用户名: 密码: 验证码:
大尺寸双肢圆端型钢管混凝土斜拉桥设计与施工关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
圆形钢管混凝土由于其结构上的对称性,能充分发挥钢管对混凝土的“紧箍”效应,应用最为广泛,国内外关于钢管混凝土的研究也多以圆形钢管混凝土为主。近年来,圆端形钢管混凝土双肢结构开始应用在斜拉桥的主塔结构体系中,关于其受力性能的研究较少,也未形成相关的理论体系。
     武汉市后湖斜拉桥主塔采用单索面独塔大尺寸圆端形钢管微膨胀混凝土双肢塔柱。其核心混凝土采用C50自密实微膨胀混凝土,采用高抛施工工艺,混凝土强度在50MPa以上,弹性模量在38GPa以上。本文通过数值模拟、应力监控及试验对钢管混凝土结构的选型、微膨胀高强度钢管混凝土的配合比设计、力学性能及高抛工艺、以及在桥梁施工中的关键技术开展了深入系统的研究工作,研究成果为微膨胀高强钢管混凝土材料的设计、制备与应用提供理论依据和技术支撑。
     本文进行的主要工作和取得的成果有:
     第一,通过建立不同截面形式(圆端形双肢、圆端形单肢、圆形双肢、矩形)的钢管混凝土塔柱模型,在偏压荷载的作用下综合比较四种截面形式塔柱的最不利应力,发现圆端形双肢塔柱在偏压状况下,应力状况最理想,后湖斜拉桥的主塔中塔柱的选型是合理的。
     第二,对钢管混凝土进行配合比设计及现场高抛试验,结果表明:本研究确定的C50自密实钢管混凝土的弹性模量大于38.5Gpa,抗压强度大于60Mpa,配合比设计合理,所配制的混凝土完全满足高抛施工工艺的要求;主塔施工完毕后对钢管混凝土密实度的检测结果也表明,钢管内混凝土密实性良好,混凝土与钢管之间无缝隙,达到工程设计要求。
     第三,介绍了后湖大桥主塔施工中传感器的布置方案、测试仪器和测试工况,根据斜拉桥的施工特点,将测试工况分为轴压受力工况和偏压受力工况,进而分析圆端形钢管混凝土塔柱在不同工况下的受力性能。
     第四,通过试验研究与数值模拟的方法,确定微膨胀C50圆端形钢管混凝土的应力应变关系,并结合工程实例,在几何和材料双非线性影响下,用泊松比的变化来模拟核心混凝土地微膨胀效应,分析施工中圆端形钢管混凝土双肢柱在轴心受压和偏心受压两种情形下的受力性能,用接触分析法和子模型法来研究钢管与混凝土相互作用以及变截面区节点的应力状况,并考察结构在三轴应力下的最不利应力状态。分析结果表明,在考虑混凝土泊松比变化情况下,逐步改变核心混凝土泊松比,与不考虑混凝土泊松比变化的情况相比较,可使极限承载力比不考虑混凝土泊松比变化时的计算值高,体现了钢管对核心混凝土的套箍作用;这种结构在轴心受压时,应力变化很小;在承受偏心荷载时,应力增幅较大,且能充分利用其结构形式上的特点;运用接触分析法和子模型法分别对圆端形钢管混凝土双肢柱及变截面区作了精确的受力分析,得到圆端形钢管混凝土塔柱在轴压和偏压荷载作用下的应力变化规律,找到结构在三轴应力下的最不利应力状态,将理论计算所得的数据与实测数据进行比较,结果表明理论值和实测值吻合较好,表明有限元分析选用的单元、材料以及各种参数是合理的,可以完全反映塔柱在施工阶段的受力性能,为桥梁的施工以及监控工作提供参考依据。
     第五,对圆端形钢管混凝土斜拉桥梁进行了动力特性研究,结果显示桥梁在成桥运营的动力特性正常,结构稳定。
     后湖斜拉桥采用单索面非对称独塔圆端形钢管微膨胀混凝土双肢塔柱,结构设计选型新颖,是一种创新型结构形式;通过截面形式的选型、配合比设计、应力监测和数值模拟,找到了圆端形钢管混凝土在轴压和偏压荷载作用下的应力变化规律及结构的最不利应力状态,并根据实测和理论分析结果对该类构件的设计提出了有益建议。
Because of its structural of symmetry and can make full use of the steel concrete "hoop effect", round-shape Steel Tube-Filled Concrete (CFST) was the most widely used. The study on round-shape CFST is mainly applied in cable-stayed bridge, but for the round-ended CFST coupled column tower, the study of its mechanical properties is less, no less than the theoretical system.
