用户名: 密码: 验证码:
蜂蜜质量的近红外光谱分析技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蜂蜜是具有重要营养价值和医疗保健作用的天然食品。对蜂蜜质量的检测一般包括理化参数分析、品种鉴别、产地鉴别和真伪检测。高效、快速、低成本检测蜂蜜质量是有效监控蜂蜜质量的前提条件之一。近红外光谱技术具有高效、快速、低成本和绿色环保等常规分析方法无可比拟的优点。开展蜂蜜质量近红外光谱分析技术研究对保证蜂蜜质量、保护消费者权益和保障蜂蜜产业健康发展具有重要意义。本课题的主要研究内容及得到的结论如下:
     (1)研究了薄膜袋透反射、样品杯透反射和样本池透射三种不同方式下采集的蜂蜜近红外光谱的重复性,确定样品杯透反射光谱和样本池透射光谱重复性好。进一步比较这两种方式下采集的光谱所建模型的预测能力后,确定样品杯透反射方式为蜂蜜近红外光谱采集的较合理方式。
     (2)通过考察扫描次数和分辨率对光谱响应特性和对模型预测能力的影响,确定采集蜂蜜近红外光谱时,扫描次数取32次、分辨率取8cm-1为宜。
     (3)用近红外光谱结合偏最小二乘法(PLS)对蜂蜜的12个主要理化参数值进行了定量分析。这12个理化参数包括可溶性固形物含量(SSC)、水分、还原糖、pH值、总酸度、电导率、果糖、葡萄糖、蔗糖、麦芽糖、果糖/葡萄糖和葡萄糖/水。PLS模型对蜂蜜中SSC、水分、还原糖和果糖/葡萄糖的定量分析结果好:验证集预测均方根误差(RMSEP)依次为0.1795、0.1696、1.5270和0.0344,真实值和模型预测值的相关系数(Rp)依次为0.9989、0.9989、0.9191和0.9749。对其它8个理化参数用蒙特卡罗交互检验法(MCCV)剔除奇异样本,再用竞争性自适应重加权采样(CARS)变量选择法结合PLS回归来优化模型,优化后的PLS模型的预测能力都有明显提高。优化后模型对蜂蜜pH值、总酸度、电导率、果糖、葡萄糖、蔗糖、麦芽糖和葡萄糖/水的RMSEP分别为0.1196、0.4674、2.6827、0.4955、0.5704、0.5711、0.2578和0.0394,Rp分别为0.9058、0.9083、0.9679、0.9845、0.9879、0.9386、0.9586和0.9809。
     (4)选择4200~5400cm-1的光谱范围,分别采用马氏距离判别分析法(MD-DA)、偏最小二乘判别分析法(PLSDA)和径向基函数神经网络法(RBFNN)对5个品种(苹果、油菜、枣花、枸杞和荆条)蜂蜜进行植物来源的判别分析。MD-DA模型和RBFNN模型对验证集的判别总正确率都达到了94.0%,而PLSDA模型只有78.0%。表明近红外光谱结合MD-DA法或RBFNN法具有快速识别蜂蜜品种的潜力。
     (5)光谱用小波变换(WT)进行变量压缩和滤噪。结合滤波前后的光谱信息,分别用RBFNN和PLSDA建立了苹果蜜产地和油菜蜜产地的判别模型,并对验证集进行预测。对苹果蜜,PLSDA、WT-PLSDA、RBFNN和WT-RBFNN模型对验证集的判别总正确率都为96.2%;对油菜蜜,PLSDA、WT-PLSDA、 RBFNN和WT-RBFNN模型对验证集的判别总正确率分别86.4%、90.9%、81.8%和86.4%。结果表明:不同品种蜂蜜的产地判别,同样的建模方法所得预测结果会存在较大差异;线性的WT-PLSDA模型比非线性的WT-RBFNN模型可能更适于峰蜜产地判别;近红外光谱技术具有快速识别蜂蜜产地的潜力。
     (6)真蜂蜜样本中分别掺入高果玉米糖浆(HFCS)=甜菜糖浆(BS)、麦芽糖浆(MS)及这三种糖浆的混合物,采集掺假前后蜂蜜样本的近红外光谱。分别用距离匹配法(DM)、MD-DA和PLSDA法对真假蜜进行定性判别分析,结果表明PLSDA模型的判别结果最好:验证集的判别总正确率依次为82.4%、90.2%、90.2%和80.4%。当分别用这三种判别方法对掺假物类型进行判别分析时,只有DM模型和MD-DA模型能较好地识别MS掺假物,验证集的判别正确率都为82.4%。用PLS回归法对不同掺假物的掺假量进行定量分析的结果表明:同一蜂蜜样本掺假,掺假物的定量分析结果好,但这不具现实意义;同一品种或不同品种蜂蜜掺假,只有MS掺假物的定量分析结果较好。
     (7)真蜂蜜样本中掺入果糖和葡萄糖的混合溶液,采集真蜂蜜与掺假蜜的近红外光谱。用WT对光谱进行变量压缩和去噪,选择径向基核函数(RBF)作为最小二乘支持向量机(LS-SVM)算法的内核函数,用网格搜索法寻优,得到回归误差的权重(γ)和RBF核的核参数(σ2)分别为222.822和45.170。建立的LSSVM模型对验证集的判别总正确率为95.1%,高于支持向量机算法(SVM)、反向传播人工神经网络法(BPANN)、K最临近距离法(KNN)和线性判别分析法(LDA),表明LSSVM算法比SVM、BPANN、KNN(?)口LDA算法具有更好的泛化能力。近红外光谱技术具有快速识别蜂蜜中掺入混合糖的能力。
Honey is a natural health product with high nutritional value. Quality assessment of honey includes following sections:quantitative analysis of physical and chemical parameters, classification of botanical and geographical origin and detection of adulteration. It is necessary to looking for fast and accurate methods to detect these indexes so as to assess honey quality more effectively. As a new analytical method, near infrared spectroscopy (NIRS) have advantages like highly efficient, fast, low cost and green environmental protection, and so on. Therefore, it is significant to develop NIRS methods to detect honey quality, which will benefit healthy development of honey industry and protect consumers'rights and interests. The dissertation mainly studies:
     (1) The different effects of three measurements with thin film transflectance, sample cup transflectance and cuvette transmission on the repeatability of spectra of honey sample were studied. The results showed that both sample cup transflectance and cuvette transmission had better repeatability than thin film transflectance. Further studies results showed that the transflectance sample cup performed better than cuvette transmission in measurement.
