用户名: 密码: 验证码:
碳素电热元件的电热辐射性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳素纤维及其复合材料具有优异的热辐射性能,以其作为辐射源的碳素电热元件波长匹配性良好,加热效率较高。针对自行研制的碳素纤维及其复合材料电热元件开展电热辐射性能的应用研究,分析元件制备工艺与电热性能的相互关系,系统探讨物相结构、制备工艺与碳素纤维及其复合材料热辐射性能的变化规律,可为高性能碳素热辐射材料的制备提供帮助。本文首先进行了碳素电热元件的失效问题分析,以优化工艺为目的研制了碳素纤维电热体股线的捻制缠绕设备和碳素复合材料电热体的高温定型装备,在制备出高质量碳素电热元件的基础上测试其相关的电热性能并进行机理分析,之后系统研究碳素纤维及其复合材料电热体热辐射性能的变化规律,最后从工程应用出发,进行碳素复合材料电热元件辐射热流密度分布的数值模拟。
     通过报废碳素电热元件的失效原因总结,确定了股线型碳素纤维电热体的捻制缠绕以及碳素复合材料电热体的高温定型是碳素电热元件制备的关键步骤。在此基础上研制了碳素纤维电热体股线的捻制缠绕设备并建立其工艺计算模型,开发了碳素复合材料电热体的高温定型装备并优化了定型后电热体的脱芯工艺。性能测试表明,经工艺优化后碳素复合材料电热元件的功率偏差可控制在5W内,表面温度均匀性较好,使用寿命达12000小时,电阻变化率较小,高压负载条件下的安全性较好,在2~20μm具有较强的热辐射能量分布。
     系统研究了制备工艺与碳素电热元件电热性能(功率密度-温度关系、阻温特性和热惯性)的相互关系。结果表明,采用氮气瞬时高温法进行碳素纤维电热体表面除杂,所得的带支撑芯股线型碳素纤维电热元件在相同功率密度下的稳定工作温度较高,电阻变化率较低,热惯性小。此外,支撑芯的存在不利于元件电热性能的提高,脱离石英支撑芯的限制,采用碳素纤维多股线,选用适宜浓度的定型胶进行高温定型处理,所得的无支撑芯碳素复合材料电热元件在相同功率密度下的稳定工作温度较高,电阻变化率较低,热惯性较小,其各项电热性能均优于碳毡元件。
     建立碳素电热元件传热微分方程,求解得到元件稳定温升及瞬时升温时间的数学表达式,经分析,碳素电热体的热辐射性能是影响元件功率密度-温度关系和热惯性的重要因素,提高碳素电热体的总发射率可以提高元件的稳定工作温度、降低瞬时升温时间。建立元件电阻变化率与端头接点特性、碳素材料初始电阻率的关系,碳素电热体的初始电阻率越小、单丝搭接点越多、接点处接触压力越大及接触点越多,元件电阻变化率越小。
     采用自动分光辐射测量测试了不同纤维类型、高温石墨化以及表面除杂处理下碳素纤维的法向光谱发射率和总发射率,利用X射线衍射仪(XRD)、显微激光拉曼光谱仪(LRS)进行物相结构分析。碳素纤维物相结构与热辐射性能的变化关系表明,T700碳素纤维中石墨微晶的结构规整程度优于T300样品,载流子辐射机制与石墨微晶的晶格振动模式增强,使得T700样品在2500~5000nm和5000~6500nm波段内的光谱发射率优于T300,无定型碳等紊乱结构的减少削弱了畸变结构和杂质缺陷引起的振动模式,使得6500~13000nm波段的光谱发射率较低,T700碳素纤维的光谱发射率呈现一定波长依赖性,法向总发射率低于T300样品。高温石墨化后的T300碳素纤维和国产碳毡,石墨微晶规整程度提高,载流子辐射机制与石墨晶格振动模式的增强使2500~5000nm和5000~6500nm波段内光谱发射率明显提高,同时畸变结构和杂质缺陷的减少使相关的辐射机制削弱,6500~13000nm内的光谱发射率降低,石墨化后碳素纤维的光谱发射率表现出明显的波长依赖性,总发射率降低。与氮气瞬时高温法相比,空气瞬时高温和硝酸液相表面除杂引起碳素纤维内部碳质物相结构的刻蚀程度不同,石墨微晶尺寸的减小削弱了载流子辐射机制,2500~5000nm波段的光谱发射率降低,石墨微晶相对较小的刻蚀程度使5000~6500nm波段的光谱发射率相对稳定而没有明显下降,而更加紊乱的无定型碳等物相结构的稳定性较差,发生了严重刻蚀,相关的振动模式减少使其辐射机制削弱,引起了6500~13000nm内光谱发射率的降低,光谱发射率的波长依赖性增强,总发射率降低。载流子辐射机制、石墨晶格振动辐射机制以及畸变结构、杂质缺陷的辐射机制共同作用使碳素纤维在测试波段内光谱发射率的波长依赖性较弱,表现出灰体材料的特性。
     测定了碳素复合材料的法向光谱发射率和法向总发射率,利用扫描电子显微镜(SEM)进行表面形貌分析,系统研究了纤维排布、碳质组成、浸渍致密化工艺以及表面形貌与碳素复合材料法向光谱发射率和法向总发射率的变化关系。结果表明,不同的纤维排布改变了样品的结构松散程度,多股线排布的碳素纤维预制体及碳毡的法向光谱发射率和法向总发射率均优于碳素纤维布预制体,短切纤维增强碳/碳多孔坯体的法向光谱发射率和法向总发射率优于碳布增强坯体。碳质组成的不同引起了碳素复合材料热辐射性能的变化。树脂碳紊乱畸变的结构比例大于纤维碳,较多的畸变晶格振动模式及缺陷杂质局域振动模式引起相应辐射机制的增强,使得树脂碳的热辐射性能优于纤维碳,因此碳/碳多孔坯体的法向光谱发射率和总发射率均优于其相应的纤维预制体。碳布和短纤维增强碳素复合材料的法向光谱发射率和总发射率均随着浸渍致密化次数的增加出现先降低后升高的趋势,多次致密化后两组样品总发射率间的差距减小,增加树脂碳含量有利于碳素复合材料发射率的提高。表面抛光引起了样品粗糙度的显著降低,碳素复合材料的法向光谱发射率和总发射率均明显下降。
     建立单支碳素复合材料电热元件和平行排布的多支元件的辐射热流密度分布模型,利用MATLAB软件进行数值计算和可视化分析,结果表明,元件辐射热流密度随碳素复合材料发射率的增大而增大,热流密度的不均匀度随之提高。元件辐射热流密度随石英发射率的增加而增大,热流密度的不均匀度随之提高。随石英管外半径增加,元件辐射热流密度先有所提高,在设定初始条件下,当外径大于0.45cm时热流密度又迅速减小,热流密度不均匀度随石英管外半径的增加最初增加,之后变化不大。元件辐射热流密度随输入功率而提高,热流密度不均匀度最初急剧降低,之后变化逐渐缓和。多元件辐射热流密度的分布受元件轴线与受热面间距离、元件轴线间距以及多支元件间功率配置的影响。在设定初始条件下,元件轴线与受热面距离h=12cm、元件轴线间距s=15cm、采用1000W-600W-1000W的功率配置时,辐射热流密度场呈“平拱形”分布,平行排布多元件采用合理的交替功率布置,能够获得均匀性相对较好的辐射热流密度分布场。
Carbon fiber and carbon composite have excellent thermal radiation property, and the carbon heating element used it as radiation source has favorable wavelength matching ability and heating efficiency. In order to obtain high quality carbon heating element, it is important to carry out application study on the electric heating and thermal radiation property of self developed carbon fiber and carbon composite heating elements. The researches on the correlation between preparation process and electric heating properties of element, as well as the change law of thermal radiation property with phase structure and preparation process of carbon fiber and carbon composite can provide help for the preparation of high performance carbon radiation material. In this work, the failure problem analysis was carried out based on self developed carbon fiber and carbon composite heating elements, with the purpose of process optimization, the twisting and winding equipment for ply yarn carbon fiber heating core and the high temperature holding equipment for carbon composite heating core were developed, on the basis of preparing high quality carbon heating element, the related electric heating properties and mechanism analysis of which were measured, then, the change law of thermal radiation properties of carbon fiber and carbon composite was systematically and deeply studied, at last, with the view of engineering application, the numerical simulation of radiative heat flux density distribution of carbon composite heating element was carried out.