     A large size round-ended Steel Tube-Filled Concrete coupled tower column was used in Houhu bridge with single tower and single cable plane in Wuhan. Its core concrete was C50 self-compacting micro expansion concrete with high dropping construction technology, the strength and the elastic modulus of concrete was 50 MPa above and 38GPa above separately. The suitable type, mixture ratio design, mechanical properties and high dropping construction technology of CFST, as well as the key technology in bridge construction system were studied systematically with numerical simulation, stress monitor and test study in this paper. The research achievement supplied the theory and technology for the design, preparation and application of micro expansion high-strength CFST materials.
     The originality innovation of this thesis is summarized as following:
     Firstly, the models of CFST tower with different cross-section (round-ended coupled limb, round-shape coupled limb, round-ended single limb, rectangular) were established, by imposing eccentric compression, the most unfavorable stress mechanical behaviors are compared. By analyzing stress cloud and extracting the stress data of the characteristic section, the results reflected the advantages of the mechanical behaviors of the round-ended CFST with coupled limb, which was applied in Houhu Bridge.
     Secondly, the mixture ratio design and high dropping construction test of CFST were conducted, the results show that: the C50 self-compacting CFST have reasonable mixture ratio and completely satisfied the requirements for high dropping construction technology, and its elastic modulus is for over 38.5 GPa, while the compressive strength is for over 60Mpa. After the completion of the tower in the construction of CFST tubular, the density detection results show that: the consistency of concrete in the steel of main tower is good, concrete and steel is seamless, which can reach the requirements for engineering design.
     Thirdly, the layout schemes of sensor, the measuring instrument and the load cases in the construction of Houhu Bridge's tower were introduced. According to the characteristic of construction in the cable-stayed bridge, the load cases are divided into axial compression case and eccentric compression case so as to analyze the mechanical behaviors of the rounded-end CFST.
     Fourthly, the stress-strain relationship of the round-ended concrete filled steel tubes were considered with test study and numerical simulation, and based on an example of project, considering the geometrical physical nonlinearities simultane-ously, to simulate the micro-expansive effect by making use of the variation of Poisson's ratio, the mechanical properties of the round-ended CFST coupled column were analyzed with the stress monitoring and numerical simulation in axial compression and eccentric compression, the interaction between the steel and the core, the stress condition of node in the area of the variable cross-section were analyzed with the contact analysis and the sub-model technology, and the most disadvantaged stress state of the structure under the triaxial compression are studied. The result shows that:With the variable concrete Poisson's ratio, comparatively, the bearing capacity analysis considering the variable concrete Poisson's ratio enables to enhance the design capacity, the stress of the structure changes little in axial compression, but increases large while bearing eccentric loads, especially it can make full use of the characteristics of the form of this structure, contact analysis and sub-model method were used to analyze the round-ended CFST coupled tower column and the variable cross-section area respectively, the results reflected the change rules of stress of round-ended CFST tubular tower in axial compression case and eccentric compression case, in addition, the most disadvantaged stress state of the structure under the triaxial compression was found out, the results also prove that the theoretical data is consistent with the measured data, which can indicate that the selection of unit, material and various parameters are reasonable, can fully reflect the carrying capability in the construction of tower, provide the reference for the construction and monitoring for bridge.
     Lastly, the study on the dynamic characteristics of round-ended CFST Bridge was analyzed and the results showed that: the dynamic characteristic of bridge is normal in constructed of bridge and the structure is stable.