     (2) The different effects of scanning frequency and resolution on near-infrared spectra of honey samples and the prediction abilities of models were studied. For honey sample, the optimized parameters combination was32times of scanning frequency and8cm-1of resolution.
     (3) The quantitative analytic models of12different physical and chemical parameters, soluble solids content (SSC), moisture, reducing sugar (RS), pH-value, total acidity (TA), electrical conductivity (EC), fructose, glucose, sucrose, maltose, fructose/glucose ratio (F/G) and glucose/moisture ratio (G/M) in honey were developed by partial least squares (PLS) regression. Satisfying prediction accuracies were achieved for SSC, moisture, RS and F/G:Root mean square error of prediction (RMSEP) for each of the parameters was respectively0.1795,0.1696,1.5270and0.0344; Coefficient of determination in prediction (Rp) set was0.9989,0.9989,0.9191and0.9749, respectively. After rejection of the outliers by Monte-Carlo cross-validation (MCCV), competitive adaptive reweighted sampling (CARS) combined with PLS regressions were used to choose effective variables so as to optimize PLS models of8other parameters. The results showed that the prediction abilities of PLS models were obviously improved. Using the optimal PLS models, RMSEP of pH-value, TA, EC, fructose, glucose, sucrose, maltose and G/M in honey were0.1196,0.4674,2.6827,0.4955,0.5704,0.5711,0.2578and0.0394, respectively, and Rp were0.9058、0.9083,0.9679,0.9845,0.98790.9386,0.9586and0.9890, respectively.
     (4) Three models were developed for detection of five different botanical origin honey samples by Mahalanobis distance-discriminant analysis (MD-DA), partial least squares-discriminant analysis (PLSDA) and radical basis function neural networks (RBFNN) in the NIR region of4200~5400cm-1. The total prediction accuracy (PA) of both MD-DA model and RBFNN model can reach94.0%. However, PA of PLSDA model was only78.0%. Therefore, NIRS combined with MD-DA or RBFNN have a potential for quickly detecting botanical origin of honey.
     (5) The spectral data were compressed and de-noised using wavelet transform (WT). RBFNN and PLSDA were applied to develop classification models of the geographical origin of honey samples using either before or after the reconstructed signals, respectively. For apple honey samples, PLSDA, WT-PLSDA, RBFNN and WT-RBFNN produced a same total prediction accuracy of96.2%. For rape honey samples, PLSDA, WT-PLSDA, RBFNN and WT-RBFNN produced total prediction accuracy of86.4%,90.9%,81.8%and86.4%, respectively. The results showed that prediction accuracy varied widely in the different geographical origin honey samples when modeling method were the same. Linear WT-PLSDA model may be more suitable for geographical classification of honey samples than no-linear WT-RBFNN model. NIRS has a potential for quickly detecting geographical origin of honey samples.
     (6) Authentic honey samples were adulterated with high fructose corn syrup (HFCS), beet syrup (BS), maltose syrup (MS) and a blend of these syrups. Detection of honey adulteration was developed by distance match (DM), MD-DA and PLSDA. The best performances of classification of authentic and adulterated honeys were obtained by PLSDA:total accuracy for validation sets were82.4%,90.2%,90.2%and80.4%, respectively. The classification of types of adulterants was also developed using the above methods, and the highest accuracy of84.4%was obtained by both DM and MD-DA for MS adulterant. The quantitative analysis of adulterants by PLS regression gave satisfying results if adulterated honey samples were got from the same one authentic honey sample, otherwise it gave dissatisfying results for the adulterated samples from different botanical origins, except the adulteration is solo MS.
     (7) Honey samples were adulterated by blend of fructose and glucose. Near infrared spectrum of honeys were collected before and after adulteration. The spectral data were compressed and de-noised by WT. The radial basis function (RBF) was used as kernel function of WT-LSSVM model. By grid search, the selected optimal value of γ(the relative weight of the regression error) and σ2(the kernel parameter of the RBF kernel) was222.822and45.170respectively. The total accuracy of WT-LSSVM model was95.1%for the validation set, which was better than that of support vector machines (SVM), back propagation artificial neural networks (BPANN), K-nearest neighbor (KNN) and linear discriminant analysis (LDA). This study demonstrated that the superiority of LSSVM in building models with better generalization abilities than those obtained from SVM, BPANN, KNN and LDA for the problems studied. NIRS has the potential ability to quickly detect mixed sugar adulterants in honey.
引文
[1]马伦姣.我国蜂蜜出口竞争力的的国际比较[J].安徽农业科学,2009,37(33):16604-16606.
    [2]李海燕,吴杰.我国蜂蜜贸易国际竞争力的比较分析[J].国际贸易问题,2009,10:26-31.
    [3]孙立广.重视蜂蜜质量 提高蜂蜜产量[J].蜜蜂杂志,2010,1:43-44.
    [4]宋心仿.加大打假力度强化蜂蜜和蜂蜜制品市场监管[J].蜜蜂杂志,2009,12:3-4.
    [5]陆婉珍.现代近红外光谱分析技术(第二版)[M].北京:中国石化出版社,2007:2-10,30,31,35,55,86-87.
    [6]Lin M S. Prediction of seafood safety and quality using short-wavelength near-infrared (SW-NIR) spectroscopy[D].Washington America:Washington state universeity,2003.2-4.
    [7]吴瑾光.近代傅立叶变换红外光谱技术及应用[M].北京:科学技术文献出版社,1994.
    [8]刘贤.基于近红外光谱的青贮饲料快速分析方法与模型研究[D].北京:中国农业大学,2007.6,21-22.
    [9]高荣强,范世福.现代近红外光谱分析技术的原理及应用[J].分析仪器,2002,3:9-12.
    [10]刘扬.化学计量学-近红外光谱快速烟叶分析与评价[D].武汉:武汉大学,2002.3
    [11]张广才.应用近红外光谱分析技术进行苹果叶营养快速诊断基础研究[D].沈阳:沈阳农业大学,2004.13
    [12]陈达.近红外光谱新型化学计量学建模方法研究[D].北京:中国科学技术大学,2005:15,18.