     According to the failure cause summary of abandoned elements, it is determined the twisting and winding process of carbon fiber ply yarn and high temperature holding process of carbon composite were key steps during the preparation of carbon heating element. On the basis of which, the twisting and winding equipment for ply yarn carbon fiber heating core was manufactured and the process calculation model was established, meanwhile, the high temperature holding equipment for carbon composite heating core was developed and the removal process of holding heating core was optimized. The performance tests show that the power deviation of carbon composite heating elements after process optimization can be controlled in the range of 5W, the uniformity of surface temperature was better, the service life can reach 12000h, the resistance variability rate was less, safety performance at high voltage load was better, the distribution of thermal radiation energy was stronger in the range of 2~20μm.
     The correlation between preparation process and related electric heating properties of carbon heating elements (relationship between power density and temperature, resistance temperature characteristic and thermal inertia) were systematically studied, the results show that the sizing agent on the surface of carbon fiber electric heating body can be removed by means of the instant high temperature method in nitrogen, the ply yarn carbon fiber heating element with supporting core from which has relatively higher stable working temperature under the same power density, the resistance variability rate was lower, and the thermal inertia was smaller. In addition, the existence of supporting core goes against the improvement of electric heating property of element, by removing supporting core, using carbon fiber ply yarn and combining with the reasonable holding process, the carbon composite heating element without supporting core can have relatively higher stable working temperature under the same power density, lower resistance variability rate and smaller thermal inertia, and all the electric heating properties of which is better than that of the carbon felt element.
     The heat transfer differential equation of carbon heating element was established, and the mathematical expressions for stable temperature rise and instant temperature increasing time can be obtained from solving above transfer equation. The analysis shows that the thermal radiation properties of carbon heating core were key factors, which affected the relationship between power density and temperature and the thermal inertia, the stable working temperature can be improved and the instant temperature increasing time can be reduced by increasing total emissivity of carbon heating core. The relationship between resistance variability rate of element and the characteristics of ends' connections, the initial resistivity of carbon material, the analysis shows that the smaller the initial resistivity of carbon material, the more the overlapping contact of filament, the higher the contact pressure in the ends, and the more the contact point, the less the resistance variability rate of element.
     The normal spectral emissivity and normal total emissivity of carbon fiber heating core with different fibrous type, high temperature graphitization and surface desizing treatment were measured by using automatic spectrum radiation testing system, and the phase structure analysis was carried out by using XRD and LRS. The change relation between phase structure and thermal radiation property of carbon fiber shows that the turbostratic graphite structure of T700 carbon fiber was relatively more regular than T300, the enhancement of carriers radiation mechanism and graphite crystallite lattice vibration modes made the normal spectral emissivity of T700 carbon fiber in the ranges of 2500~5000nm and 5000~6500nm relatively higher than T300 carbon fiber, the decrease of disturbance structure such as amorphous carbon weakened corresponding vibration modes caused by distortion structures and impurities and defects, which made the normal spectral emissivity in the ranges of 6500~13000nm lower, the wavelength dependence of spectral emissivity for T700 carbon fiber was obvious, and the normal total emissivity was relatively lower. After being graphitized, the degree of regular structure of T300 carbon fiber and domestic carbon felt were improved, the enhancement of carriers radiation mechanism and graphite crystallite lattice vibration modes made the normal spectral emissivity in the ranges of 2500~5000nm and 5000~6500nm obviously higher, the radiation mechanism caused by distortion structures and impurities and defects were weakened, the spectral emissivity in the range of 6500~13000nm decreased, spectral emissivity demonstrated obvious wavelength dependence, and the total emissivity decreased. Compared with the instant high temperature method in nitrogen, the instant high temperature method in oxygen and nitric acid liquid phase treatment caused different etching degree of carbon phase structures, the carriers radiation mechanism was weakened, which caused the decrease of spectral emissivity in the range of 2500~5000nm, the structure of the turbostratic graphite was relatively stable, the degree of etching during treatment was relatively lower, which made the spectral emissivity in the range of 5000~6500nm relatively stable, but the disturbance structure such as amorphous carbon had comparatively poor regularity, the level of etching was greater, the corresponding radiation mechanism was weakened, which caused the decrease of spectral emissivity in the range of 6500~13000nm, the wavelength dependence of spectral emissivity was improved, and the total emissivity was reduced. Under the combined action of carrier radiation mechanism and the graphite lattice vibration radiation mechanism together with the radiation mechanism caused by distortion structures and defects, the carbon fiber showed a poor wavelength dependence of normal spectral emissivity, which had a greybody characteristic.