     In the analysis of the mechanical behaviors of round-ended CFST tower applied in Houhu cable-stayed bridge with single tower and unsymmetrical single cable plane in Wuhan, which was a innovative structure. An excellent and reasonable design of bridge was obtained with the selection of different tower with different cross-section, the mixture ratio design, stress monitoring and the numerical simulation, the results reflected the change rule of stress of circle-end CFST tower under axial compression case and eccentric compression case. In addition, the most disadvantaged stress state of the structure was found out. Some measures are proposed to this kind of structure members basing on the results of the measured data and the theoretical analysis.
引文
[1]韩林海,杨有福.现代钢管混凝土结构技术(第二版)[M].北京:中国建筑工业出版社,2007
    [2]韩林海.钢管混凝土结构[M].北京:科学出版社,2000
    [3]韩林海.钢管混凝土结构[M].北京:科学出版社,2004
    [4]韩林海,杨有福.现代钢管混凝土结构技术[M].北京:中国建筑工业出版社,2004.
    [5]李帼昌,刘之洋.自应力钢管轻骨料混凝土结构[M].东北大学出版社,2001
    [6]闰东明,林皋.三向应力状态下混凝土强度和变形特性研究[J].中国工程科学,2007,9(6):64-70.
    [7]韩林海,林皋.钢管高强度混凝土结构的特点和发展[J].钢结构,1999,(1):38-45
    [8]钟善铜.钢管混凝土统一理论.北京:清华大学出版,2006
    [9]钟善桐.钢管混凝土结构(第三版)[M].哈尔滨:黑龙江科学技术出版社.2003
    [10]钟善桐.钢管混凝土结构[M].修订版.哈尔滨:黑龙江科学技术出版社,1994
    [11]钟善桐.钢管混凝土统一理论—研究与应用[M].北京:清华大学出版社
    [12]蔡绍怀.现代钢管混凝土结构(修订版)[M].北京:人民交通出版社,2007
    [13]蔡绍怀.钢管混凝土结构的计算与应用[M].北京:中国建筑工业出版社,1989
    [14]混凝土结构设计规范GB 50010-2002》
    [15]天津大学等.混凝土结构[M].中国建筑工业出版社
    [16]宋玉普.钢筋混凝土结构[M].机械工业出版社
    [17]钟善桐.钢管混凝土中钢管与混凝土的共同工作[J].哈尔滨建筑大学学报,2001(1)6-10
    [18]Kloppel V K, Goder W. An investigation of the load carrying capacity of concrete-filled steel tubes and development of design formula [J]. Der Stahlbau,1957,26(1):1-10.
    [19]Gardner J, Jacobon E R. Structural behavior of concrete filled steel tubes [J]. ACI Structural Journal,1967,64(7):404-413.
    [20]Virdi K S, Dowling P J. Bond Structure in Concrete Filled Steel Tubes, IABSE Proceedings P-33/80,1980,125~139
    [21]Morishita Y, Tomii M. Experimental Studies on Bond strength in Concrete Filled Circular Steel Tubular Columns Subjected to Axial loads, Transactions of Japan Concrete Institute, 1979 (1):351-358
    [22]Tomii M. Basic Study on Bond Strength Between Steel and Concrete in Concrete-Filled Circular Steel Tubes. Abstracts of Annual Convention of Architectural Institute of Japan, 1977
    [23]Virdi K S, Dowling P J. Bond Structure in Concrete Filled Circular Steel Tubes. CESLIC Report CCII, Department of Civil Engineering, Imperial College, London,1975
    [24]Shakir-Khalil H. Push-out Strength of Concrete- Filled Steel Hollow Sections, The Structural Engineer,1993.71(13):230~243.
    [25]Roeder C W, Cameron B. Brown C B. Composite Action in Concrete Filled Tubes. Journal of Structural Engineering, ASCE,1999,125 (5):477~84.
    [26]王湛.钢管混凝土工作机理及性能的研究[D].哈尔滨:哈尔滨建工学院,1993.
    [27]胡曙光,丁庆军.钢管混凝土[M].北京:人民交通出版社,2006:122-124.
    [28]丁庆军.高强次轻混凝土的研究与应用[D],武汉理工大学博士学位论文,2006.