    [13]刘燕德.水果糖度和酸度的近红外光谱无损检测研究[D].杭州:浙江大学,2007:5
    [14]郑咏梅,张铁强,张军,等.平滑、微分、基线校正对近红外光谱PLS定量分析的影响研究[J].光谱学与光谱分析,2004,24(12):21546-1548.
    [15]丁永军,李民赞,郑立华,等.基于近红外光谱小波变换的温室番茄叶绿素含量预测[J].光谱学与光谱分析,2011,31(11):2936-2939.
    [16]Barchay V J, Bonner R F, Hamilton I P. Application of wavelet transforms to experimental spectra:smoothing denoising and data set compression [J]. Analytical Chemistry,1997,69(1):78-90.
    [17]Pasti L, Jouan-Rimbaud D, De Norrd O E. Appliction of Fourier transform to multivariate calibration of near infrared data[J]. Analytical Chemistry,1998,70:253-263.
    [18]Blank T B, Sum S T, Brown S D, et al. Transfer of near-infrared multivariate calibrations without standards [J]. Analytical Chemistry,1996,68(17):2987-2995.
    [19]Papas A N, Tougas T P. Accuracy of peak deconvolution algorithms within chromatographic integrators [J]. Analytical Chemistry,1990,62(3):234-239.
    [20]Andreev V P, Rejtar T, Chen H S, et al. A universal denoising and peak picking algorithm for LC-MS based on matched filtration in the chromatographic time domain [J]. Analytical Chemistry,2003,75(22):6314-6426.
    [21]Alsberg B K, Andrew M W, Michael K W. Wavelet denoising of in spectra [J].The Analyst,1997,122(7):645-652.
    [22]Walczak B, Bouveresse E, Massart D L. Standardization of near-infrared spectra in the wavelet domain [J]. Intelligent Laboratory Systems,1997,36(1):41-51.
    [23]Vigneau E, Sahmer K, Oannari E M, et al. Clustering of variable to analyze spectral data[J].Journal of Chemometrics,2005,19(3):122-128.
    [24]Araujo M C U, Saldanha T C B, Galvao R K. H, et al. The successive projections algorithm for variable selection in spectroscopic multicomponent analysis[J]. Chemometrics and Intelligent Laboratory Systems,2001,57:65-73.
    [25]Li H D, Liang Y Z, Xu Q S, et al. Key wavelengths screening using competitive adaptive reweighted sampling method for multivariate calibration [J]. Analytical Chimica Acta, 2009(648):77-84.
    [26]Belsley D A, Kuh E, Welsch R E. Regression Diagnostics [M]. Wiley, New York,1980, 6-84.
    [27]Weisberg S. Applied Linear Regression [M]. (3rd ed). Wiley, New York,2005,167-193.
    [28]Daszykowski M, Kaczmarek K, Heyden V Y, Walczak B. Robust statistics in data analysis-A review basic concepts [J]. Chemometrics and Intelligent Laboratory Systems, 2007,85(2):203-219.
    [29]李彦周,闵顺耕,刘霞.近红外光谱技术在中草药分析的应用[J].光谱学与光谱分析,2008,28(7):1549-1553.
    [30]刘智超,蔡文生,邵学广.蒙特卞洛交义验证用于近红外光谱奇异样本的识[J].中国科学(B辑):化学,2008,38(4):316-323
    [31]Svante W, Johan T, Anders B, et al. Some recent developments in PLS modeling [J]. Chemometrics and Intelligent Laboratory Systems,2001,58:131-150.
    [32]褚小立,许育鹏,陆婉珍.用于近红外光谱分析的化学计量学方法研究与应用进展[J].分析化学,2008,36(5):702-709.
    [33]陆婉珍,袁洪福,行小立.近红外光谱仪器[M].北京:化学工业出版社,2010:47.
    [34]Avram S, Pacureanu L M, Seclaman E, et al. PLS-DA-Docking Optimized Combined Energetic Terms (PLSDA-DOCET) Protocol:A Brief Evaluation [J]. Journal of Chemical Information and Modeling,2011,51(12):3169-3179.
    [35]褚小立,袁洪福,陆婉珍.近年来我国近红外光谱分析技术的研究与应用进展[J].分析仪器,2006,2:1-6.
    [36]Miralbes C. Discrimination of European wheat varieties using near infrared reflectance spectroscopy [J]. Food Chemistry,2008,106:386-389.
    [37]安岭,张五九,赵武善.啤酒大麦早代筛选技术的研究——利用近红外透反射光谱技术评价大麦的品质[J].食品与发酵工业,2001,3:30-32
    [38]王铁固,刘新香,库丽丽霞,等.近红外反射光谱测定玉米完整子粒蛋白质和淀粉含量的校正模型[J].玉米科学,2008,16(3):67-59,63.
    [39]Zhang C Y, Shen Y, Chen J, et al. Nondestructive prediction of total phenolics flavornoid contents and antioxidant capacity of rice grain using near-infrared spectroscopy [J]. J. Agric. Food Chem.,2008,56:8268-8272.
    [40]薛雅琳,王雪莲,赵会义,等.利用近红外分析技术测定大豆水分含量方法的研究[J].中国油脂,2009,34(7):69-71.
    [41]Kays S E, Barton F E. Near-infrared analysis of soluble and insoluble dietary fiber fractions of cereal food products [J]. J. Agric. Food Chem.,2002,50:3024-3029.
    [42]Kays S E, Windham W R, Barton F E. Prediction of total dietary fiber by near-infrared reflectance spectroscopy in high-fat and high-sugar-containing cereal products[J]. J. Agric. Food Chem.,1998,46:854-861.
    [43]陈锋,何中虎,崔党群.利用近红外透射光谱技术测定小麦籽粒硬度的研究[J].作物学报,2004,5:
    [44]王雪莲,薛雅琳,赵会义,等.近红外法测定大豆脂肪值的研究[J].中国粮油学报, 2009,24(8):152-154
    [45]Lin P, Chen Y M, He Y. Identification of geographical origin of olive oil using visible and near-infrared spectroscopy[J]. Food and bioprocess technology,2012,5(1):235-242.
    [46]张灵帅,王卫东,谷运红,等.近红外光谱的主成分分析-马氏距离聚类判别用于卷烟的真伪鉴别[J].光谱学与光谱分析,2011,31(5):1254-1257.
