用户名: 密码: 验证码:
小型可调谐同位素TEA~(13)C~(16)O_2激光器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
TEA CO2激光器工作在9-11μm波段,处于大气窗口,可以广泛应用远距离测污,泵浦远红外激光器以及工业加工等领域。尤其小型可调谐TEA CO2激光器体积小重量轻,可用于多种工作场所,是远距离测污雷达的理想光源。采用CO2同位素作为激光器的工作物质能够大大扩展激光器的光谱范围,当同位素TEA CO2激光器用于测污雷达时,具有两个优越性:1、同位素CO2激光器扩展了CO2激光器的输出波长范围,从而大大增加了可探测物质种类;2、同位素CO2激光的中心谱线偏离12C16O2的中心谱线位置,减少了激光器输出谱线在大气中传输时由于大气中的12C16O2造成的衰减,可以大大增加测污雷达的测量距离。基于这一背景,本论文主要从理论和实验两方面对小型可调谐TEA13C16O2激光器进行了研究。
     本文的理论计算主要从两个方面研究了TEA13C16O2激光器的输出特性:1、采用离散变量表象(DVR)方法计算了12C16O2分子与13C16O2分子的振转能级,0001-1000与0001-0200量子跃迁谱线位置与相应自发辐射系数,并根据自发辐射系数计算了不同激光谱线的小信号增益系数。通过对比可以发现对于12C16O2分子,0001-1000波段的小信号增益与0001-0200波段的小信号增益相差不大,而对于13C16O2分子,0001-1000波段的小信号增益大约是0001-0200波段的小信号增益的两倍。2、应用增益开关六温度方法计算了小型TEA 13C16O2激光器的腔内光强变化,激光输出脉冲波形,反转粒子数密度。分析了在不同工作气压,气体温度,非解离系数及电子泵浦密度条件下的TEA13C16O2激光器的脉冲能量变化趋势。
     本文的实验研究由两个阶段构成,1、由于激光器能量输出水平影响小型可调谐TEA CO2激光器输出谱线支数,本文通过增大激活体积,改变激励电路,改变峰值电容与储能电容的容量,改变工作气压,添加附加气体这几种方式来提高激光器输出。在峰值电容为5.4nf,储能电容为24.3nf时,选用工作气压为85.3kPa,配气比为CO2: N2: He=1: 1: 3的混合气体,获得最高输出能量540mJ。峰值电容为2.28nf,储能电容为13.5nf时,选用工作气压为66.6kPa,配气比为CO2: N2: He=1: 1: 3的混合气体,在最高输出能量约为409mJ时,测得四个波段共69条谱线输出。研究了附加气体H2与Xe对TEA CO2激光器输出的影响,发现加入适量的H2可以使激光器输出能量获得增加,当加入Xe气时,激光器输出能量未获得改善。2、在第一阶段的实验基础上,选择峰值电容为2.28nf,储能电容为13.5nf,进行同位素TEA 13C16O2激光器的输出实验研究,在64kPa气压下获得了最高约357mJ的能量输出与51支谱线输出。研究了附加气体H2对TEA 13C16O2激光器输出特性的影响,在气体配比13C16O2: N2: He=1: 1: 3+1% H2时,在80kPa的工作气压下,获得最高输出能量为407mJ,输出谱线57条,使激光器输出能量与输出谱线均获得增加。
The wavelength of TEA CO2 laser radiation is in the spectral range of 9-11μm and within atmospheric window. It is widely used in pollution monitoring, pumping far infrared laser and industry processing. Especially the miniature tunable TEA CO2 laser which is small and light can be used in many fields. It is a perfect optical source of pollution monitoring lidar. Using isotope CO2 as laser medium the spectral range of laser is widely extended. When isotope TEACO2 laser is used in LDIAL, the following merits exist: 1. Because the CO2 isotope laser extends the spectral range of CO2 laser, the lidar using CO2 isotope laser can enhance the amount of detectable atmospheric pollutants. 2. The central wavelength of the CO2 isotope laser is different from that of the 12C16O2 laser, so that the laser using the CO2 isotope as the active medium can reduce the absorption caused by the atmospheric 12C16O2. This characteristic develops the longer operation range of pollution monitoring lidar. Based on this background, a miniature tunable TEA 13C16O2 laser is researched from theoretical and experimental aspect in the dissertation.