     The normal spectral emissivity and normal total emissivity of carbon composites were measured, and the surface morphology of samples were characterized by scanning electron microscope (SEM), the change relation between normal spectral emissivity and normal total emissivity of carbon composites and fiber distribution, carbon composition, impregnation densification process and surface morphology was investigated. The results show that the extent of loose structure can be changed by different fiber distribution, the normal spectral emissivity and total emissivity of carbon fiber perform by adopting ply yarn process and carbon felt were higher than carbon cloth perform, and the normal spectral emissivity and total emissivity of porous C/C performs reinforced by short-cut fiber were also relatively superior to that reinforced by carbon fiber cloth. The carbon composition have great effect on the change of thermal radiation property, the proportion of disturbance and distortion structure in resin carbon matrix was relatively larger than fiber carbon, the thermal radiation property of resin carbon was better than that of fiber carbon because of more distortion lattice vibration modes and local vibration modes caused by impurities and defects, this is the reason why thermal radiation properties of C/C performs reinforced by carbon fiber cloth and short-cut fiber were superior to that of its corresponding fiber performs. With the increase of impregnation densification time, the normal spectral emissivity and total emissivity of carbon composites firstly decreased and then increased, the difference of total emissivity between two samples gradually reduced, the increase of resin carbon content was favorable to improve emissivity. After being polished, the surface roughness of carbon composites decreased significantly, the normal spectral emissivity and total emissivity of samples obviously decreased .
     The mathematical models of radiative heat flux density distribution for single carbon composite heating element and multiple parallel-arranged carbon composite heating elements were established, the numerical calculation and visual analysis of which were carried out by software of MATLAB, the results show that the radiative heat flux density of single element increased with the increase of emissivity of carbon composite, the non-uniformity of heat flux density also increased. The radiative heat flux density of single element increased with the increase of emissivity of quartz, also the non-uniformity of heat flux density also increased. With the increase of outside radius of quartz tube, the radiative heat flux density of single element firstly increased, under the setting initial condition, the heat flux density decreased rapidly when the outside radius of quartz tube was equal to 0.45cm, the non-uniformity of heat flux density slowly increased with the increase of outside radius of quartz tube firstly, and then had little change. The radiative heat flux density of single element improved with input power, the non-uniformity of heat flux density firstly decreased rapidly and then mildly. The radiative heat flux density distribution of multiple elements was affected by the distance between axes of element and the heated surface, the distance between axes of two adjacent elements and the input power distribution of different elements. Under the setting initial condition, when the distance between axes of element and heated surface h was equal to 12cm, the distance between axes of two adjacent elements s was equal to 15cm, the power distribution of three elements was 1000W-600W-1000W, the radiative heat flux density field presented flat arched distribution, and the relative uniform radiative heat flux density field can be achieved by alternate power distribution of multiple parallel-arranged elements.
引文
[1]周书铨.红外辐射测量基础.上海:上海交通大学出版社,1991.
    [2]葛绍岩.热辐射性质及其测量.北京:科学出版社,1989.
    [3]西格尔R,豪厄尔JR.热辐射传热.北京:科学出版社,1990.
    [4]Hottel HC,Sarofim AF.Radiative transfer.New York:McGraw-Hill Book Company,1967.
    [5]余其铮.辐射换热原理.哈尔滨:哈尔滨工业大学出版社,2000.
    [6]郭奕玲,沈慧君.物理学史.北京:清华大学出版社,1996.
    [7]魏凤文,申先甲.20世纪物理学史.南昌:江西教育出版社,1996.
    [8]卞伯绘.辐射换热的分析与计算.北京:高等教育出版社,1989.
    [9]斯帕罗EM,塞斯RD,顾传保.辐射传热.北京:高等教育出版社,1982.
    [10]王兴安,梅飞鸣.辐射传热.北京:高等教育出版社,1989.
    [11]糜正瑜,褚诒德.红外辐射加热干燥原理与应用.北京:机械工业出版社,1996.
    [12]卢为开,李铁津,张泽清.远红外辐射加热技术.上海:上海科学技术出版社,1983.
    [13]谷励.红外辐射加热机理与应用技术的方法.红外技术,2003,25(6):73.
    [14]李平,周成学,陈锐,孙琼.碳纤维材料在发热体方面的应用与开发.碳素,1999,(2):24.
    [15]王茂章,贺福.碳纤维的制造、性质及其应用.北京:科学出版社,1984.
    [16]贺福.碳纤维及其应用技术.北京:化学工业出版社,2004.
    [17]唐纳特JB,班萨尔RC.碳纤维.北京:科学出版社,1989.
    [18]贺福,赵建国.炭纤维的电热性能及其应用.新型碳材料,1995,(3):5-10.
    [19]贺福.碳纤维的电热性能及其应用.化工新型材料,2005,(6):7-8.
    [20]李焰,夏金童,邵浩明,卢学峰.炭/陶复合材料电热性能的研究.航空材料学报,2006,26(2):57-61.
    [21]刘开琪,许胜西,李林.树脂结合陶瓷/炭复合耐火材料的导电机理.耐火材料,1999,33(3):127-129.
    [22]Liu KQ.Study on ceramic carbon conductive refractory composites.The Third International Symposium on Refractories,Beijing,1998:310-304.
    [23]Windhorst T,Blount G.Carbon-carbon composites:a summary of recent developments and applications.Materials and Design,1997,18(1):11-15.
    [24]储长流,朱宁.碳纤维的性能与应用.北京纺织,2001,22(6):39-42.
    [25]Chand S.Review carbon fibers for composites.Journal of Materials Science,2000,35(6):1303-1313.
    [26]赵稼祥.大丝束碳纤维及其应用.纤维复合材料,1999,16(4):52-55.
    [27]赵稼祥,王曼霞.复合材料用高性能炭纤维的发展和应用.新型炭材料,2000,15(1):68-75.
    [28]罗益锋.巡视国外高科技纤维动向.高科技纤维与应用,2006,31(4):1-15.
    [29]张家杰.国内外碳纤维生产现状及发展趋势.化工技术经济,2005,23(4):12-19.
    [30]贺福,杨永岗.创新是发展我国碳纤维工业的必由之路.材料导报,2000,14(11):3-4.
    [31]杨小平,荣浩鸣,沈曾民.碳纤维面状发热材料的性能研究.高科技纤维与应用,2000,25(3):39-42.
    [32]杨小平,张俊玲.毛纺面料后整理用碳纤维面状发热电压板的研制及应用.毛纺科技,2000,(3):49-51.
    [33]宋国君,孙晋立.碳纤维/橡胶复合材料电性能研究.山东纺织工学院学报,1995,10(1):1-5.
    [34]韩永芹.石墨/粘结剂导电复合材料性能的研究.玻璃钢/复合材料,2006,(2):32-33.
    [35]Agari Y,Ueda A,Nagai S.Thermal conductivity of a polymer composites.Journal of Applied Polymer Science,1993,49:1626-1634.
    [36]Talar RC,Rabii S.Electronic properties of graphite:a unified theoretical study.Physics Review B,1952,25(6):4126-4141.
    [37]Emauelson RC,Luoma WL,Taylor WA.Method for making improved separator plates for electrochemical cells.US:Patent No.4360485,1982.
    [38]Kim T,Chung DDL.Carbon fiber mats as resistive heating elements.Carbon,2003, 41(12):2436-2440.