    [47]Chen Q S, Guo Z M, Zhao J W, et al. Comparisons of different regressions tool in measurement of antioxidant activity in green tea using near infrared spectroscopy [J]. Journal of pharmaceutical and biomedical analysis,2012,60 (23):92-97.
    [48]Yang H, Irudayaraj J. Comparison of near-infrared, Fourier transform-infrared and Fourier transform-Raman methods for determining olive pomace oil adulteration in extra virgin olive oil[J]. JAOCS,2001,78 (9):889-895.
    [49]孙旭东,章海亮,欧阳爱国,等.南丰蜜桔可溶性固形物近红外特征波段选择[J].农业机械学报,2009,40(7):129-132.
    [50]Luo W G, Huan S Y, Fu H Y, et al. Preliminary study on the application of near infrared spectroscopy and pattern recognition methods to classify different of apple samples [J]. 2011,128 (2):555-561.
    [51]谢丽娟,应义斌,于海燕,等.近红外光谱技术在蔬菜品质无损检测中的应用研究进展[J].光谱学与光谱分析,2007,27(6):1131-1135.
    [52]牛智有,韩鲁佳.饲料中肉骨粉含量的近红外光谱检测方法[J].农业工程学报,2008,24(4):271-274.
    [53]郭峥,袁洪福,张娴,等.近红外漫反射光谱快速测定复合肥料各养分及石粉含量的研究[J].光谱学与光谱分析,2011,31(6):521-523.
    [54]梁秀英,李小昱.近红外光谱分析技术在十壤成分含量检测中的应用研究进展[C].中南大学湖南大学.全国第二届近红外光谱学术会议.长沙,2008:51-56.
    [55]樊景超.苹果果实病害近红外光谱信息获取与识别模型研究[D].北京:中国农业科学研究院,2011.6.
    [56]单杨,朱向荣,许青松,等.近红外光谱结合小波变换-径向基神经网络用于奶粉蛋白质和脂肪含量的测定[J].红外与毫米波学报,2010,29(2):128-131.
    [57]Gonzalez-martin I, Hernandez-hierro J M, Revilla I, et al. The mineral composition (Ca, P, Mg, K, Na) in cheeses (cow's, ewe's and goat's) with different ripening times using near infrared spectroscopy with a fibre-optic probe [J]. Food Chemistry, 2011,127:147-152.
    [58]吴静珠,王一鸣,张小超,等.支持向量机——近红外光谱法用于真假奶粉的判别[J].农机化研究,2007,1:155-158.
    [59]Guy F, Prache S, Thomas A, et al. Prediction of lamb meat fatty acid compositions using near-infrared reflectance spectroscopy (NIRS) [J]. Food Chemistry,2011,127:1280-1286.
    [60]张宁,张德权,李淑荣,等.近红外光谱结合SIMCA法溯源羊肉产地的初步研究[J].农业工程学报,2008,24(12):309-312.
    [61]成芳,樊玉霞,廖宜涛.利用近红外漫反射光谱对猪肉肉糜进行定性定量检测研究[J].光谱学与光谱分析,2012,32(2):354-359.
    [62]费坚,岳田利,张飞,等.果品-果汁加工中的近红外光谱技术[J].西北农业学报,2005,1:88-93.
    [63]Pizarro C, Esteban-Diez I, Gonzalez-Saiz J M. Mixture resolution according to the percentage of robusta variety in order to detect adulteration in roasted coffee by near infrared spectroscopy [J]. Analytic Chimica Acat,2007,585:266-276.
    [64]Pizarro C, Esteban-Diez I, Nistal A-J, et al. Influence of data pre-processing on the quantitative determination of the ash content and lipids in roasted coffee by near infrared spectroscopy [J]. Analytic Chimica Acat,2004,509:217-227.
    [65]Xie L J, Ye X Q, Liu D H, et al. Quantifiction of glucose fructose and sucrose in bayberry juice by NIRand PLS [J]. Food Chemistry,2009,114:1135-1140.
    [66]Esteban-Diez I, Gonzalez-Saiz J M, Saenz-Gonzalez C, et al. Coffee varietal differentiation based on near infrared spectroscopy[J]. Talanta,2007,71:221-229.
    [67]Casale M, Abajo M-J S, Saiz J-M G, et al. Study of the aging and oxidation processes of vinegar samples different origins during storage by near infrared spectroscopy [J]. Analytic Chimica Acat,2006,557:360-366.
    [68]Chen Q S, Ding J, Cai J R, et al. Simultaneous measurement of total acid content and soluble salt-free solids content in Chinese vinegar using near-infrared spectroscopy [J]. Journal of food science,2012,77(2):C222-7.
    [69]Saiz-Abajo M-J, Gonzalez-Saiz J M, Pizarro C. Classification of wine and alcohol vinegar samples based on near-infrared spectroscopy:feasibility study on the detection of adulterated vinegar samples [J]. J. Agric. Food Chem.,2004,52:7711-7719.
    [70]单杨,范伟,梁逸曾,等.近红外光谱结合化学计量学方法用于不同食食醋种类判别研究[C].中南大学湖南大学.全国第二届近红外光谱学术会议.长沙,2008:606-611.
    [71]Liu F, He Y, Wang L, et al. Feasibility of the use of visible and near infrared spectroscopy to assess soluble solids content and pH of rice wines [J]. Journal of Food Engineering, 2007,83:430-435.
    [72]冯尚坤,徐海菊.基于BP神经网络的啤酒酒精度近红外光谱快速检测[J].红外技术,2008,30(1):58-60.
    [73]郭海霞,王涛,刘洋,等.基于可见-近红外光谱技术的葡萄酒真伪鉴别的研究[J].光谱学与光谱分析,2011,31(12):3269-3272.
    [74]聂黎行,王钢力,李志猛,等.红外光谱法快速测定黄酒中乙醇含量[C].中南大学湖南大学.全国第二届近红外光谱学术会议.长沙,2008:364-369.
    [75]Xie Feng. The study of bread staling using visible and near-infrared reflectance [D].Manhattan, Kansas, America:Kansas state university,2002
    [76]白雁,王星,龚海燕.近红外光谱法快速检测连翘药材中水分含量[C].中南大学湖南大学.全国第二届近红外光谱学术会议.长沙,2008:198-203.
    [77]王东,王玲.近红外光谱法测定黄苓药材中黄岑苷的含量[J].中医研究,2007,20(2):20-23.
