119.
    158.Laurent P and Perry S F.Environmental effects on fish gill morphology[J].Physiol.Zool.1991,53:4-25.
    159.Laurent P and Perry S F.The effects of cortisol on gill chloride cell morphology and ionic uptake in the freshwater trout,Salmo gairdneri[J].Cell Tissue Res.1990,259,429-442.
    160.Laverack M S.Physiological adaptations of marine animals[M].Cambridge University Press,Cambridge:The Company of Biologists,Ltd.,1985,47-85.
    161.Lee K M,Kaneko T & Aida K.Prolactin and prolactin receptor expressions in a marine teleost,pufferfish Takifugu rubripes[J].Gen.Comp.Endocrinol.,2006,146,318-328.
    162.Lin H and Randall D J.H~+-ATPase activity in crude homogenates of fish gill tissue:inhibitor sensitivity and environmental and hormonal regulation[J].J.Exp.Biol.1993,180,163-174.
    163.Loretz C A & Bern HA.Prolactin and osmoregulation in vertebrates:an update[J].Neuroendocrinology,1982,35,292-304.
    164.Loretz,C.A.,Electrophysiology of ion transport in teleost intestinal cells[M].In:Cellular and Molecular Approaches to Fish Ionic Regulation(Wood C M,Shuttleworth T J Eds.),Academic Press,San Diego.1995,25-56.
    165.Lowry C A,Rodda J E,Lightman S L and Ingram C D.Corticotropin-releasing factor increases in vitro firing rates of serotonergic neurons in the rat dorsal raphe nucleus:evidence for activation of a topographically organised mesolimbocortical serotonergic system[J].J.Neurosci.2000,20,7728-7736.
    166.Madsen S S & Korsgaard B.Time-come effects of repetitive oestradiol-15B and thyroixine injections on the natural spring smolting of Atlantic salmon,Salmo salar L[J].J.Fish Biol.1989,35,119-128.
    167.Madsen S S,Jensen MK,Nohr J and Kfistiansen K.Expression of Na~+/K~+-ATPase in the brown trout,Salmo trutta:in vivo modulation by hormones and seawater[J].Am.J.Physiol.1995,269,R1339-R1345.
    168.Madsen S S,McCormick S D,Young G & Endersen J S.Physiology of seawater acclimation in the striped bass,Morone saxatilis(Walbaum)[J].Fish Physiol.Biochem.1994,13,1-11.
    169.Madsen S S.Cortisol treatment improves the development of hypoosmoregulatory mechanisms in the euryhaline rainbow trout,Salmo gairdneri[J].Fish Physiol.Biochem.,1990,8,45-52.
    170.Mancera J M & McCormic S D.Rapid activation of gill Na~+/K~+-ATPase in the euryhaline teleost Fundulus heteroclitus[J].J.Exp Zool,2000,287,263-274.
    171.Mancera J M,& McCormick S D.Influence of cortisol,growth hormone,insulin-like growth factor I and 3,3,5-triiodo-L-thyronine on hypoosmoregulatory ability in the euryhaline teleost Fundulus heteroclitus[J].Fish Physiol.Biochem.1999,21,25-33.
    172.Mancera J M,Carrion R L & Martin del Rio M D P.Osmoregulatory action of PRL,GH,and cortisol in the gilthead seabream(Sparus aurata L.)[J].Gen.Comp.Endocrinol.2002,129,95-103.
    173.Manzon L A.The Role of Prolactin in Fish Osmoregulation:A Review[J].Gen.Comp.Endocrinol.2002,125,291-310.
    174.Martin S,Ferguson A and Youngson A F.NCBI Genbank submission,accession number CAA59258.1995.
    175.Martinez-Alvarez R M,Hidalgo M C,Domezain A,Morales A E,Garcia-Gallego M & Sanz A.Physiological changes of sturgeon Acipenser naccarii caused by increasing environmental salinity[J].J.Exp.Biol.,2002,205,3699-3706.