    [39]Chen B,Wu KR,Yao W.Characteristics of resistivity-temperature for carbon fiber reinforced concrete.Wuhan University of Technology,2006,21(1):121-124.
    [40]Chung DDL.Review:Electrical applications of carbon materials.Journal of Materials Science,2004,39(8):2645-2661.
    [41]Yang CQ,Wu ZS,Huang H.Electrical properties of different types of carbon fiber reinforced plastics(CFRPs) and hybrid CFRPs.Carbon,2007,45(15):3027-3035.
    [42]Borisova NV,Sladkov OM,Artemenko AA.Performance characteristics of heating element made of carbon fibers.Fiber Chemistry,2006,38(3):221-223.
    [43]Wang S,Chung DDL.Temperature/light sensing using carbon fiber polymer matrix composite.Composites Part B:Engineering,1999,30(6):591-601.
    [44]Fosbury A,Wang S,Pin YF,Chung DDL.The inter-laminar interface of a carbon fiber polymer matrix composite as a resistance heating element.Composites Part A:Applied Science and Manufacturing,2003,34(10):933-940.
    [45]Robson D,Assabghy FYI,Ingram DJE.An electron spin resonance study of carbon fibres based on polyacrylonitrile.Journal of Physics D:Applied Physics,1971,4(9):1426-1438.
    [46]简汇宏,曾信雄,张雅惠.碳纤维之结构与导电性的关系.高科技纤维与应用,2003,28(1):43-47.
    [47]Robson D,Assabghy FYI,Ingram DJE.Some electronic properties of polyacrylonitrile based carbon fibres.Journal of Physics D:Applied Physics,1972,5(1):169-179.
    [48]Robson D,Assabghy FYI,Ingram DJE.Electronic properties of high temperature carbon fibres and their correlations.Journal of Physics D:Applied Physics,1973,6(15):1822-1834.
    [49]Mrozowski S.Electronic properties and band model of carbons.Carbon,1971,9(2):97-109.
    [50]解惠贞,郝志彪,崔红,张一,李瑞珍,冉宏星.炭材料热物理性能研究.炭素,2003,(3):26-30.
    [51]Xiao M,Du XS,Meng YZ,Gong KC.The influence of thermal treatment conditions on the structures and electrical conductives of graphite oxide.New Carbon Material,2004,19(2):92-96.
    [52]邵友林,王伯羲.碳纤维的表面除胶及表征.复合材料学报,2002,19(4):29-32.
    [53]坂尻浩一,佐伯尚郎,武藤进一,西村功,松木寿嗣.碳纤维辫.日本东京: CN1692199A,2005.
    [54]李林林.碳纤维电热线.中国:CN2588718Y,2003.
    [55]李林林,黄其杰.柔性线状碳纤维电热元件.中国:CN2495070Y,2002.
    [56]李林林,王连君,黄其杰.多芯碳纤维加热线.中国:CN2712033Y,2005.
    [57]李林林,王连君,蔺京生,林忠,王连君.多功能碳纤维发热板.中国:CN2619180Y,2004.
    [58]石伟.新型碳纤维复合电热板.中国:CN2518292Y,2002.
    [59]Hudson RD.红外系统原理.北京:国防工业出版社,1975.
    [60]陈衡.红外物理学.北京:国防工业出版社,1985.
    [61]徐南荣.辐射发射率测量方法与评估.红外与激光技术,1992,(4):18-24.
    [62]褚载祥,陈守仁,孙毓星.材料发射率测量技术.红外技术,1986,(5A):231-239.
    [63]Richmond JC,Harrison WN.Equipment and procedures for evaluation of total hemispherical emittance.American Ceramic Society Bulletin,1960,39(11):668-673.
    [64]Cezairliyan A.Advances in measurements of thermophysical properties by dynamic techniques.High Temperature High Pressure,1979,11:9-27.
    [65]Ramananthan KG,Yen SH.High-temperature emissivities of copper,aluminum,and silver.Journal of the Optical Society of America,1977,67(1):32-38.
    [66]Roger CR,Yen SH.Ramananthan KG temperature variation of total hemispherical emissivity of stainless steel AISI 304.Journal of the Optical Society of America,1979,69(10):1384-1390.
    [67]Ramananthan KG,Yen SH,Estalote EA.Total hemispherical emissivities of copper,aluminum,and silver.Applied Optics,1977,16(11):2810-2817.
    [68]Verret DP,Ramanathan KG.Total hemispherical emissivity of tungsten.Journal of the Optical Society of America,1978,68(9):1167-1172.
    [69]Estalote EA,Ramananthan KG.Low-temperature emissivities of copper and aluminum.Journal of the Optical Society of America,1977,67(1):39-43.
    [70]Smalley R,Sievers AJ.Total hemispherical emissivity of copper.Journal of the Optical Society of America,1978,68(11):1516-1518.
    [71]Coslovi L,Righini F,Rosso A.Accurate pyrometry with microsecond time resolution.Journal of Physics E:Scientific Instruments,1979,12:216-224.
    [72]Righini F,Spisiak J,Bussolino GC,Rosso A,White GK.Thermophysical properties of thoriated tungsten above 3600K by pulse heating method. International Journal of Thermophysics,1996,17(5):1025-1036.
    [73]Ruiz-Urbieta M,Sparrow EM,Goldman GW.Wavelength bandwidth and other design aspects for film substrate reflection polarizers.Applied Optics,1973,12(3):590-596.
    [74]Ruiz-Urbieta M,Sparrow EM.Reflection polarization by a transparent film absorbing substrate system.Journal of the Optical Society of America,1972,62(10):1188-1194.
    [75]姜忠良,陈秀云.温度的测量与控制.北京:清华大学出版社,2005.
    [76]Zerlaut GA,Anderson TE.Multiple-integrating sphere spectrophotometer for measuring absolute spectral reflectance and transmittance.Applied Optics,1981,20(21):3797-3804.
    [77]Eckerle KL,Venable WH,Jr,Weidner VR.Averaging sphere for ultraviolet,visible,and near infrared wavelengths:a highly effective design.Applied Optics,1976,15(3):703-707.
    [78]Grum F,Luckey WG.Optical sphere paint and a working standard of reflectance.Applied Optics,1968,7(11):2289-2294.
    [79]许进堂,邵阶荪,何延才.热辐射率测试装置的研究.红外技术,1980,(1):14.
    [80]刘宝明,王燕燕,沈志华,殷龙德,曹卫军,王安祥.材料法向光谱发射率测定装置.计量学报,1986,7(3):204-210.
    [81]Idiatulin ZG,Tsibinogin OG,Petashvili OM.Determining emissivity of thermoelectrode and other materials.Measurement Techniques,1976,19(11):1636-1638.
    [82]Tamura N,Takata S.Thermal emissivity of semitransparent and opaque films of cholesteric liquid crystal.Applied Optics,1978,17(19):3051-3053.