     The theoretical studies in the dissertation are the researches on the output character of the TEA 13C16O2 laser using two methods: 1. Discrete Variable Representation (DVR) technique is used to calculate the ro-vibrational energy level, the emission lines in 0001-1000 and 0001-0200 bands and the corresponding Einstein spontaneous emission coefficients of 12C16O2 and 13C16O2. So the small signal gain of different emission lines is calculated from the Einstein spontaneous emission coefficients. Compared the results of 13C16O2 with 12C16O2, it is found that the small signal gain in 0001-1000 and 0001-0200 bands of 12C16O2 is similar, but the small signal gain in 0001-1000 band of 13C16O2 is about twice as much as the gain in 0001-0200 band. 2. The gain switched six-temperature technique is used to calculate the cavity-field intensity, laser output pulse, inverse population, small signal gain of the miniature TEA 13C16O2 laser. The influence of gas pressure, gas temperature, undissociated coefficient and electron pump density on the output energy of TEA 13C16O2 laser is researched.
     The experimental research in the dissertation consists of two stages. Firstly, the magnitude of laser output energy affected the number of TEA CO2 laser emission lines. To increase the laser output energy, the following means are attempted in the experiments: 1) The laser active volume is enlarged. 2) The different excited circuits are attempted. 3) The optimal magnitude of the peak capacitance and the storage capacitance is studied. 4) The optimal work pressure is researched. 5) The additive gas is added. When peak capacitance is 5.4nf and storage capacitance is 24.3nf, the maximum energy of 540mJ is obtained by using gas mixture CO2: N2: He=1: 1: 3 at 85.3kPa. When peak capacitance is 2.28nf and storage capacitance is 13.5nf, the maximum energy of 409mJ and 69 emission lines are obtained by using gas mixture CO2: N2: He=1: 1: 3 at 66.6kPa. The effect of additive gas H2 and Xe on the output of TEA CO2 laser is researched. The output energy of TEA CO2 laser is improved when proper H2 is added to the gas mixture, but the output energy is not improved when Xe is added to the gas mixture. Secondly, based on experiments in the first stage, peak capacitance of 2.28nf and storage capacitance of 13.5nf are used, when the experiments on output of isotope TEA 13C16O2 laser are carried. At gas pressure of 64kPa, the maximum output energy of 357mJ and 51 emission lines are obtained. The effect of the additive gas H2 on the TEA 13C16O2 laser output character is researched. At the gas pressure of 80kPa, the gas mixture 13C16O2: N2: He=1: 1: 3+1% H2 is used to obtain maximum output energy of 407mJ and 57 emission lines. The output energy and the number of laser emission lines are increased.