    176.Martinez-Alvarez R M,Sanz A,Garcia-Gallego,M,Domezain A,Domezain J,Carmona R,del Valle Ostos-Garrido M & Morales A E.Adaptive branchial mechanisms in the sturgeon Acipenser naccarii during acclimation to saltwater[J].Comp.Biochem.and Physiol.,Part A 2005,141,183-190.
    177.Maxime V,Boeuf G,Pennec J P and Peyraud C.Comparative study of the energetic metabolism of Atlantic salmon(Salmo salar) parr and smolts[J].Aquaculture,1989,82(1-4),155-162.
    178.McCormick S D & Bradshaw D.Hormonal control of salt and water balance in vertebrates[J].Gen.Comp.Endocrinol.2006,147,3-8.
    179.McCormick S D,Moyes D and Ballantyne J S.Influence of salinity on the energetics of gill and kidney of Atlantic salmon(Salmo salar)[J].Fish Physiol.Biochem.1989,6,243-254.
    180.McCormick S D.Endocrine control of osmoregulation in teleost fish[J].Am.Zool.,2001,41,781-794.
    181.McCormick S D.Hormonal control of gill Na~+/K~+-ATPase and chloride cell function[M].In:Fish Physiology,(C.M.Wood and T.J.Shuttleworth,Eds.).London:Academic Press,New York.1995,Vol.14,285-315.
    182.McCormick,S D.Effects of growth hormone and insulin-like growth factor I on salinity tolerance and gill Na~+,K~+-ATPase in Atlantic salmon(Salmo salar):Interaction with cortisol[J].Gen.Comp.Endocrinol.1996.101:3-11.
    183.McDonald D G & Milligan C L.Chemical properties of the blood[M].In Fish Physiology,vol.ⅩⅡB(W.S.Hoar,D.J.Randall and A.P.Farrell,ed.).London:Academic Press,New York.1992,56-133.
    184.McEnroe M & Cech J J.Osmoregulafion in juvenile and adult White sturgeon,Acipenser transmontanus[J].Environ.Biol.Fish,1985,14,23-30.
    185.McKenzie D J,Cataldi E,Di Marco P,Boglione C,Dini L,Bronzi P and Cataudella S.Some aspects of osmotic and ionic regulation in Adriatic sturgeon Acipenser naccarii:Ⅱ.Morphophysiological adjustments to hyperosmotic environments[J].J.Appl.Ichtyol.,1999,15,61-66.
    186.Mercier L,Rentier-Delrue F,Swennen D,Lion M,Le Goff P,Prunet P & Martial J A.Rainbow trout prolactin cDNA cloning in Escherichia coli[J].DNA 1989,8,119-125.
    187.Miyazaki H,Kaneko T,Hasegawa S & Hirano T.Developmental changes in drinking rate and ion and water permeability during early life stages of euryhaline tilapia,Oreochromis mossambicus,reared in fresh water and seawater[J].Fish Physiol.Biochem.,1998,18,277-284.
    188.Miyazaki H,Kaneko T,Uchida S,Sasaki S & Takei Y.Kidney-specific chloride channel,OmClC-K,predominantly expressed in the diluting segment of freshwater-adapted tilapia kidney[J].Proc.Natl.Acad.Sci.2002,99,15782-15787.
    189.Mommsen T P,Vijayan M M & Moon T W.Cortisol in teleosts:dynamics,mechanisms of action,and metabolic regulation[J].Fish Biol.and Fisheries 1999,9:211-268.
    190.Moore F L,Roberts J and Bevers J.Corticotropin-releasing factor(CRF) stimulates locomotor activity in intact and hypophysectomized newts(Amphibia)[J].J.Exp.Zool.1984,231,331-333.
    191.Morgan J D,Sakamoto T,Grau E G and Iwama G K.Physiological and respiratory responses of the Mozambique tilapia(Oreochromis rnossambicus) to salinity acclimation[J].Comp.Biochem.Physiol.1997,117A(3),391-398.
    192.Morgan,J D and Iwama,G K.Effects of salinity on growth,metabolism,and ion regulation in juvenile rainbow and steelhead trout (Oncorhynchus mykiss) and fall chinook salmon (Oncorhynchus tshawytscha)[i]. Can. J. Fish. Aquat. Sci. 1991.48: 2083-2094.
    