    [83]张建奇.红外物理.西安:电子科技大学出版社,2004.
    [84]Sparrow EM,Kruger PD,Heinisch RP.Cavity methods for determining the emittanee of solids.Applied Optics,1973,12(10):2466-2471.
    [85]Ruffino G,Pisoni C.An apparatus for emissivity measurements.High Temperatures High Pressures,1976,8(4):419-424.
    [86]Wood WD,Deem HW,Lucks CF.Thermal radiative properties.New York:Plenum Press,1964.
    [87]Dewitt DP.Inferring temperature from optical radiation measurement.Optical Engineering,1986,25(4):596-601.
    [88]Worner B,Neuer G.Investigation of the thermal radiation properties of technical rough metal surfaces.High Temperature High Pressures,1979,11:383-391.
    [89]GB7287.9-87.红外辐射加热器全法向发射率测量方法.北京:中国标准出版社,1987.
    [90]GB7287.10-87.红外辐射加热器光谱法向发射率测量方法.北京:中国标准出版社,1987.
    [91]张祖培.红外加热器热发射率简易测试.红外技术,14(3):35-38.
    [92]Neuer G.High temperature behaviour of the spectral and total emissivity of CMC materials.High Temperature High Pressures,1995,27(2):183-189.
    [93]Neuer G,Jaroma WG.Spectral and total emissivity of high temperature materials.International Journal of Thermophysics,1998,19(3):917-929.
    [94]Brandt R.Thermal conductivity,specific heat capacity and emissivity of ceramic matrix composites at high temperatures.High Temperature High Pressures,2003/2004,(35/36):169-177.
    [95]Neuer G.Spectral and total emissivity measurements of highly emitting materials.International Journal of Thermophysics,1998,16(1):257-265.
    [96]Balat-Pichelin M,Robert JF,Sans JL.Emissivity measurements on carbon-carbon composites at high temperature under high vacuum.Applied Surface Science,2006,253(2):778-783.
    [97]Randolph J.NASA solar probe mission and system concepts.Advances in Space Research,1996,17(3):3-12.
    [98]Autio GW,Scala E.The effect of anisotropy on emissivity.Carbon,1968,6(1):41-54.
    [99]Autio GW,Scala E.The normal spectral emissivity of isotropy and anisotropy materials.Carbon,1966,4(1):13-28.
    [100]Plunkett JD,Fair FV.Total normal total hemispherical and spectral emittance of several well characterized carbon and graphite materials.Carbon,1965,3(3):364.
    [101]Slobodkin LS,Flyaks MY.Emissivity measurement for a carbon-carbon composite and a phenolic carbon plastic.Journal of Engineering Physics and Thermophysics,1989,57(2):972-975.
    [102]武文明,成来飞,张立同,徐永东,陈杰峰.C/SiC复合材料热辐射性能研究.固体火箭技术,2005,28(4):303-307.
    [1]马军.连续热镀锌铝生产线辐射管退火炉的热模型的建立.四川冶金,2006,28(2):40-43.
    [2]谭羽非,赵登科.碳纤维电热板地板辐射供暖系统热工性能测试.煤气与热力,2008,28(5):26-28.
    [3]GB7287.4-87.红外辐射加热器升温时间和降温时间测量方法.北京:中国标准出版社.1987.
    [1]贺福.碳纤维及其应用技术.北京:化学工业出版社,2004.
    [2]唐纳特JB,班萨尔RC.碳纤维.北京:科学出版社,1989.
    [3]贺福.碳纤维的电热性能及其应用.化工新型材料,2005,(6):7-8.
    [4]Borisova NV,Sladkov OM,Artemenko AA.Performance characteristics of heating element made of carbon fibers.Fiber Chemistry,2006,38(3):221-223.
    [5]朱波,曹伟伟,王延相,王成国.新型碳纤维电加热辐射管的开发.工业加热,2005,34(2):40-42.
    [6]张渭贤,蒋豪贤,黄子桢.悬垂式电热丝工作稳定性研究.家电科技,1986,(3):46-47.
    [7]曹伟伟,朱波,闫亮,王成国.碳素材料电热元件制备工艺及电热辐射特性的探讨.材料导报,2007,21(8):19-21.
    [8]曹伟伟,朱波,董兴广,王成国.新型无芯体碳纤维红外电热辐射管的开发.工业加热,2006,35(2):47-49.
    [9]何书平,胡先志,郑金淇.石英玻璃管的高温软化性能研究.光通信研究,1993,(4):39-43.
    [10]刘霞.石英玻璃中金属杂质的分析.微电子技术,1998,26(1):43-45.
    [11]袁玲丽,诸定昌.石英玻璃的特性对光源质量的影响因素.中国照明电器,2004,(12):28-30.
    [12]王明灼,周煜刚,王琼.电热丝加热器易损原因分析.四川理工学院学报,2006,19(2):79.
    [13]虞国平,陈忠潘,日晖.家用电器大全.北京:轻工业出版社,1984.
    [14]于伟东,储才元.纺织物理.北京:中国纺织大学出版社,2002.
    [15]张文赓.加捻过程基本理论.北京:纺织工业出版社,1983.
    [16]陶肖明,冼杏娟,高冠勋.纺织结构复合材料.北京:科学出版社,2001.
    [17]吴孟茹.捻线丝强力下降的原因探讨.四川丝绸,2005,(1):5-6.
    [18]郭庆荣.关于光杆排线器排线推力的计算.电线电缆,1990,(4):51-53.
    [19]王庆春.从机械功能转换谈光杆排线机构排线推力的计算.电线电缆,1994,(1):41-43.
    [20]沈力峰.光杆排线机构的运动及其力学分析与计算.电线电缆,1989,(2):51-54.
    [21]张福勤,黄启忠,黄伯云,巩前明,陈腾飞.C/C复合材料石墨化度与导电性能的关系.新型碳材料,2001,16(2):45-48.
    [22]张志涌.精通MATLAB6.5版.北京:航空航天大学出版社,2003.
    [23]GB8623-88.金属管状远红外辐射加热器.北京:中国标准出版社,1988.
    [1]朱四荣,李卓球,宋显辉,王建军.PAN基碳纤维毡的电热性能.武汉理工大学学报,2004,26(9):13-16.
    [2]Kim T,Chung DDL.Carbon fiber mats as resistive heating elements.Carbon,2003,41(12):2436-2440.
    [3]杨威,程华.碳纤维布电热性质的试验探讨.四川建筑科学研究,2003,29(3):110-111.
    [4]Chung DDL.Review:Electrical applications of carbon materials.Journal of Materials Science,2004,39(8):2645-2661.
    [5]Wang SK,Chung DDL,Chung JH.Impact damage of carbon fiber polymer matrix composites studied by electrical resistance measurement.Composites:Part A,2005,36(12):1707-1715.