    [78]朱向荣,李娜,史新元,等.近红外光谱与组合的间隔偏最小乘法测定清开灵四混液中总氮和栀子的含量[J].高等学校化学学学报,2008,29(5):906-911.
    [79]宋丽丽,范丙义,徐晓杰,等.近红外光谱法用于六味地黄丸模拟样品中中熊果酸的含量测定[J].中国中药杂志,2006,31(19):1590-1593.
    [80]王彬.近红外光谱结合化学计量学在药物无拟定量分析中的应用研究[D].长春:吉林大学,2010.6.
    [81]Hu C Q, Zhang X B, Hu C Q. Constructon of identification system of non-invasive analysis of macrolides tablets using near infrared diffuse reflectance spectroscopy [J]. Journal of Pharmaceutical and Biomedical A,2010,51:12-17.
    [82]何淑华,孙瑞岩,任玉秋,等.近红外漫反射光谱法对吉林大参的分类探讨[J].吉林大学自然科学学报,2001,1:96-98.
    [83]瞿海斌,杨海雷,程翼宇.近红外漫反射光谱法快速鉴别阿胶真伪[J].光谱学与光谱分析,2006,26(1):60-62.
    [84]赵龙莲,张录达,李军会,等.小波包熵和Fisher判别在近红外光谱法鉴别中药大黄真伪中的应用[J].光谱学与光谱分析,2008,28(4):817-820.
    [85]刘沭华,张学工,孙素琴.中药材产地的近红外光谱自动鉴别和特征波段选择[J].化学通报,2005,50(4):393-398.
    [86]张晓慧,刘建学.近红外光谱技术鉴别连翘产地[J].激光与红外,2008,38(4):342-344.
    [87]杨皓旻,卢启鹏.血清中胆固醇的近红外光谱测量及模型适应性研究[J].光谱学与光谱分析,2011,31(2):375-378.
    [88]高博,魏蔚,龚敏,等.利用近红外光谱检测多层组织血氧饱和度的研究[J].光谱学与光谱分析,2009,29(11):2922-2925.
    [89]Kelly J J, Analytical Chemistry,1989,64:313.
    [90]郝勇,孙旭东,蔡丽君,等.基于互信息方法的燃油品质光谱分析模型构建与优化[J].光谱学与光谱分析,2012,32(1):175-178.
    [91]淡图南,戴连奎.近红外光谱的甲醇汽油定量分析[J].计算机与应用化学,2011,28(3):329-332.
    [92]段敏伟,干佰华,黄宏星,等.近红外光谱快速测定生物柴油调和比及理化指标[J].分析化学,2012,40(2):263-267.
    [93]褚小立,许育鹏,王艳斌,等.RIPP在线NIR技术在我国石化领域中的应用[C].中南大学湖南大学.全国第二届近红外光谱学术会议.长沙,2008:494-500.
    [94]Henriksena H C, N(?)sb T, R(?)dbottence R, et al. Simultaneous modeling of processs variables and raw material properties as measured by NIR. A case study from cellulose production [J]. Chemometrics and Intelligent Laboratory Systems,2005,77(4):238-246.
    [95]刘宏欣,张军,王伯光,等.水中总氮的无损快速分析[J].光学精密工程,2009,17(3):525-530.
    [96]Shimokawa T, Suzuki K, Misawa T, et al. Predictability of investment behavior from brain information measured by functional near-infrared spectroscopy:a Bayesian neural network model [J]. Neuroscience,2009,161:347-358.
    [97]下学顺.近红外光谱特征信息提取及其在木材材性分析中的应用研究[D].哈尔滨:东北林业大学,2010.6.
    [98]中华全国供销合作总社.中华人民共和国国家标准(蜂蜜)GB 18796-2005蜂蜜[S].
    [99]Codex Alimentarius Committee on Sugars Codex standard 12, Revised Codex Standard for Honey[S]. Stand Methods,2001.
    [100]European Commission Council Directive 2001/110/EC of 20 December 2001 relating to honey [S].Off. J. Europ. Communities,2002.
    [101]Meda A, Lamien C E, Millogo J. et al. Therapeutic uses of honey and honeybee larvae in central Burkina Faso [J]. Journal of Ethnopharmacology,2004,95:103-107.
    [102]Rasmussen C N, Wang X H, Leung S, et al. Selection and use of honey as an antioxidant in a French salad dressing system[J]. J. Agric. Food Chem.,2008,56:8650-8657.
    [103]侯瑞丽.蜂蜜主要成分的近红外光谱检测技术的研究[D].沈阳,沈阳农业大学,2007:14.
    [104]Ball D W. The chemical composition of honey[J].Journal of Chemical Education,2007, 84(10):1643-1646.
    [105]曹炜,尉亚辉.蜂产品保健原理与加工技术[M](第1版).北京:化学工业出版社,2002.191.
    [106]Downey G, Fouratier V, Kelly J D. Detection of honey adulteration by addition of fructose and glucose using near-infrared transflectance spectroscopy [J]. Journal of Near Infrared Spectroscopy,2003,11:447-456.
    [107]Ruoff K, Luginbuhl W, Bogdanov S, et al. Quantitative determination of physical and chemical measurands in honey by near-infrared spectrometry[J]. Eur. Food Res. Technol. 2007,225:415-423.
    [108]国家出入境检验检疫局AOAC(美国公职分析化学家协会)编译委员会.公定分析方法[S](第15版).北京:中国科学出版社,1991.
    [109]中华人民共和国出入境检验检疫行业标准.进出口蜂蜜检验方法SN/T 0852-2000 [S](第1版).
    [110]蜂蜜中果糖、葡萄糖、蔗糖、麦芽糖含量的测定方法 液相相色谱示差折光检测法GB/T18932.22-2003[S].
    [111]De la Fuente E, Ruiz-Matute A L, Valencia-Barrera R M, et al. Carbohydrate composition of Spanish unifloral honeys [J]. Food Chemistry,2011,129(4):1483-1489.
    [112]Sanz M L, Gonzalez M, Lorenzo Cde, et al. A contribution to the differentiation between nectar honey and honeydew honey [J]. Food Chemistry,2005,91 (2):313-317.
    [113]Sanz M L, Sanz J, Martinez-Castro I. Gas chromatography-mass spectrometric method for the qualitative and quantitative determination of disaccharides and trisaccharides in honey[J]. Journal of Chromatography A,2004,1059:143-148.