    193. Mostofshy D I. The Behavior of Fish and Other Aquatic Animals[M]. New York, San Francisco, London: Academic Press, 1978,52-63.
    
    194. Nakano K, Tagawa M, Takemura A and Hirano T. Effects of ambient salinities on carbohydrate metabolism in two spicies of tilapia Oreochromis mossambicus and O.niloticus[J]. Fish Sci., 1997, 63(3):338-343.
    
    195. Natochin Y V, Lukianenko V I, Kirsanov F A, Lavrova G F & Metallov FJ. Features of osmotic and ionic regulations in Russian sturgeon (Acipenser guldenstadti)[i]. Comp.Biochem. Physiol. 1985, 80A:3,297-302.
    
    196. Nichols D J and Weisbart M. Cortisol dynamics during seawater adaptation of Atlantic salmon Salmo salar[J]. Am. J. Physiol. 1985, 248, R651-R659.
    
    197. Nicoll C S. Physiological actions of prolactin[M]. In: Handbook of Physiology, Section 7:Endocrinology, (Knobil E, Sawyer W H Eds.). American Physiological Society, Washington,DC. 1974,253-292.
    
    198. Northcote T G Migration strategies and production in freshwater fishes[M]. In: Gerking S D ed. Ecology of freshwater fish production. Oxford: Blackwell, 1978, 326-359.
    
    199. Noso T, Nicoll C S, & Kawauchi H. Lungfish prolactin exhibits close tetrapod relationships[J]. Biochim. Biophys. Acta. 1993a, 1164,159-165.
    
    200. Noso T, Nicoll C S, Polenov A L & Kawauchi H. The primary structure of sturgeon prolactin:Phylogenetic implication[J]. Gen. Comp. Endocrinol. 1993b, 91,90-95.
    
    201. O'kara K. Fish behavior and the management of freshwater fisheries[M]. In: Pitcher T J (ed.).The behavior of teleost fishes. London & Sydeney: Croom Helm. 1986,496-522.
    
    202. Olivereau M and Olivereau J M. Effect of pharmacological adrenalectomy on corticotropin-releasing factor-like and arginine vasotocin immunoreactivities in the brain and pituitary of the eel: Immunocytochemical study[J]. Gen. Comp. Endocrinol. 1990, 80, 199-215.
    
    203. Olivereau M, and Olivereau J M. Corticotropin-like immunoreacrivity in the brain of intact, hypophysectomised, cortisoland metopirone-treated eels[J]. Cell Tissue Res. 1991, 265,485-492.
    
    204. Parkyn D C, Murie D J & Sherwood E T. Salinity Preference in Hatchery-Reared Juvenile Red Drum[J]. J. Scientific World 2002,2,1326-1331.
    
    205. Patino R, Bradford C S and Schreck C B. Adenylate cyclase activators and inhibitors, cyclic nucleotide analogs, and phosphatidylinositol: Effects on interrenal function of coho salmon (Oncorhynchus kisutch) in vitro[J]. Gen. Comp. Endocrinol. 1986,63, 230-235.
    
    206. Patino R, Redding J M and Schreck C B. Interrenal secretion of corticosteroids and plasma cortisol and cortisone concentrations after acute stress and during seawater acclimation in juvenile coho salmon (Oncorhynchus kisutch)[J]. Gen. Comp. Endocrinol. 1987, 68,431-439.
    