引文
1 Yong-Inn Lee, Nasrullah Idris, Koo Hendrik Kurniawan, Tjung Jie Lie. Sub-Target Effect in Film Analysis using TEA CO2 Laser-induced Plasma. Current Applied Physics. 2007, 7: 540~546
    2 A.R. Bahrampour, A.A. Askari. Fourier~wavelet Regularized Deconvolution for Lidar Systems Based on TEA–CO2 Laser. 2006, 257: 97~111
    3 H. Cai, Z.H. Cheng, H.H. Zhu, D.L. Zuo. Fracture Mechanisms of Hg0.8Cd0.2Te Induced by Pulsed TEA~CO2 Laser. 2005, 252(5): 1685~1692
    4 Milan S. Trtica, Victor F. Tarasenko, Biljana M. Gakovi?, Andrei V. Fedenev. Surface Modifications of TiN Coating by Pulsed TEA CO2 and XeCl Lasers. 2005, 252(2): 474~482
    5 Kenneth Fan and Daniel Fried. A High Repetition Rate TEA CO2 Laser Operating at 9.3~μm for the Rapid and Conservative Ablation and Modification of Dental Hard Tissues. SPIE 6137. 2006, 61370H:1~9
    6 Kazuo Maeno, Shinsuke Udagawa, and Kazuhiro Toyad. Decomposition Experiment of Hydro-fluorocarbon Gas by Pulsed TEA CO2 Laser. Proc. SPIE 5777. 2005, 1034~1039
    7 Manoj Kumar and A. K. Nath. Efficient Macroscopic Separation of C-13 with TEA CO2 Laser. Proc. SPIE 6053. 2006, 60530P: 1~7
    8 S. Jelvani, H. Saeedi. Numerical Investigation of a Fast-axial-flow CW CO2 Laser. Optics & Laser Technology, 2008, 40(3): 459~465
    9 A. V. Andramanov, S. A. Kabaev, B. V. Lazhintsev. TEA CO2 Laser with Pulse Repetition Rate above 3 kHz. Proc. SPIE 6938. 2007, 693808: 1~9
    10 Qu Yanchen, Ren Deming, Hu Xiaoyong, Liu Fengmei, Zhao Jingshan. Rapidly Tuning Miniature Transversely Excited Atmospheric-Pressure CO2 Laser. Applied Optics. 2002, 41(24): 5025~5029
    11 A. I. Karapuzikov, A. N. Malov, I. V. Sherstov. Tunable TEA CO2 Laser for Long-range DIAL Lidar. Infrared Physics & Technology. 2000, 41(2):77~85
    12 Ren Deming, Huang Jinzhe, Hu Xiaoyong, Qu Yanchen, Andreev Yuri, Geiko Pavel, Badikov Valerii. Efficient CO2 Frequency Doubling with Hg1-xCdxGa2S4. Proc. SPIE 5397. 2004, 205~211
    13 Oleg A. Romanovskii. Applicability of Airborne Lidars Based on Middle IR Gas Lasers for Gas Analysis of the Atmosphere. Proc. SPIE 6594. 2007, 65940C: 1~8
    14 Tatsuya Ariga, Hideo Hoshino, and Akira Endo. High Average Power CO2 Laser MOPA System for Tin Target LPP EUV Light Source. Proc. SPIE 6454. 2007, 645403: 1~8
    15 F. J. Prinsloo, S. P. van Heerden, E. Ronander, and L. R. Botha. Efficient TEA CO2-laser-based Coating Removal System. Proc. SPIE 6346. 2006, 63462Q: 1~8
    16 Hakaru Mizoguchi, Akira Endo, Tatsuya Ariga, Taisuke Miura, Hideo Hoshino, Yoshifumi Ueno, Masaki Nakano, Hiroshi Komori, Akira Sumitani, Tamotsu Abe, Takashi Suganuma, Georg Soumagne, Hiroshi Someya, Yuichi Takabayashi, and Koichi Toyoda. Development of CO2 Laser Produced Xe Plasma EUV Light Source for Microlithography. Proc. SPIE 6151. 2006, 61510S: 1~10
    17 Oleg A. Romanovskii and Olga V. Kharchenko. Application of Airborne Lidars Based on Mid-IR Gas Lasers for Gas Analysis of the Atmosphere. Proc. SPIE 5743. 2004, 441~448