    [29]黄陂区孝天公路延长线后湖大桥施工图变更设计(上、下册).武汉:武汉公路勘察设计院,2006
    [30]后湖大桥主塔圆端形钢管混凝土双肢塔柱数值模拟与监测技术研究报告.武汉:武汉理工大学,2008
    [31]陈猛.后湖斜拉桥钢管混凝土塔柱受力性能分析[D].武汉理工大学硕士学位论文,2008.6
    [32]蔡崇华,谢建雄.微膨胀圆端形钢管混凝土力学性能研究[J].建材世界2009,30(2):148-151.
    [33]谢建雄,蔡崇华,卢哲安,任志刚.微膨胀钢管混凝土双肢柱试验研究与数值模拟[J]武汉大学学报(工学版).2010,08.
    [34]Ding Qinjun, TianYaogang, etal. Autogenously Shrinkage of High Strength Lightweight Aggregate Concrete, Journal of Wuhan university of technology,2005, Vol20, No4:123-125.
    [35]彭艳周,丁庆军,等.早强微膨胀泵送C50钢管混凝土的研制[J].武汉理工大学学报.2006,28(3):39-42.
    [36]Wang C, Guo Z, Zhang X. Experimental investigation of biaxial and triaxial compressive concrete strength [J]. ACI Materials Journal,1987,84(2):92~100.
    [37]卢哲安等.钢管高强低热微膨胀混凝土自应力试验研究[J].建筑结构,2001.7
    [38]尧国皇.钢管初应力对钢管混凝土压弯构件力学性能的影响研究[D]福州大学,2003
    [39]姚武,钟文慧.自密实自应力钢管混凝土计算分析[J].建筑材料学报,2003,6(4):369-373.
    [40]王方立,汪嘉锉,等.自应力钢管混凝土研究[J].北京:北京工业大学学报,1998,24(2):64-70.
    [41]Xiong D X, and X X Zha, A numerical investigation on the behaviour of Concrete filled steel tubular columns under initial stresses. Journal of Constructional Steel Research,2007.63(5): 599-611.
    [42]吕惠卿,张湘伟.振弦式应变计在水泥混凝土路面力学性能测试中的应用.公路交通科技(应用技术版),2004,35-37
    [43]巴里·塞勒斯,袁远.振弦式传感器在大坝安全监测中的应用.水利水电快报,2001,2219):19~20
    [44]卡拉别加.高应力作用下混凝土的徐变.科学出版社,2000(1):12~15
    [45]陈常松,颜东煌,陈政清.混凝土振弦式应变计测试技术研究.中国公路学报2004,17(1):29-33.
    [46]李东,晆少辉.长江隧道70m箱梁混凝土温度及应力监测[J].混凝土,2007,28(10):102-106.
    [47]陈树礼,苏木标,等.吴忠黄河大桥施工阶段应力监测实验研究.公路交通科技[J].2006,38(7):93-96.
    [48]Tsutou Usami and Hanbin Ge. Ductility of Concrete- filled Steel Box Columns under Cyclic Loading [J]. Journal of Structural Engineering,1994,120(7)
    [49]钟善桐,苗若愚.钢管混凝土短柱轴心受压构建承载力计算的研究[J].建筑结构学报,1984(6)
    [50]蔡绍怀,焦占栓.钢管混凝土短柱基本性能好强度计算[J].建筑结构学报,1984(6)
    [51]Xu Ji-shan. The Triaxial Behaviour of Concrete and Its Application to Concrete Filled Steel Tube. Proc., ISCCFTS, Harbin, China, Aug.,1985
    [52]Kenji Sakino, Tomii M. Sustaining Load Capacity of Plain Concrete Confined by Circular Steel Tube. Proc., ISCCFTS, Harbin, China, Aug.,1985
    [53]谢建雄,蔡崇华,卢哲安,任志刚.基于子模型法的CFST塔柱变截面区有限元分析[J]武汉理工大学学报.2010,07.
    [54]CJOJ1-02,钢管混凝土结构设计与施工规程
    [55]胡庆安等.泊松比对钢管混凝土拱桥极限承载力的影响[J].应用力学学报,2006,23(1):128-131.