    207. Perry S F and Walsh P J. Metabolism of isolated fish gill cells: contribution of epithelial chloride cells[J]. J. Exp. Biol, 1989,144,507-520.
    
    208. Perry S F and Wood C M. Kinetics of branchial calcium uptake in the rainbow trout: effects of acclimation to various external calcium levels[J]. J. Exp. Biol., 1985, 116, 411-433.
    
    209. Perry S F, Goss G G, & Laurent P. The interrelationships between gill chloride cell morphology and ionic uptake in four freshwater teleosts[J]. Can. J. Zool. 1992, 70,1775-1786.
    210.Perry S F,Shahsavarani A,Georgalis T,Bayaa M,Furimsky M & Thomas S L Y.Channels,pumps,and exchangers in the gill and kidney of freshwater fishes:their role in ionic and acid-base regulation[J].J.Exp.Zool.2003,A 300,53-62.
    211.Perry S F.The chloride cell:Structure and function in the gills of freshwater fishes[M].Annu.Rev.Physiol.1997,59,325-347.
    212.Peter M C S,Lock R A C,Bonga S E W.Evidence for an osmoregulatory role of thyroid hormones in the freshwater Mozambique tilapia Oreochromis mossambicus[J].Gen.Comp.Endocrinol.2000,120,157-167.
    213.Philpott C W.Tubular system membranes of teleost chloride cells:osmotic response and transport sites[J].Am.J.Physiol Regul Integr Comp Physiol,1980,238:R171-RI84.
    214.Pickford G E & Phillips J G.Prolactin,a factor promoting survival of hypophysectomized killifish in freshwater[J].Science,1959,130,454--455.
    215.Pickford G E,Griffith R W,Torretti J,Hendlez E and Epstein F H.Branchial reduction and renal stimulation of Na~+/K~+-ATPase by prolactin in hypophysectomized killifish in fresh water[J].Nature 1970,228,378-379.
    216.Pisam M,Auperin B,Prunet P,Rentier-Delrue F,Martial J and Rambourg A.Effects of prolactin on α and β chloride cells in the gill epithelium of the saltwater adapted tilapia Oreochromis niloticus[J].Anat.Rec.1993,235,275-284.
    217.Pisam M,Caroff A,Rambourg,A.Two types of chloride cells in the gill epithelium of a freshwater-adapted euryhaline fish:Lebistes reticulatus,their modificationsduring adaptations to sea water[J].Am.J.Anatomy,1987,179:40-50.
    218.Pisam M,Massa F,Jammet C,et al.Chronology of the appearance of beta and alpha mitochondria-rich cells in the gill epithelium during ontogenesis of the brown trout(Salmo trutta)[J].Anat Rec,2000,259:301-311.
    219.Pitcher T J.The behavior of teleost fishes(Second edition)[M].Chapman & Hall,London,1993,108-118.
    220.Pittman C S.Hormon metabolism[M].In:Endocrinology,(DeGroot L J ed.),Vol.1,Grune &Stratton,New York.1979,347-372.
    221.Pot W & Noakes D L G.Individual identification of bluntnose minnows(Pimephales notatus)by means of naturally acquired marks[J].Can.J.Zoo.1985,63:363-365.
    222.Pottinger T G & Moran T A.Differences in plasma cortisol and cortisone dynamics during stress in two strains of rainbow trout(Oncorhynchus mykiss)[J].J.Fish Biol.1993,43,121-130.
    223.Potts W T W & Rudy P P.Aspects of osmotic and ionic regulation in the sturgeon[J].J.Exp.Biol.,1972,56,713-715.
    224.Power D M.Developmental ontogeny of prolactin and its receptor in fish[J].Gen.Comp.Endocrinol.,2005,142,25-33.