    18 Hiroki Tanaka, Kouzi Akinaga, Akihiko Takahashi, and Tatsuo Okada. Development of EUV Light Source by CO2-laser-produced Xe Plasma. Proc. SPIE 5662. 2004, 361~366
    19黄金哲,任德明,张莉莉,王宇虹,曲彦臣,胡孝勇. TEA CO2激光在AgGaSe2晶体中的倍频实验研究.中国激光. 2004, 31(5): 559~563
    20 L. C. Bradley, K. L. Soohoo, C. Freed. Absolute Frequencies of Lasing Transitions in Nine CO2 Isotopic Species. IEEE Journal of Quantum Electronics. 1986, QE-22(2):234~267
    21 G. B. Jacobs, H. C. Bowers. Extension of CO2-Laser Wavelength Range with Isotopes. J. Appl. Phys. 1967, 38(4):2692~2693
    22 N. Scott Higdon, Daniel C. Senft, Marsha J. Fox, Development and Testing of a Long-Range Airborne CO2 DIAL Chemical Detection System. SPIE. 1998, 181~189
    23 C. B. Carlisle, J. E. Laan, L. W. Carr, P. Adam and J. P. Chiaroni. CO2 Laser-base Differential Absorption Lidar System for Range-resolved andLong-range Detection of Chemical Vapor Plumes. Applied Optics. 1995, 34(27):6187~6200
    24 V.O. Petukhov, V.A. Gorobets, A.A. Matsukevich, Yu.N. Bulkin, V.V. Buzoverya. Detection of Small N2O Concentrations Using a Frequency Doubled 12C18O2 Laser. Infrared Physics & Technology. 2005, 46(6): 482~492
    25 M. Silver, T. S. Hartwick. The Effect of Fermi Resonance on the Relative Gain of CO2 Isotope Lasers. IEEE Jounal of Quantum Electronics. 1970, 6(3): 172~173
    26 Charles Freed, Lee C. Bradley, R. G. O’Donnell. Absolute Frequencies of Lasing Transition in Seven CO2 Isotopic Species. IEEE Journal of Q uantum Electronics. 1980, QE-16(11):1195~1206
    27林景全,王晓华,韩太林,叶常君,马俊芝.同位素13CO2激光器及其应用.光电子·激光.1996, 2: 119~124
    28朱大勇,叶乃群,余学才.稀有同位素13CO2激光器-激光雷达新光源.电子科技大学学报. 1991, 5: 503~507
    29 T F Deutsh. Effect of Hydrogen on CO2 TEA Laser. Appl. Phys. Lett. 1972, 20 315~316
    30 C. K. N. Patel, W. L. Faust and R. A. M.cfarlane. CW Laser Action on Rotational Transitions of the Vibrational Band of CO2. Bull Am Phys Soc. 1964, 9(4):500~502
    31 G. B. McCurdy,I. Wieder. Generation of New Infrared Maser Frequencies by Isotopic Substitution. IEEE Jounal of Quantum Electronics. 1966, 2(9): 385~387
    32 Flavio C. Cruz, Giovana T. Nogueira, Leverson F. L. Costa. Continuous and Pulsed THZ Generation with Molecular Gas Lasers and Photoconductive Antennas Gated by Femtosecod Pulses. IMOC/IEEE. 2007, 446~448
    33 Masakatsu Sugii, Takao Komi, Hiroshi Hara, Hiromichi Shirahata. High-power, Tunable, High-repetition-rate TEA-13C18O2 Laser. IEEE Journal of Quantum Electronic. 1992, 28(8):1754~1755
    34 J. C. Siddoway. Calculated and Observed Laser Transitions Using C14O162. J. Appl. Phys. 1968, 39(9):4854~4855
    35 M. Silver, T. S. Hartwick, M. J. Posakony. Gain Measurements in CO2Isotope Lasers. J. Appl. Phys. 1970, 41(11):4566~4568
    36 Beterov, I. Chebotayev, V. Provorov, A. CW High-pressure Tunable CO2 Laser with a Mixture of CO2 Isotopes. IEEE Jounal of Quantum Electronics. 1974, 10(2):245 ~247