    [6]Guerrero VH,Chung DDL.Inter-laminar interface relaxation upon heating carbon fiber thermoplastic-matrix composite,studied by contact electrical resistivity measurement.Composite Interfaces,2002,9(6):557-563.
    [7]Fosbury A,Wang SK,Pin YF,Chung DDL.The interlaminar interface of a carbon fiber polymer-matrix composite as a resistance heating element.Composites:Part A,2003,34(10):933-940.
    [8]Chen B,Wu KR,Yao W.Characterisites of.resistivity-temperature for carbon fiber reinforced concrete.Journal of Wuhan University of Technology,2006,21(1):121-124.
    [9]孙明清,李卓球,毛起炤.CFRC电热特性的研究.武汉工业大学学报,1997,19(2):72-75.
    [10]姚武,王婷婷.碳纤维水泥基材料的温阻效应及其测试方法.同济大学学报(自然科学版),2007,35(4):511-514.
    [11]邵友林,王伯羲.碳纤维的表面除胶及表征.复合材料学报,2002,19(4):29-32.
    [12]曹伟伟,朱波,闫亮,王成国.碳素材料电热元件制备工艺及电热辐射特性的探讨.材料导报,2007,21(8):19-21.
    [13]葛世名,李工一.电容器高红外快速固化技术.电力电容器,2002,(3):38.
    [14]周永凯.红外定向辐射器辐射散热及其影响因素探讨.毛纺科技,2003,(2):20-23.
    [15]曹伟伟,朱波,王成国.碳纤维电热元件辐射强度分布的数值模拟.机械工程学报,2007,43(7):5-9.
    [16]唐祖全,李卓球,徐东亮,侯作富.碳纤维导电混凝土电热升降温规律研究.华中科技大学学报(城市科学版),2002,19(3):7-9.
    [17]戴锅生.传热学.北京:高等教育出版社,1991.
    [18]顾平,管辛.粘胶长丝加捻线的形态特征与数学模型.纺织学报,2005,26(2):33-36.
    [19]陶肖明,冼杏娟,高冠勋.纺织结构复合材料.北京:科学出版社,2001.
    [20]张海泉.接触电阻的分析研究.商丘师范学院学报,2004,20(5):40-43.
    [21]林晶,张冠生.接触电阻数学模型研究.电工技术学报,1995,(4):60-64.
    [22]贺湘琰.电器学.北京:机械工业出版社,2002.
    [23]Holm R.Electric contacts:theory and application.Berlin:Springer-Verlag,1976.
    [24]林春元,程秀俭.钼矿选矿与深加工.北京:冶金工业出版社,1997.
    [25]张福勤,黄启忠,黄伯云,巩前明,陈腾飞.C/C复合材料石墨化度与导电性能的关系.新型碳材料,2001,16(2):45-48.
    [26]高晓晴,郭全贵,史景利,李贵生,宋进仁,刘朗.短切碳纤维-碳复合材料的制备及传导性能和微观结构的研究.新型炭材料,2005,20(1):18-22.
    [27]王继刚,郭全贵,刘朗,宋进仁.热处理对高温粘结石墨部件导电性能的影响.新型炭材料,2001,16(4):27-31.
    [28]Talar RC,Rabii S.Electronic properties of graphite:a unified theoretical study.Physics Review B,1982,25(6):4126-4141.
    [29]Robson D,Assabghy FYI,Ingram DJE.An electron spin resonance study of carbon fibres based on polyacrylonitrile.Journal of Physics D:Applied Physics,1971,4(9):1426-1438.
    [30]Wang S,Chung DDL.Apparent negative electrical resistance in carbon fiber composites.Composites Part B:Engineering,1999,30(6):579-590.
    [1]杨小平,荣浩鸣,沈曾民.碳纤维面状发热材料的性能研究.高科技纤维与应用,2000,25(3):39-42.
    [2]Kim T,Chung DDL.Carbon fiber mats as resistive heating elements.Carbon,2003,41(12):2436-2440.
    [3]贺福.碳纤维及其应用技术.北京:化学工业出版社,2004.
    [4]吴国庭.哥伦比亚号防热系统概貌.国际太空,2003,(6):26-29.
    [5]侯兰田,铁友.红外辐射与物质作用热过程的研究.红外技术,1990,(6):15-17.
    [6]欧阳德刚,胡铁山,罗安智,赵修建.高辐射材料辐射机制的研究.钢铁研究,2002,30(1):40-43.
    [7]Hottel HC,Sarofim AF.Radiative transfer.New York:McGraw-Hill Book Company,1967.
    [8]Neuer G.High temperature behaviour of the spectral and total emissivity of CMC materials.High Temperature High Pressures,1995,27(2):183-189.
    [9]Balat-Pichelin M,Robert JF,Sans JL.Emissivity measurements on carbon-carbon composites at high temperature under high vacuum.Applied Surface Science,2006,253(2):778-783.
    [10]Brandt R.Thermal conductivity,specific heat capacity and emissivity of ceramic matrix composites at high temperatures.High Temperature High Pressures,2003/2004,(35/36):169-177.
    [11]Johnson W,Watt W.Structure of high modulus carbon fibers.Nature,1967,215:384-386.
    [12]Angoni K.Remarks on the structure of carbon materials on the basis of Raman spectra.Carbon,1993,31(4):537-547.
    [13]Cuesta A,Dhamelincourt P,Laureyns J,Martinez-Alonso A,Tascon JMD.Raman microprobe studies on carbon materials.Carbon,1994,32(8):1523-1532.
    [14]Afanasyeva NI,Jawhari T,Klimenko IV,Zhuravleva TS.Micro-Raman spectroscopic measurements on carbon fibers.Vibrational Spectroscopy,1996,11(1):79-83.
    [15]Jawhari T,Roid A,Casado J.Raman spectroscopic characterization of some commercially available carbon black materials.Carbon,1995,33(11):1561-1565.
    [16]Chollon G,Takahashi J.Raman microspectroscopy study of a C/C composite.Composites Part A,1999,30(4):507-513.
    [17]Pesin LA.Review Structure and properties of glass-like carbon.Journal of Materials Science,2002,37(1):1-28.
    [18]Michael B,Derek J.Determination of bandshifts as a function of strain in carbon fibres using Raman microline focus spectrometry(MiFS).Carbon,1993,31:1057-1064.
    [19]Sadezky A,Muckenhuber H,Grothe H,Niessner R,P(o|¨)schl U.Raman microspectroscopy of soot and related carbonaceous materials:Spectral analysis and structural information.Carbon,2005,43(8):1731-1742.
    [20]Zickler GA,Smarsly B,Gierlinger N,Herwig P,Oskar P.A reconsideration of the relationship between the crystallite size La of carbons determined by X-ray diffraction and Raman spectroscopy.Carbon,2006,44(15):3239-3246.