    225.Price M L and Lucki I.Regulation of serotonin release in the lateral septum and striatum by corticotropin-releasing factor[J].J.Neurosci.2001,21,2833-2841.
    226.Prunet P and Boeuf G.Plasma prolactin levels during smolting in Atlantic salmon,Salmo salar[J].Aquaculture,1989,82,297-305.
    227.Prunet P.& Boeuf G.Plasma prolactin level during transfer of rainbow trout Salmo gairdneri and Atlantic salmon Salmo salar from fresh water to seawater[J].Aquaculture,1985,45(4),167-176.
    228.Querat B,Cardinaud B,Hardy A,Vidal B,& D'Angelo G.Sequence and regulation of European eel prolactin mRNA[J].Mol.Cell.Endocrinol.1994,102,151-160.
    229.Rentier-Delrue F,Swennen D,Prunet P,Lion M & Martial J A.Tilapia prolactin:Molecular cloning of two cDNAs and expression in Escherichia coli[J].DNA 1989,8,261-270.
    230.Rodriguez A,Gallardo M A,Gisbert E,Santilari S,Ibarz A,Sanchez J & Castello O F.Osmoregulation in juvenile Siberian sturgeon(Acipenser baerii)[J].Fish Physiol.Biochem.,2002,26,345-354.
    231.Rosa M,Martinez-Alvareza,Ana Sanz.Adaptive branchial mechanisms in the sturgeon Acipenser naecarii during acclimation to saltwater[M].In:Comparative Biochemistry and Physiology,2005,Part A,141:183-190.
    232.Sakamoto T & Hirano T.Expression of insulin-like growth factor-I gene in osmoregulatory organs during seawater adaptation of the salmonid fish:Possible mode of osmoregulatory action of growth hormone[J].Proc.Natl.Acad.Sci.USA 1993a,90,1912-1916.
    233.Sakamoto T & McCormick S D.Prolactin and growth hormone in fish osmoregulation[J].Gen.Comp.Endocrinol.,2006,147,24-30.
    234.Sakamoto T,McCormick S D,& Hirano T.Osmoregulatory actions of growth hormone and its mode of action in salmonids:A review[J].Fish Physiol.Biochem.1993b,11,155-164.
    235.Sakamoto T,Shepherd B S,Madsen S S,Nishioka R S,Siharath K,Richman N H,Bern H A & Grau E G.Osmoregulatory actions of growth hormone and prolactin in an advanced teleost[J].Gen.Comp.Endocrinol.1997,106,95-101.
    236.Santos C R A,Brinca L,Ingleton P M & Power D M.Cloning,expression,and tissue localisation of prolactin in adult sea bream(Sparus aurata)[J].Gen.Comp.Endocrinol.1999,114,57-66.
    237.Sardet C,Pisam M,and Maetz J.The surface epithelium of teleostean fish gills.Cellular and junctional adaptations of the chloride cell in relation to salt adaptation[J].J Cell Biol,1979,80:96-117.
    238.Sasai S,Kaneko T,Hasegawa S,et al.Morphological alteration in two types of gill chloride cells in Japanese eels(Anguilla japonica) during catadromous migration[J].Can J Zool,1998,76:1480-1487.
    239.Sbikin Y N.Some aspects of social and defensive behavior of young sturgeon (Acipenseridae)[J].Zool.1996,75(3):383-390.
    240.Schram S T,Lindgren J,Evrard L M.Reintroduction of Lake Sturgeon in the St.Louis River,Western Lake Superior[J].North Am.J.Fisheries Management.1999,3,815-823.
    241.Secor D H,Niklitschek E J,Stevenson J T.Dispersal and growth of yearling Atlantic sturgeon,Acipenser oxyrinchus,released into Chesapeake Bay[J].Fishery Bulletin.2000,98(4),800-810.
    242.Seidelin M & Madsen S S.Prolactin antagonizes the seawater-adaptive effect of cortisol and growth hormone in anadromous brown trout(Salmo trutta)[J].Zool.Sci.1997,14,249-256.