    37 R. B. Gibson, K. Boyer, A. Javan. Mixed Isotope Multi-atmosphere CO2 Laser. IEEE Journal of Quantum Electronics. 1979, 15(11):1224~1228
    38 H. Shirahata, C. S. Fox. High Power 13C16O2 Laser with Three-mirror Cavity. IEEE Journal of Quantum Electronics. 1981, QE-17(7):1150~1151
    39 Lisa Ernestine Freed, Charles Freed, Robert G. O. Donnell. Small Signal Gain and Saturation Intensity of 0001-[1000,0200]I and II Vibrational Band Transitions in Sealed-off CO2 Isotope Lasers. IEEE Journal of Quantum Electronics. 1982, QE-18(8):1229~1236
    40 Charles Freed. Status of CO2 Isotope Lasers and Their Applications in Tunable Laser Spectroscopy. IEEE Journal of Quantum Electronics. 1982, 18(8):1220~1228
    41 A. Chakrabarti and J. Reid. Long-pulse Transversely Excited 12CO2 and 13CO2 Lasers. J. Appl. Phys. 1989, 66(1): 37~42
    42 C. Freed, R. S. Eng, J. S. Greene, S. Marcus, J. R. Theriault. Perormance of a Sealed-off CO2-Iosotope Laser Amplifier for High Resolution Optical Lidar Applications. SPIE. 1992, 180~192
    43费林,王克俊,诸旭辉.选频14CO2-12CO2同位素激光器.中国激光. 1985,9: 524~527
    44朱大勇,余学才,黄强. 11.15μmCO2激光器.激光杂志. 1995, 5: 224
    45 L. F. L. Costa, J. C. S. Moraes, F. C. Cruz, CH3OH Optically Pumped by a 13CO2 Laser: New Laser Lines and Assignments. Appl. Phys. B. 2007, 86: 703~706
    46 A L S Smith, T H Bett and P. G. Browne. Effect of Gas Additive on TEA CO2 Laser. J. Quantum Electronics. 1975, 11(7): 335~340
    47 Z. Cihla and A. Chedin. Potential Energy Function of Polyatomic Molecules: Fourth-Order Approximation of the Potential Energy Function of CO2: Spectroscopy Constants of Nine Isotopic Species. Journal of Molecular Spectroscopy. 1971, 40: 337~355
    48 Richard B. Wattson and Laurence S. Rothman. Determination of VibrationalEnergy Levels and Parallel Band Intensities of 12C16O2 by Direct Numerical Diagonalization. Journal of Molecular Spectroscopy.. 1986, 119: 83~100
    49 J.-L. Teffo, O. N. Sulakshina and V. I. Perevalov. Effective Hamiltonian for Rovibrational Energies and Lines Intensities of Carbon Dioxide. Journal of Molecular Spectroscopy. 1992, 156: 48~64
    50 S. A. Tashkun, V. I. Perevalov, J. L. Teffo, L. S. Rothman and Vl. G. Tyuterev. Global Fitting of 12C16O2 Vibrational-Rotational Line Positions using the Effective Hamiltonian Approach. Journal of Quantum Spectroscopy Radiat Transfer. 1998, 60(5): 785~801
    51 S. A. Tashkun, V. I. Perevalov and J. L. Teffo. Global Fittings of the Vibrational-Rotational Line Positions of the 16O12C17O and 16O12C18O Isotopic Species of Carbon Dioxide. Journal of Molecular Spectroscopy. 2001, 210: 137~145
    52 S. A. Tashkun, V. I. Perevalov, J. L. Teffo, M. Lecoutre, T. R. Huet, A. Campargue, D. Bailly and M. P. Esplin. 13C16O2: Global Treatment of Vibrational-Rotational Spectra and First Observation of the 2v1+5v3 and v1+2v2+5v3 Absorption Bands. Journal of Molecular Spectroscopy. 2000, 200: 162~176