    [114]Fuente E de la, Sanz M L, Martinez-Castro I, et al. Development of a robust method for the quantitative determination of disaccharides in honey by gas chromatography[J]. Journal of Chromatography A,2006,1135:212-218.
    [115]Ouchemoukh S, Schweitzer P, Bey M B, et al.HPLC sugar profiles of Algerian honeys [J]. Food Chemistry,2010,121 (2):561-568..
    [116]崔鹤,李戈,纪雷,等.离子色谱脉冲安培法测定蜂蜜中葡萄糖、果糖和蔗糖[J].化学分析计量,2001,10(1):25-26.
    [117]杨景芝,孙衍华,张杰道,等.蜂蜜中糖的薄层展开剂的研究与应用[J].色谱,2003,21(4):427-429.
    [118]古达东.紫外分光光度法测定蜂蜜中果糖的含量[J].湘潭大学自然科学学报,2003,25(2):4142.
    [119]杨菊文,田树革,董文杰,等.紫外光谱法测定蜂蜂蜜中总糖的含量[J].光谱实验室,2007,24(4):739-742.
    [120]Batsoulis A N, Siatis N G, Kimbaris A C, et al. RT-Raman spectroscopic simultaneous determineation of fructose and glucose in honey[J]. J. Agric. Food Chem.,2005, 53:207-210.
    [121]Lichtenberg-Kraag B, Hedtke C, Bieneffld K. Infrared spectroscopy in routine quality analysis of honey[J]. Apidologie,2007,33:327-337.
    [122]Tewari J, Irudayaraj J. Quantification of saccharides in multiple floral honeys using Fourier transform infrared microattenuated total reflectance spectroscopy [J]. J. Agric. Food Chem.,2004,52:3237-3243.
    [123]Ruoff K, Iglesias M T, Luginbuhl W, et al. Quantitative analysis of physical and chemical measurands in honey by mid-infrared spectrometry [J]. Eur. Food Res. Technol. 2006,223:22-29
    [124]Wang J, Kliks M M, Jun S, et al. Rapid Analysis of Glucose, Fructose, Sucrose, and Maltose in Honeys from Different Geographic Regions using Fourier Transform Infrared Spectroscopy and Multivariate Analysis[J]. Journal of Food Science,2010,75(2): C208-C214.
    [125]林雁匕,何进,操丽丽,等.高效毛细管电泳法测定蜂蜜中的多种糖[J].分析测试学报,2005,24(4):74-76.
    [126]顾大明,鲍治宇,冯立斌.用旋光法测定蜂蜜主要成分含量的研究[J].哈尔滨建筑大学学报,2000,33(4):124-126.
    [127]阎政礼,杨明生,李添宝,等.蜂蜜中葡萄糖、果糖和蔗糖NMR定量分析研究[J].食品科学,2009,30(14):253-255.
    [128]李雪梅,史建国,孙十青,等.蜂蜜中还原糖的流动电化学检测[J].食品与发酵工业,2009,35(7):138-142.
    [129]Cho H J, Hong S H. Acacia honey quality measurement by near-infrared spectroscopy [J]. Journal of Near Infrared Spectroscopy,1998,6,A329-A331
    [130]Ha J, Koo M, Ok H. Determination of the constituents of honey by near-infrared spectroscopy [J]. Journal of Near Infrared Spectroscopy,1998,6, A367-A369.
    [131]Qiu P Y, Ding H B, Tang Y K, et al. Determination of chemical composition of commmerical honey by near-infrared spectroscopy [J]. J. Agric. Food Chem.1999,47, 2760-2765
    [132]Garcia-Alvarez M, Huidobro J F, Hermida M, et al. Major components of honey analysis by near-infrared transflectance spectroscopy [J]. J. Agric. Food Chem.,2000,48, 5154-5158
    [133]Garcia-Alvarez M, Ceresuela S, Huidobro J F, et al. Determination of polarimetric parameters of honey by near-infrared transflectance spectroscopy [J]. J. Agric. Food Chem.,2002,50:419-425
    [134]Ruoff K, Luginbuhl W, Bogdanov S, et al. Quantitative determination of physical and chemical measurands in honey by near-infrared spectrometry [J]. Eur. Food Res. Technol. 2007,225:415-423.
    [135]陈兰珍,孙谦,赵静,等.蜂蜜中果糖含量近红外光谱试验研究[J].中国蜂业,2008,59(12):17-18..
    [136]陈兰珍,薛晓锋,陈芳,等.蜂蜜中还原糖组分测定的近红外光谱应用研究[J].食品科学,2009,30(8):147-150
    [137]张欣,单杨,李水芳.基于多元散射校正和偏最小二乘(MSC/PLS)的傅立叶变换近红外光谱检测蜂蜜中还原糖[J].食品与机械,2009,25(6):109-112.
    [138]屠振华,籍保平,孟超英,等.近红外光谱法测定蜂蜜中主要成分的可行性研究[J].光谱学与光谱分析,2009,29(12):3291-3294.
    [139]屠振华,朱大洲,籍保平,等.蜂蜜中果糖和葡萄糖近红外检测的差异性分析与特征研究[J].分析化学,2010,38(1):45-50.
    [140]张复兴.现代养蜂生产[M].北京:中国农业大学出版社,1998:285-303.
    [141]Devillers J, Morlot M, Pham D M H, et al. Classification of monofloral honeys based on their quality control data [J]. Food Chemistry,2004,86(2):305-312.
    [142]Saric G, Matkovic D, Hruskar M. Characterisation and classification of Croation honey by physicochemical parameters [J]. Food Technology and Biotechnology,2008,46(4): 355-367
    [143]Corbella E, Cozzolino D. Combining multivariate analysis and pollen count to classify honey samples accordingly to different botanical origins [J]. Chilean Journal of Agricultural Research,2008,68(1):102-107.
    [144]Aliferis K A, Tarantilis P A, Harizanis P C, et al. Botanical discrimination and classification of honey samples applying gas chromatography/mass spectrometry fingerprinting of headspace volatile compounds[J].Food Chemistry,2010,121:856-862.
    [145]Tomas-Barberan F A, Martos I, Ferreres F, et al. HPLC flavonoid profiles as markers for the botanical origin of European unifloral honeys [J]. Science Food Agriculture,2001, 81(5):485-496.