    243.Seidelin M and Madsen S S.Endocrine control of Na~+/K~+-ATPase and chloride cell development in brown trout(Salmo trutta):interaction of insulin-like growth factor-I with prolactin and growth hormone[J].J.Endocrinol.1999,162,127-135.
    244.Serkov V M.Salinity Tolerance of Some Teleost Fishes of Peter the Great Bay,Sea of Japan[J].Russian Journal of Marine Biology,2003,29(6),368-371.
    245.Sheridan M A,Allen W V and Kerstetter T H.Chang in the fatty acid composition of the steelhead trout Salmo gairdneri Richardson associated with the parr smolt transformation[J].Comp.Biochem.physiol.,1985,80B,671-676.
    246.Sheridan M A,Allen W V and Kerstetter T H.Seasonal variation in the lipid composition of the steelhead trout Salmo gairdneri Richardson,associated with the parr smolt transformation[J].J.Fish boil,1983,23(2),125-134.
    247.Shikano T and Fujio Y.Immunolocalization of Na~+/K~+-ATPase and morphological changes in two types of chloride cells in the gill epithelium during seawater and freshwater adaptation in a euryhaline teleost,Poecilia reticulata[J].J.Exp.Zool.1998,281,80-89.
    248.Shrimpton J M & McCormick S D.Regulation of gill cytosolic corticosteroid receptors in juvenile Atlantic salmon:interaction effects of growth hormone with prolactin and triiodothyronine[J].Gen.Comp.Endocrinol.,1998,112,262-274.
    249.Shrimpton J M & McCormick S D.Responsiveness of gill Na~+/K~+-ATPase to cortisol is related to gill corticosteroid receptor concentration in juvenile rainbow trout[J].J.Exp.Biol.1999,202,987-995.
    250.Song S,Trinh K Y,Hew C L,Hwang S J,Belkhode S & Idler D R.Molecular cloning and expression of salmon prolactin cDNA[J].Eur.J.Biochem.1988,172,279-285.
    251.Specker J L,King D S,Nishioka R S,Shirahata K,Yamaguchi K and Bern H A.Isolation and partial characterization of a pair ofprolactins released in vitro by the pituitary of a cichlid fish,Oreochromis mossambicus[J].Proc.Natl.Acad.Sci.USA 1985,82,7490-7494.
    252.Staaland H.A device for the study of salinity reference in mobile marine aimals[J].Comp.Biochem.Physiol.1969,29,853-857.
    253.Stephan P.Substrate preference of juvenile hatchery-reared lake sturgeon,Acipenser fulvescens[J].Environmental biology of Fishes,1999,56,367-374.
    254.Sullivan C V,Dickhoff W W,Mahnken C V W and Hershberger W K.Changes in the haemoglobin system of the coho salmon Oncorhynchus kisutch during smoltification and triiodothyronion and propylthiouracil treatment[J].Comp.Biochem.Physiol,1985,81A,807-813.
    255.Sumpter J P,Dye H M & Benfy T J.,The effects of stress on plasma ACTH,MSH,and cortisol levels in salmonid fishes[J].Gen.Comp.EndocrinoL 1986,62,377-385.
    256.Sumpter J P.The endocrinology of stress[M].In:Fish Stress and Health in Aquaculture,(Iwama G K,Pickering AD,Sumpter J P & Schreck C B Eds.).Cambridge Univ.Press,New York.1997,95-118.
    257.Sutton R E,Koob G F,Le Moal M,Rivier J and Vale W.Corticotropin-releasing factor(CRF)produces behavioral activation in rats[J].Nature 1982,297,331-333.
    258.Sweeting R M & McKeown B A.Changes in plasma growth hormone and various metabolic factors during smoltification of coho salmon,Oncorhynchus kisutch[J].Aquaculture,1989,82,279-295.