    53 S. A. Tashkun, V. I. Perevalov, J. L. Teffo, A. D. Bykov and N. N. Lavrentieva. CDSD-1000, the High-Temperature Carbon Dioxide Spectroscopic Databank. Journal of Quantitative Spectroscopy & Radiative Transfer. 2003, 82: 165~196
    54 C. Claveau, J.-L. Teffo, D. Hurtmans and A. Valentin. Infrared Fundamental and First Hot Bands of O12C17O Isotopic Variants of Carbon Dioxide. Journal of Molecular Spectroscopy. 1998, 189: 153~195
    55 C. Claveau, J.-L. Teffo, D. Hurtmans, A. Valentin and R. R. Gamache. Line Positions and Absolute Intensities in the laser Bands of Carbon-12 Oxygen-17 Isotopic Species of Carbon Dioxide. Journal of Molecular Spectroscopy. 1999, 193: 15~32
    56 Jose Zuniga, Adolfo Bastida, Mcrcedes Alacid and Alberto Requena. Variational Calculations of Rovibrational Energies for CO2. Journal of Molecular Spectroscopy. 2001, 205: 62~72
    57 W. D. Allen, Y. Yamaguchi, A. G. Császár, D. A. Clabo, Jr., R. B. Remingtonand H. F. Schaefer III, A Systematic Study of Molecular Vibrational Anharmonicity and Vibration-Rotation Interaction by Self-Consistent-Field Higher Derivative Methods. Linear Polyatomic Molecules, Chem. Phys., 1990, 145, 427~466
    58 D. Belmiloud and M. Jacon. DVR Study of the Absorption Spectrum of NO2. International Journal of Quantum Chemistry. 1998, 70: 475~489
    59 Attila G. Császár, J. Sophie Kain, Oleg L. Polyansky, Nikolai F. Zobov and Jonathan Tennyson. Relativistic Corrections to the Potential Energy Surface and Vibration-rotation Levels of Water. Chemical Physics Letters. 1998, 293: 317~322
    60 D. Belmiloud and M. Jacon. Rotation-Vibration Energy Levels from Recent Potential Energy Surfaces for the Ground Electronics States of NO2 and H2O. International Journal of Quantum Chemistry. 2000, 76: 535~540
    61 H.Vilanove and M. Jacon. Discrete Variable Representation Method Applied to the Determination of Rotation-Vibration Bound States of NO2. International Journal of Quantum Chemistry. 1997, 62: 199~211
    62 Maxim A. Kostin, Oleg L. Polyansky and Jonathan Tennyson. Calculation of Rotation-Vibration States with the z Axis Perpendicular to the Plane: High Accuracy Results for H+3. Journal of Chemical Physics. 2002, 116(17): 7564~7573
    63 G.赫兹堡.分子光谱与分子结构(第二卷)-多原子分子的红外光谱与喇曼光谱.王鼎昌译.科学出版社, 1986: 201~215
    64李适民.激光器件原理与设计.国防工业出版社,1998:63~73
    65吴征铠,唐敖庆.分子光谱学专论.山东科学技术出版社. 1999, 57~82
    66鄢国森,谢代前.三原子分子振转Hamilton算符的统一表达式.科学通报. 1995, 16: 1469~1471
    67 Jose Zuniga, Mcrcedes Alacid, Adolfo Bastida, Francisco J. Carvajal and Alberto Requena. Determination of a Potential Energy Surface for CO2 Using Generalized Internal Vibrational Coordinates. Journal of Molecular Spectroscopy. 1999, 195: 137~146
    68朱正和,俞华根.分子结构与分子势能函数.科学出版社. 1997: 130~132
    69 A. G. Császár, Anharmonic Force Field of CO2, J. Phys. Chem. 1992, 96, 7898~7904