    [146]Rebane R, Herodes K. Evaluation of the botanical origin of Estonian uni- and polyfloral honeys by amino acid content [J]. J. Agric. Food Chem.,2008,56:10716-10720.
    [147]Karoui R, Dufour E, Bosset J-O, et al. The use of front face fluorescence spectroscopy to classify the botanical origin of honey samples produced in Switzerland [J]. Food Chemistry,2007,101:314-323.
    [148]Ruoff K, Luginbuhl W, Kunzli R, et al. Authentication of the botanical and geographical origin of honey by mid-infrared spectroscopy[J]. J. Agric. Food Chcm.,2006,54: 6873-6880.
    [149]Bertelli D, Plessi M, Sabatini A G, et al. Classification of Italian honeys by mid-infrared diffuse reflectance spectroscopy (DRIFTS) [J]. Food Chemistry,2007,101:1565-1570.
    [150]Etzold E, Lichtenberg-Kraag B. Determination of the botanical origin of honey by Fourier-transformed infrared spectroscopy:an approach for routine analysis [J]. Eur. Food Res. Technol.,2008,227:579-586.
    [151]Schievano E, Peggion E, Mammi S. H-1 nuclear magnetic resonance spectra of chloroform extracts of honey for chemometric determination of Its botanical origin [J]. J. Agric. Food Chem.,2010,58(1):57-65.
    [152]Kropf V, Golob T, Necemer M, et al. Carbon and Nitrogen Natural Stable Isotopes in Slovene Honey:adulteration and Botanical and Geographical Aspects [J]. J. Agric. Food Chem.,2010,58(24):12794-12803.
    [153]Latorre M J, Pena R, Garcia S, et al. Authentication of Galician (NW Spain) honeys by multivariate techniques based on metal content data [J]. Analyst,2000,125(2):307-312.
    [154]Davies AMC, Radovic B, Fearn T, et al. A preliminary study on the characterization of honey by near infrared spectroscopy [J]. Journal of Near Infrared Spectroscopy.2002,10: 121-135.
    [155]Corbella E, Cozzolino D. The use of visible and near infrared spectroscopy to classify the floral origin of honey samples produced in Uruguay [J]. Journal of Near Infrared Spectroscopy.2005,13:63-68.
    [156]Ruoff K, Luginbuhl W, Bogdanov S, et al. Authentication of the botanical origin of honey by near-infrared spectroscopy[J]. J. Agric. Food Chem.,2006,54:6867-6872.
    [157]杨燕,聂鹏程,杨海清,等.基于可见-近红外光谱技术的蜜源快速识方法[J].农业工程学报,2010,26(3):238-242.
    [158]Woodcock T, Downey G, Kelly J D, et al. Geographical classification of honey samples by near-infrared spectroscopy:a feasibility study [J]. J. Agric. Food Chem.,2007, 55:9128-9134.
    [159]邵咏妮,何勇,鲍一丹.基于独立组分分析和BP神经网络的可见/近红外光谱蜂蜜品牌的鉴别[J].光谱学与光谱分析,2008,28:602-605.
    [160]申奇.几种药用蜜种的鉴别[J].中药材,1996,19(9):447-448.
    [161]刘志明,张瑞,张娟.蜂蜜搀假的物理鉴别法初探[J].现代食品科技,2007,9:77-79,83.
    [162]史琦云,负建民.旋光法检测蜂蜜中掺入糖类的研究[J].食品科学,2003,24(9):111-114.
    [163]Ruiz-Matute A I, Soria A C, Martinez-Castro I, et al. A new methodology based on GC-MS to detect honey adulteration with commercial syrups [J]. J. Agric. Food Chem., 2007,55:7264-7269.
    [164]Bonvehi. Determination of methylanthranilatein citrus honey of eastern Spain and its influence on the diastase activity of the honey [J]. Alimentaria,1986,197:37-40.
    [165]Hui Dobro. Enzymatic determination of glycerol in honey [J]. J. Agric. Food Chem., 1993,41:557-559.
    [166]李军生,何仁,江权燊,等.蜂蜜淀粉酶在鉴别蜂蜜掺假中的应用研究[J].食品科学,2004,25(10):59-62.
    [167]Sanz M L, Castillo M D D, Corzo N, et al.2-Furoylmethyl amino acids and hydroxymethylfural as indicators of honey quality [J]. J. Agric. Food Chem.,2003,51: 4278-4283.
    [168]Cotte J F, Casabianica H, Giroud B, et al. Characterization of honey amino acid profiles using high-pressure liquid chromatography to control authenticity [J]. Anal. Bioanal. Chem.,2004,378:1342-1350.
    [169]Simsek A, Bilsel M, Goren A C.13C/12C pattern of honey from Turkey and determination of adulteration in commercially available honey samples using EA-IRMS. Food Chemistry,2012,130(4),1115-1121.
    [170]Cabanero A I, Recio J L, Ruperez M. Liquid chromatography coupled to isotope ratio mass spectrometry:A new perspective on honey adulteration detection [J]. J. Agric.Food Chem.,2006,54:9719-9727.
    [171]Ruiz-matute A I, Rodri guez-sanchez S, Sanz M L, et al. Detection of adulterations of honey with high fructose syrups from inulin by GC analysis[J].Journal of Food Composition and Analysis,2010,23:273-276.
    [172]Low N H, South W. Determination of honey authenticity by capillary gas chromatography [J].J.AOAC Int.,1995,78:1210-1218.
    [173]Sanz M L, Sanz J; Martinez-Castro I. Gas chromatographic-mass spectrometric method for the qualitative and quantitative determination of disaccharides and trisaccharides in honey [J]. Journal of Chromatography A,2004,1059:143-148.
    [174]Cordella C, Julio S L T M, Marie-Claude C, et al. Detection and quantifyication of honey adulteration via direct incorporation of sugar syrups or bee-feeding:preliminary study using high-performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD) and chemometrics [J]. Analytical Chimica Acta,2005,531: 239-248.
    [175]Morales V, Corzo N, Sanz M L. HPAEC-PAD oligosaccharide analysis to detect adulterations of honey with sugar syrups [J]. Food Chemistry,2008,107:922-928.
    [176]Paradkar M M, Irudayaraj J. Discrimination and classification of beet and cane inverts in honey by FT-Raman spectroscopy [J]. Food Chemistry,2001,76:231-239.