    [21]Darmstadt H,Summchen L,Ting JM,Roland U,Kaliaguine S,Roy C.Effects of surface treatment on the bulk chemistry and structure of vapor grown carbon fibers.Carbon,1997,35(10):1581-1585.
    [22]Nakamizo M,Kammereck R,Walker PL.Laser Raman studies on carbons.Carbon,1974,12(2):259-267.
    [23]Nakamizo M.Raman spectra of iron containing glassy carbons.Carbon,1991,29(6):757-761.
    [24]Melanitis N,Tetlow PL,Galiotis C.Characterization of PAN based carbon fibers with laser Raman spectroscopy.Journal of Material Science,1996,31(4):851-860.
    [25]李东风,王浩静,贺福,王心葵.T300和T700碳纤维的结构和性能.新型炭材料,2007,22(1):59-64.
    [26]涂建华,张利波,彭金辉,张世敏,普靖中,夏洪应.酚醛树脂基玻璃炭结构的显微激光喇曼光谱研究.高分子材料科学与工程,2005,21(6):205-208.
    [27]黄彪,陈学榕,江茂生,高尚愚.不同炭化条件下炭化物的结构与性能表征.光谱学与光谱分析,2006,26(3):455-459.
    [28]Sze SK,Siddique N,Sloan JJ,Escribano R.Raman spectroscopic characterization of carbonaceous aerosols.Atmospheric Environment,2001,35(3):561-568
    [29]李东风,王浩静,王心葵.PAN基碳纤维在石墨化过程中的拉曼光谱.光谱学与光谱分析,2007,27(11):2249-2253.
    [30]Dennet JB,Bansal RC,李仍元,过梅丽(译).碳纤维.北京:科学出版社,1989.
    [31]Johnson DJ,Tyson CN.The fine structure of graphitized fibers.British Journal of Applied Physics(Journal of Physics D),1969,2(6):787-795.
    [32]Johnson DJ.Structure-property relationships in carbon fibres.Journal of Physics D(Applied Physics),1987,20(3):286-291.
    [33]Johnson W,Watt W.Structure of high modulus carbon fibers.Nature,1967,215:384-386.
    [34]Bennett SC,Johnson DJ,Johnson W.Strength structure relationships in PAN based carbon fibres.Journal of Materials Science,1983,18(11):3337-3347.
    [35]Bennett SC,Johnson DJ,Murray R.Structural characterization of a high-modulus carbon fibre by high-resolution electron microscopy and electron diffraction.Carbon,1976,14(2):117-122.
    [36]Dobb MG,Johnson DJ,Rark CR.Compression characteristics of carbon fibers.Journal of Material Science,1990,25:829-834.
    [37]李向山,王文宇,樊希平,朱永萱.PAN基碳纤维中炭的过渡态物相的种类含量与分布.碳素技术,1995,(2):11-14.
    [38]华中.PAN基碳纤维的微观结构对电阻率影响的研究.松辽学报(自然科学版),1999,(1):20-22.
    [39]高宇,黄科科,华中,高忠民,李向山.碳纤维中的单层石墨物相及其对力学性能的影响.高等学校化学学报,2007,28(10):2014-2017.
    [40]Dobb MG,Guo H,Johnson DJ,Rark CR.Structure compressional property relations in carbon fibres.Carbon,1995,33(11):1553-1559.
    [41]王煜明.非晶体及晶体缺陷的X射线衍射.北京:科学出版社,1988.
    [42]王丽南,郎成,王显德,王严东.实验室温度域内炭纤维阻温特性的研究.大学物理实验,2001,14(2):33-35.
    [43]顾冰芳,徐国跃,任菁,程传伟.Cd_(1-x)Zn_xS体系红外光谱及发射率特性.南京航空航天大学学报,2007,39(3):349-353.
    [44]Fitzer E.Some remarks on Raman spectroscopy of carbon structures.High Temperature High Pressures,1988,20:449-454.
    [45]欧阳德刚,周明石,张奇光,肖坤伟.红外涂层的品格振动与掺杂效应.钢铁研究,1998,(4):39-43.
    [1]曹伟伟,朱波,闫亮,王成国.碳素材料电热元件制备工艺及电热辐射特性的探讨.材料导报,2007,21(8):19-21.
    [2]曹伟伟,朱波,董兴广,王成国.新型无芯体碳纤维红外电热辐射管的开发.工业加热,2006,35(2):47-49.
    [3]Neuer G.High temperature behaviour of the spectral and total emissivity of CMC materials.High Temperature High Pressures,1995,27(2):183-189.
    [4]Neuer G,Jaroma Weiland G.Spectral and total emissivity of high temperature materials.International Journal of Thermophysics,1998,19(3):917-929.
    [5]Neuer G.Spectral and total emissivity measurements of highly emitting materials.International Journal of Thermophysics,1998,16(1):257-265.
    [6]Brandt R.Thermal conductivity,specific heat capacity and emissivity of ceramic matrix composites at high temperatures.High Temperature High Pressures,2003/2004,(35/36):169-177.
    [7]Balat-Pichelin M,Robert JF,Sans JL.Emissivity measurements on carbon-carbon composites at high temperature under high vacuum.Applied Surface Science,2006,253(2):778-783.
    [8]Randolph J.NASA solar probe mission and system concepts.Advances in Space Research,1996,17(3):3-12.
    [9]Randolph J,Ayon J,Dirling R,Imbriale W,Miyake R,Le Queau D,Olalde G,Pierson E,Rawal S,Rivoire B,Robert JF,Royere C,Taylor R,Valentine P,Vaughn W.The solar probe shield/antenna materials characterization.Carbon,1999,37(11):1731-1739.
    [10]Kelly BT.Physics of graphite.London:Applied Science Publishers,1981.
    [11]余其铮.辐射换热原理.哈尔滨:哈尔滨工业大学出版社,2000.
    [12]孙鸿宾.辐射换热.北京:冶金工业出版社,1996.
    [13]方容川.固体光谱学.合肥:中国科学技术大学出版社,2001.
    [14]吴永红,夏德宏,高庆昌.利用超细化方法制备超级热辐射材料.节能技术,2003,21(3):10-11.
    [15]夏德宏,吴永红,高庆昌.新一代热辐射涂料的开发.矿冶,2003,12(3):37-40.
    [16]钟立晨,丁海曙.分子光谱及激光.北京:电子工业出版社,1987.
    [17]中井贞雄.激光工程.北京:科学出版社,2002.
    [18]Worner B,Neuer G.Investigation of the thermal radiation properties of technical rough metal surfaces.High Temperature High Pressures,1979,11:383-391.
    [19]Agababov SG.Effect of the roughness of the surface of a solid body on its radiation properties and methods for their experimental determination.High Temperature High Pressures,1968,6:76-85.