    259.Takahashi H,Sakamoto T,Hyodo S,Shepherd B S,Kaneko T & Grau E G.Expression of glucocorticoid receptor in the intestine of a euryhaline teleost,the Mozambique tilapia (Oreochromis mossambicus):Effect of seawater exposure and cortisol treatment[J].Life Sci.,2006,78,2329-2335.
    260.Tipsmark C K,Madsen S S & Seidelin M.Dynamics of Na~+,K~+,2Cl~- cotransporter and Na~+/K~+-ATPase expression in the branchial epithelium of brown trout(Salmo trutta) and Atlantic salmon(Salmo salar)[J].J.Exp.Zool.2002,293,106-118.
    261.Toyoji K,Kiyono S,Fumi K.Chloride cells during early life stages of fish and their functional differentiation[J].Fisheries Science,2002,68,1-9.
    262.Trofimova I N,Kuznedelov K D,Kumarev V P & Golovin S Y.Molecular cloning and sequencing of omul prolactin cDNA[J].Mol.Mar Biol.Biotechnol.1993,2,41-43.
    263.Trombetti F,Ventrella V,Pagliarani A,Ballestrazzi R,Galeotti M,Trigari G,Pirini M,Borgatti A R.Response of rainbow trout gill Na~+/K~+-ATPase and chloride cells to T_3 and NaCl administration[J].Fish Physiol.Biochem.1996,15,265-274.
    264.Uchida K,Kaneko T,Tagawa M and Hirano T.Localization of cortisol receptor in branchial chloride cells in chum salmon fry[J].Gen.Comp.Endocrinol.1998,109,175-185.
    265.Uchida K,Kaneko T,Yamauchi K and Hirano T.Morphometrical analysis of chloride cell activity in the gill filaments and lamellae and changes in Na~+,K~+-ATPase activity during seawater adaptation in chum salmon fry[J].J Exp Zool,1996,276:193-200.
    266.Ura K,Soyano K,Omoto N,Adachi S & Yamauchi K.Localization of Na~+/K~+-ATPase in tissues of rabbit and teleosts using an antiserum directed against a partial sequence of the a-subtmit[J].Zool.Sci.1996,13,219-227.
    267.Utida S,Hirano T,Oide H,Ando M,Johnson D W and Bern H A.Hormonal control of the intestine and urinary bladder in teleost osmoregulation[J].Gen.Comp.Endocrinol.Suppl.1972,3,317-327.
    268.Veillette P A,Breves J P,Reardon D R & Specker J L.Adaptation for water balance in the partial gastrointestinal tract of summer flounder[J].Comp.Biochem.Physiol.2006,A143,211-217.
    269.Veillette P A,Merino M,Marcaccio N D,Garcia M M & Specker J L.Cortisol is necessary for seawater tolerance in larvae of a marine teleost the summer flounder[J].Gen.Comp.Endocrinol.2007,151,116-121.
    270.Ventrella V,Pagliarani A,Trombetti F,Pirini M,Trigari G,Borgatti A R.Response of rainbow trout gill Na~+/K~+-ATPase to T_3 and NaCl administration[J].Physiol.Biochem.Zool.2001,74,694-702.
    271.Venturini G,Cataldi E,Marino G,Pucci P,Garibaldi L & Bronzi P.Serum ions concentration and ATPase activity in gills,kidney and oesophagus of European sea bass(Dicentrarchus labrax,Pisces,Pereiformes) during acclimation trials to fresh water[J].Comp.Biochem.Physiol.,1992,A 103,451-454.
    272.Verbost P M,Schoenmakers T H J M,Flik G,Bonga S E W.Kinetics of ATP-and Na~+-gradient driven Ca~(2+) transport in basolateral membranes from gills of freshwater-and seawater-adapted tilapia[J].J.exp Biol,1994,186,95-108.
    273.Watanabe K,Igarashi A,Noso T,Chen T T,Dunham R A & Kawauchi H.Chemical identification of catfish growth hormone and prolactin[J].Mol.Mar.Biol.Biotechnol.1992,1,239-249.