    70 Richard B. Wattson, Laurence S. Rothman. Direct Numerical Diagonalization: Wave of the Future. Journal of Quant. Spectrosc. Radiat. Transfer.1992, 48(6): 763~780
    71 M. Jacon, L. Daumont and J.-L. Teffo. Application of the DVR Method to the Vibration-Rotation Spectrum of N2O: Derivation of the Dipole Moment Derivatives in Radau Coordinates. Journal of Quantitative Spectroscopy & Radiative Transfer. 2004, 83: 435~444
    72 Jonathan Tennyson, Maxim A. Kostin, Paolo Barletta, Gregory J. Harris, Oleg L. Polyansky, Jayesh Ramanlal and Nikolai F. Zobov. DVR3D: A Program Suite for the Calculation of Rotation-Vibration Spectra of Triatomic Molecules. Computer Physics Communications. 2004,163: 85~116
    73 L.S. Rothman, D. Jacquemart, A. Barbe Benner D. Chris, Birk M., Brown L.R., Carleer M.R., Chackerian Jr. C., Chance K., Coudert L.H., Dana V., Devi V.M., Flaud, J.-M.; Gam, che R.R., Goldman A., Hartmann J.-M., Jucks K.W., Maki A.G., Mandin J.-Y., Massie S.T., Orphal J., Perrin A., Rinsland C.P., Smith M.A.H., Tennyson J., Tolchenov R.N., Toth,R.A., Vander Auwera J., Varanasi P., Wagner G. The HITRAN 2004 Molecular Spectroscopic Database. Journal of Quantitative Spectroscopy and Radiative Transfer. 2005, 96(12): 139~204
    74 W. J. Witteman. The CO2 Laser. Springer Press-Verlag Berlin Heidelberg, 1987: 138~167
    75 V. V Nevdakh. Spontaneous Emission Probabilities and Collisional Line Widths of 0001-[1000, 0200]Ι,ΙΙLasing Transitions in The CO2 Molecule. Sov. J. Quantum. Electron. 1984, 14(8): 1091~1096
    76 Che Jen Chen. Pumping Mechanism of CO2 laser and Formation Rate of CO2 from CO and O*. Journal of Appled Physics. 1971, 42(3): 1016~1020
    77周炳琨,高以智,陈家骅,陈倜嵘.激光原理.国防工业出版社. 1995: 123~125
    78 Wang Tie-Jun, He Qiong-Yi, Gao Jin-Yue, Sun Man, Kang Zhi-Hui, Jiang Yun, Zhang Ying-Fei. Comparison between Four-level Model and Six-temperature Model on the Description of a Simple Mechanical Q-switched CO2 Laser. Journal of Appled Physics. 2006, 100: 023121
    79田兆硕,王骐,李自勤,王雨三.电光调Q CO2激光器的六温度模型理论与速率方程理论比较分析.物理学报. 2001, 50(12):2369~2374
    80 B. A. Ghani, M. Hammadi. Mathematical Modeling of Hybrid CO2 Laser. Optics & Laser Technology. 2001, 33(4):243~247
    81 M. soukieh, B. A. Ghani, M. Hammadi. Mathematical Modeling of CO2 TEA Laser. Optics & Laser Technology. 1998, 30(8):451~457
    82 Jin Wu, Changjun Ke, Donglei Wang, Rongqing Tan, Chongyi Wan. Mathematical Modeling of Tunable TEA CO2 Lasers. Optics & Laser Technology. 2007, 39: 1033~1039
    83 H. Khosravi, A. R. Bahrampour, A. Bahari, R. Farrahi, N. Daneshfar. Theoretical Study of Hybrid TEA CO2 Lasers. Optics & Laser Technology. 2008, 40: 779~784
    84吴谨.光栅调谐TEA CO2激光器理论计算模型.光学学报. 2004, 24(4): 472~476
    85 M. S. Trtica, G. N. Ostojic. Numerical Modeling of Self-sustained TEA CO2 Laser Operation. Proc. SPIE. 1999, 3612:7~14