    [20]Veres M,Toth S,Koos M.New aspects of Raman scattering in carbon based amorphous materials.Diamond and Related Materials,2008,17(7-10):1692-1696.
    [21]Shi JR,Shi X,Sun Z.Resonant raman studies of tetrahedral amorphous carbon films.Diamond and Related Materials,2001,10(1):76-81.
    [22]涂建华,张利波,彭金辉,张世敏,普靖中,夏洪应,马祥元.酚醛树脂基玻璃炭制备机理及结构的研究进展.炭素技术,2005,24(6):21-29.
    [23]涂建华,张利波,彭金辉,张世敏,普靖中,夏洪应.酚醛树脂基玻璃炭结构的显微激光喇曼光谱研究.高分子材料科学与工程,2005,21(6):205-208.
    [24]王君林,黄可心,孙国恩,邹广田.玻璃碳结构形成过程分析.东北师大学报(自然科学版),1998,(4):54-57.
    [25]顾冰芳,徐国跃,任菁,程传伟.Cd_(1-x)Zn_xS体系红外光谱及发射率特性.南京航空航天大学学报,2007,39(3):349-353.
    [26]Windhorst T,Blount G.Carbon carbon composites:a summary of recent developments and applications.Materials and Design,1997,18(1):11-15.
    [27]徐文兰,罗宁胜,张珉,沈学础.非均匀涂层的热辐射.红外研究,1990,9(5):384-388.
    [28]Xu WL,Shen SC.Infrared radiation and reflection in an inhomogeneous coating layer on a substrate.Applied Optics.1992,31(22):4488-4496.
    [29]徐文兰,楮君浩.非均匀介质的光学常数.红外与毫米波学报,1994,13(5):392-396.
    [30]徐文兰,沈学础.含片状粒子涂层的热辐射.红外与毫米波学报,1996,15(2):151-155.
    [31]徐文兰.含颗粒涂层的等效光学常数.物理学报,1998,47(9):1555-1563.
    [32] Emslie AG, Aronson JR. Spectral reflectance and emittance of particulate materials one: theory. Applied Optics. 1973, 12(11): 2563-2572.
    
    [33] Emslie AG, Aronson JR. Spectral reflectance and emittance of particulate materials two: applicaton and results. Applied Optics. 1973, 12(11): 2573-2584.
    [1]杨富,南景宇,田野,周丽杰.红外定向强辐射器特性分析.河北北方学院学报,2005,21(2):3-5.
    [2]葛世名,李工一.电容器高红外快速固化技术.电力电容器,2002,(3):38.
    [3]杨丽君.远红外加热工作波段及辐射源温度的选择.红外技术,1996,19(3):47-48.
    [4]贺福.碳纤维的电热性能及其应用.化工新型材料,2005,(6):7-8.
    [5]卢钟廷.提高远红外加热干燥质量的几个问题.现代节能,1990,(1):23-27.
    [6]Brogan MT,Monaghan PF.Thermal simulation of quartz tube infra red heaters used in the processing of thermoplastic composites.Composites:Part A,1996,27(4):301-306.
    [7]韩小良.室式辐射管炉内辐射角系数计算.工业加热,2001,(1):44-48.
    [8]周立功.远红外元件的优选及优化设计.现代节能,1992,(2):4-5.
    [9]张志涌.精通MATLAB6.5版.北京:北京航空航天大学出版社,2003.
    [10]曹伟伟,朱波,董兴广,王成国.新型无芯体碳纤维红外电热辐射管的开发.工业加热,2006,35(2):47-49.
    [11]卞伯绘.辐射换热的分析与计算.北京:高等教育出版社,1989.
    [12]余其铮.辐射换热原理.哈尔滨:哈尔滨工业大学出版社,2000.
    [13]曹伟伟,朱波,闫亮,王成国.碳素材料电热元件制备工艺及电热辐射特性的探讨.材料导报,2007,21(8):19-21.
    [14]杨贤荣.辐射换热角系数手册.北京:国防工业出版社,1982.
    [15]王秉铨.工业炉设计手册.北京:机械工业出版社,1996.
    [1] Li Ping, Zhou Chengxue, Cheng Rui, Sun Qiong, Application and development of carbon fibers material on exothermic substance, Carbon. 2 (1999): 24-27.
    [2] He Fu, The electro-thermal property and application of carbon fiber, New Chemical Materials. 33 (2005): 7-8.
    [3] M.Balat-Pichelin, J.F.Robert, J.L.Sans. Emissivity measurements on carbon-carbon composites at high temperature under high vacuum, Applied Surface Science.253 (2006):778-783.
    [4] Cao Weiwei, Zhu Bo, Dong Xingguang, Wang Chengguo, Development of new type no-core carbon fiber infrared electric heating radiator, Industrial Heating.35 (2006): 47-49.
    [5] Ge Shiming, Li Gongyi, Fast solidification technology using high energy density infrared for the power capacitor, Power Capacitors. 3 (2002):38-43.
    [6] Ge Shiming, High infrared quick solidifying technology for auto coating, Industrial Heating. 6 (1996): 19-21.
    [7] G NEUER, High temperature behavior of the spectral and total emissivity of CMC materials, High Temperature-High Pressures. 27(1995): 183-189.
    [1] CHEN Jie, XIONG Xiang, XIAO Peng. Materials Review, 2006, 20 (11):431-436.
    
    [2] WU Wen-ming, CHENG Lai-feng, ZHANG Li-tong et al. Journal of Solid Rocket Technology, 2005,28 (4): 303-308.
    
    [3] Neuer G.International Journal of Thermophysics, 1995,16 (1):257-265.
    [4] M Balat-Pichelin, J F Robert, J L Sans. Applied Surface Science, 2006, 253 (2): 778-783.
    [5] XU Wen-Ian, LUO Ning-sheng, ZHANG Min et al. Infrared Research, 1990, 9 (5): 384-388.
    [6] WU Yong-hong, XIA De-hong. Energy for Metallurgical Industry, 2003, 22 (6): 15-19.
    [7] WU Yong-hong, XIA De-hong, GAO Qing-chang. Energy Conservation Technology, 2003, 21 (3): 10-13.
    
    [8] Neuer G, Jaroma-Weiland G.International Journal of Thermophysics, 1998, 19 (3): 917-930.
    [9] LI Dong-feng, WANG Hao-jing , WANG Xin-kui, et al. Spectroscopy and Spectral Analysis, 2007, 27 (11): 2249.
    [10] LUO Zhi-xun , FANG Yan. Spectroscopy and Spectral Analysis, 2006, 26 (2): 358.
    
    [11] TU Jian-hua, ZHANG Li-bo, PENG Jin-hui et al. Carbon Technology, 2005, 24 (6): 21-30.
    [12] J.E. Randolph. Advanced Space Research, 1996,17 (3): 3-12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700