    [177]Sivakesava S, Irudayaraj J. A rapid spectroscopy technique for determining honey adulteration with corn syrup [J]. Journal of Food Science,2001,66:787-792.
    [178]Sivakesava S, Irudayaraj J. Prediction of inverted cane sugar adulteration of honey by Fourier transform infrared spectroscopy [J]. Journal of Food Science,2001,66:972-978.
    [179]Sivakesava S, Irudayaraj J. Classification of simple and complex sugar adulterants in honey by mid-infrared spectroscopy [J]. Int. J. Food Sci. Technol,2002,37:351-360.
    [180]Kelly J D, Doweny G, Fouratier V. Initial study of honey adulteration by sugar solutions using mid-infrared (MIR) spectroscopy and chemometrics[J]. J. Agric. Food Chem., 2004,52:33-39.
    [181]Kelly J D, Cristina P, Gerard D. Application of Fourier transform midinfrared spectroscopy to the discrimination between Irish artisanal honey and such honey adulterated with various sugar syrups [J]. J. Agric. Food Chem.,2006,54:6166-6171.
    [182]尹春玲,胡乐乾,郑晓丹,等.基于荧光光谱和模型识别技术的的掺假蜂蜂蜜识[J].应用化学,2011,28(增刊):151-153.
    [183]Bertelli D, Lolli M, Papotti G, et al. Detection of honey adulteration by sugar syrups using one-dimensional and two-dimensional high-resolution nuclear magnetic resonance[J]. J. Agric. Food Chem.,2010,58(15):8495-8501.
    [184]Cordella C, Antinelli J-F, Aurieres C, et al. Use of differential scaning calorimetry (DSC) as a new technique for detection of adulteration in honey:1. study of adulteration effect on honey thermal behavior[J]. J. Agric. Food Chem.,2002,50:203-208.
    [185]Downey G, Fouratier V, Kelly J D. Detection of honey adulteration by addition of fructose and glucose using near-infrared transflectance spectroscopy [J]. Journal of Near Infrared Spectroscopy.2003,11:447-456.
    [186]Kelly J D, Petisco C, Doweny G. Potential of near-infrared transflectance spectroscopy to detect adulteration of Irish honey by beet invert syrup and high fructose corn syrup[J]. Journal of Near Infrared Spectroscopy.2006,14:139-146.
    [187]Mishra S, Kamboj U, Kaur H, et al. Detection of jaggery syrup in honey using near-infrared spectroscopy[J]. International Journal of Food Sciences and Nutrition,2010, 61(3):306-315.
    [188]Chen L Z, Xue X F, Ye Z H, et al. Determination of Chinese honey adulterated with high fructose com syrup by near infrared spectroscopy[J]. Food Chemistry,2011,128(4): 1110-1114.
    [189]Benedetti S, Mannino S, Sabatini A G, et al. Electronic nose and neural network use for the classification of honey [J]. Apidologie,2004,35(4):397-402.
    [190]董捷.蜂产品加工技术[M].北京:中国农业出版社,2003:29-31.
    [191]Lachman J, Kolihova D, Miholova, et al. Analysis of minority honey components: possible use for the evaluation of honey quality [J]. Food Chemistry,2007,101:973-979.
    [192]Gonzalez-Miret M L, Terrab A, Hernanz D, et al. Multivariate correlation between color and mineral composition of honey and by their botanical origin [J]. J. Agric. Food Chem., 2005,53:2574-2580.
    [193]Wold H. Partial Least Squares [M]. John Wiley & Sons, Inc.,2004.
    [194]BergerA J, Wang Y, Feld M S. Rapid, noninvasive concentration measurements of aqueous biological analytes by near-infrared Raman spectroscopy [J]. Appl Opt,1996, 35(1):209-12.
    [195]Kennard R W, Stone L A. Computer aided design of experiments [J]. Technometrics, 1969,11(1):137-148.
    [196]Daszykowski M, Semeel S, Kaczmarek K, et al. TOM-CAT:A MATLAB toolbox for multivariate calibration techniques [J]. Chemometrics and Intelligent Laboratory Systems, 2007,85(2):269-277.
    [197]F awcett T. An introduction to ROC analysis [J]. Pattern Recognition Letters,2006,27 (8):861-874.
    [198]许禄,邵学广.化学计量学方法[M].2004,第二版,北京:科学出版社.
    [199]Gutes A, Cespedes F, Cartas R, et al. Multivariate calibration model from overlapping voltammetrics signals employing wavelet neural networks [J]. Chemometrics and Intelligent Laboratory Systems,2006,83(2):169-179.
    [200]Li X L, He Y. Discriminating varieties of tea plant based on Vis/NIR spectral characteristics and using artificial neural networks [J]. Biosystems Engineering,2008, 99(3):313-321.
    [201]夏俊芳,李小昱,李培武,等.基于小波变换的柑橘维生素C含量近红外光谱无损检测方法[J].农业工程学报,2007,23(6):170-174.
    [202]Cotte J F, Casabianca H, Lheritier J, et al. Study and validity of 13C stable carbon isotopic ratio analysis by mass spectrometry and H site-specific natural isotopic fractionation by nuclear magnetic resonance isotopic measurements to characterize and control the authenticity of honey[J]. Analytical Chimica Acta,2007,582:125-136.
    [203]Lindner P, Bermann E, Gamarnik B. Characterization of citrus honey by deuterium NMR[J]. J.Agric. Food Chem.,1996,44:139-140.
    [204]Calisir D, Dogantekin E. A new intelligent hepatitis diagnosis system:PCA-LSSVM [J]. Expert Systems with Applications,2011,38(8):10705-10708.
    [205]Borin A, Ferrao M F, Mello C, et al. Least-square support vector machines and near infrared spectroscopy for quantification of common adulterants in powdered milk [J]. Analytical Chimica Acta,2006,579:25-32.
    [206]Vapnik V N. Statistical Learning Theory [M]. New York:John Wiley & Sons,1998.
    [207]Suykens J A K, Vandewalle J. Least squares support vector machine classifiers [J].Neural Processing Letters,1999,9(3):293-300.
    [208]Adankon, M M, Cheriet, M. Model selection for the LS-SVM:Application to handwriting recognition [J]. Pattern Recognition,2009,42 (12):3264-3270.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700