    86 B. Abdul Ghani. TEA CO2 Laser Simulator: A Software Tool to Predict the Output Pulse Characteristics of TEA CO2 Laser. Computer Physics Communications. 2005, 171(2): 93~106
    87曲彦臣.可调谐TEA CO2激光的理论和实验研究.哈尔滨工业大学博士论文. 2003:32~35
    88 K. Smith, R. M. Thomson. Computer Modeling of Gas Laser. Plenum Press:New York and London, 1978:25~156
    89陈宗柱.电离气体发光动力学.科学出版社, 1996:212~250
    90 Manoj Kumar, Jai Khare, A. K. Nath. Numerical Solution of Boltzmann Transport Equation for TEA CO2 Laser Having Nitrogen-lean Gas Mixtures to Predict Laser Characteristics and Gas Lifetime. Optics & Laser Technology. 2007, 39: 86~93
    91楼祺洪,徐捷,傅淑芬,庄斗南.脉冲放电气体激光器.科学出版社, 1993:55~57
    92王正林,龚纯,何倩.精通matlab科学计算.电子工业出版社. 2007, 211~236
    93黄启文,张明宝,王宗进.具有CO2补充源的封离式CO2激光器的实验研究.中国激光. 1979, 7: 38~41
    94 K. R. Manes, H. J. Seguin. Analysis of the CO2 TEA Laser. J. Appl. Phys. 1972: 43(12): 5073~5076
    95 Manoj Kumar, Jai Khare, Chintan Gupta, A. K. Nath. Theoretical and Experimental Study of V-I Characteristics of UV Pre-ionized TEA CO2 Laser for Variety of Laser Gas Mixtures. Optics & Laser Technology. 2007, 39: 129~135
    96 Fang, X.Y.; Yung, K.C. Copper Direct Drilling With TEA CO2 Laser in Manufacture of High-Density Interconnection Printed Circuit Board. Electronics Packaging Manufacturing. 2006, 29(3): 145~149
    97 Pallavi Raote, Gautam Patil, M.B. Sai Prasad, J.P. Nilaya, D.J. Biswas. Switch-less Operation of a TEA CO2 Laser with Extended Electrodes. Optics Communications. 2008, 281: 2213~2217
    98 Andrew V. Pakhomov, Jun Lin, and Kenneth A. Herren. Effect of Air Pressure on Propulsion with TEA CO2 Laser. Proc. SPIE 5448. 2004, 1017~1027
    99 Aniruddha Kumar, J. Padma Nilaya, M.B. Sai Prasad, P. Raote, D.J. Biswas. Effect of Delay in the Operation of Helium-free TEA CO2 Lasers with Sequential and Parallel Spark Preionisers. Optics & Laser Technology. 2008, 40: 1068~1071
    100 A. Behjat, M. Aram, F. Soltanmoradi, and M. Shabanzadeh. Investigation on a TEA-CO2 Laser with Surface Corona Pre-ionization. Proc. SPIE 6263. 2006, 626305: 1~6
    101 Aniruddha Kumar, J. Padma Nilaya, M.B. Sai Prasad, P. Raote. Repetitive Operation of a Helium-free Mini TEA CO2 Laser. Optics & Laser Technology. 2008, 40: 223~225
    102 M. J. Torkamany, M. Kavian, M. Zand. Experimental Study Sealed off Operation of a High Reperitition Rate TEA CO2 Laser. Laser Physics Letters. 2006, 10: 480~484
    103 Yanning Yu, Chongyi Wan, Yan Lv, Rongqing Tan, Zhou Jinwen, Liu Shiming, Zhao Chong. A 3 kW Average Power Tunable TEA CO2 Laser. Optics and Laser Technology. 2005, 37(7): 560~562
    104 Dhruba J. Biswas, J. Padma Nilaya, Aniruddha Kumar. Operation of a Helium-free TEA CO2 Laser. Optics Communications. 2005, 248(6):521~526
    105王元虎,曲彦臣,赵卫疆,任德明,胡孝勇.二维振镜调谐TEA CO2激光器.中国激光. 2008, 35(3): 359~363
    106王元虎,曲彦臣,赵卫疆,任德明.小型化火花预电离TEA CO2激光器的实验研究.红外与激光工程. 2008, 36: 61~63

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700