    274.Wedemeyer A H,Saunders R L & Clarke W L.Environmental factors affecting smoltification and early marine survival of anadormous salmonids[J].Mar.Fish.Rev.1980,42,1-14.
    275.Weisbart M,Charkraborti PK,Gallivan G and Eales J G.Dynamics of cortisol-receptor activity in the gills of the brook trout,Salvelinus fontinalis,during seawater adaptation[J].Gen.Comp.Endocrinol.1987,68,440-448.
    276.Wendelaar Bonga S E.The stress response in fish[J].Physiol.Reviews 1997,77,591-625.
    277.Wiggs A J,Henderson E B,Saunders R L and Kutty M N.Activity,respiration and excretion of ammonia by Atlantic salmon(Salmo salar) smolt and postsmolt[J].Can.J.Fish.Aquat. Sci.,1989,46,790-795.
    278.Wilson J M & Laurent P.Fish gill morphology:inside out[J].J.Exp.Zool.2002,293,192-213.
    279.Wong C K C,Chan D K O.Isolation of viable cell types from the gill epithelium of Japanese eel Anguilla japoniea[J].Am J Physiol Regul Integr Comp Physiol,1999,276:R363-R372.
    280.Woo N Y S,Hg T B,Leung T C,Chow C Y.Enhancement of growth of tilapia Oreochromis niloticus in iso-osmotic medium[J]J.Appl Ichthyol Z Angew Ichthyol,1997,13(2):67-71.
    281.Wu Y C,Lin L Y,Lee T H.Na~+,K~+,2Cl~--cotransporter:A novel marker for identifying freshwater-and seawater-type mitochondria-rich cells in gills of the euryhaline tilapia,Oreochromis mossambicus[J].Zool.Studies,2003,42(1):186-192.
    282.Xiong F,Chin R A & Hew C L.A gene encoding chinook salmon(Oncorhynchus tschawytscha) prolactin:Gene structure and potential cis-acting regulatory elements[J].Mol.Mar.Biol.Biotechnol.1992,1,155-164.
    283.Xu B,Miao H,Zhang P,Li D.Osmoregulatory actions of growth hormone in juvenile tilapia(Oreochromis niloticus)[J].Fish Physiol B iochem,1997,17:295-301.
    284.Yada T,Takahashi K and Hirano T.Seasonal changes in seawater adaptability and plasma levels of prolactin and growth hormone in landlocked sockeye salmon(Oncorhynchus nerka)and amago salmon(O.rhodurus)[J].Gen.Comp.Endocrinol.1991,82,33-44.
    285.Yamaguchi K,Specker J L,King D S,Yokoo Y,Nishioka R S,Hirano T & Bern H A.Complete amino acid sequences of a pair of fish(tilapia) prolactins,tPRL_(177) and tPRL_(188)[J].J.Biol.Chem.1988,263,9113-9121.
    286.Yasuda A,Itoh H,& Kawauchi H.Primary structure of chum salmon prolactins:Occurrence of highly conserved regions[J].Arch.Biochem.Biophys.1986,244,528-541.
    287.Yasuda A,Miyazima K,Kawauchi H,Peter R E,Lin H R,Yamaguchi K & Sano H.Primary structure of common carp prolactins[J].Gen.Comp.Endocrinol.,1987,66,280-290.
    288.Young G,Bjornsson B T,Prunet P,Lin R J and Bern H A.Smoltification and seawater adaptation in coho salmon(Oncorhynchus kisutch):Plasma prolactin,growth hormone,thyroid hormones and cortisol[J].Gen.Comp.Endocrinol.1989,74,335-345.
    289.Zhuang P,Kynard B,Zhang L.Ontogenetic behavior and migration of Chinese sturgeon,Acipenser sinensis[J].Environmental Biology of Fishes 2002,65,83-97.
    290.Zaugg W S.Some change in smoltification and seawater adaptability of salmonids resulting from environmental and factors[J].Aquaculture,1982,28(1-2),143-152.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700