    [56]王国强,实用工程数值模拟技术及其在ANSYS上的实践.西北工业大学出版社,1999
    [57]李彬,圆端形钢管混凝土塔柱钢管与混凝土相互作用研究[D],武汉理工大学硕士论文,2009
    [58]何政,欧进萍.钢筋混凝土结构非线性分析[M].哈尔滨工业大学出版社
    [59]王焕定王伟.有限单元法教程[M].哈尔滨工业大学出版社
    [60]商晓江,邱峰等.ANSYS结构有限元高级分析方法与范例应用[M].中国水利水电出版社[M]
    [61]倪栋.通用有限元分析ANSYS7.0实例精解[M].电子工业出版社
    [62]刘坤.ANSYS有限元方法精解[M].国防工业出版社
    [63]博奕创作室.ANSYS7.0基础教程与实例详解[M].中国水利水电出版社
    [64]郝文化ANSYS土木工程应用实例[M].中国水利水电出版社
    [65]吕西林,金国芳等.钢筋混凝土结构非线性有限元理论与应用[M].同济大学出版社
    [66]袁伟斌,金伟良.离心钢管混凝土弯扭构件试验研究与理论分析.浙江大学学报[J].2008,42(1):116-121.
    [67]邓远征.钢骨—钢管混凝土轴压短柱承载力和组合刚度研究[D],大连理工大学硕士学位论文,2005.
    [68]罗玉龙,彭华,游春华,汤正阳.狄港大跨越群桩非线性有限元接触分析.武汉大学学报(工学版),2007,40(1):87-91
    [69]程昌钧.弹性力学[M].兰州大学出版社,1994
    [70]傅衣鸣,罗松南,熊慧而.弹塑性理论[M].湖南大学出版社,1996
    [71]王敏中,圣维南原理发展简介,力学与实践,第四期(1980).
    [72]博嘉科技.有限元分析软件---ANSYS融会与贯通[M].北京:中国水利水电出版社.2002.
    [73]陈精一,蔡国忠.电脑辅助分析----ANSYS使用指南[M].北京:清华大学出版社.2002
    [74]王勖成,邵敏.有限单元法基本原理和数值分析[M].北京:中国铁道出版社.2001
    [75]张立明ALGOR.ANSYS在桥梁工程中的应用方法与实例[M].北京:人民交通出版社,2003.
    [76]章关永.桥梁结构试验[M].北京:人民交通出版社,2002.1
    [77]项海帆.高等桥梁结构理论[M].北京:人民交通出版社,2001.4
    [78]谵润水,胡钊芳.公路桥梁荷载试验[M].北京:人民交通出版社,2003.12
    [79]XIE Jian-xiong, LU Zhe-an. Modal Analysis and Experimental Study on Round-ended CFST Coupled Column Cable Stayed Bridge. MACE2011. inner Mongolia, China, July 15-17,2011
    [80]徐小波,谢建雄等.汽车直拉杆的力学性能动态测试及其模态分析[J].武汉理工大学学报2007.5
    [81]薛立红,蔡绍怀.钢管混凝土柱组合界面的粘结强度.建筑科学,1996(3):22~28
    [82]Khalil H S. Resistance of Concrete-Filled Steel Tubes to Push-out Force, The Structural Engineer,1993,71 (13):234-243
    [83]薛立红,蔡绍怀.荷载偏心率对钢管混凝土柱组合界面粘结强度的影响.建筑科学,1997(2):22~25
    [84]叶跃忠.混凝土脱粘对钢管混凝土中、低长柱性能的影响.铁道建筑,2001(10):2-5
    [85]姜绍飞,韩林海,乔景川.钢管混凝土中钢与混凝土粘结问题初谈.哈尔滨建筑大学学报,2000(2):24~28
    [86]徐有邻.变形钢筋-混凝土粘结锚固性能的试验研究.清华大学博士论文,1990
    [87]森下阳一,富井政英,吉村浩二.关于角形钢管混凝土柱内钢管与充填混凝土间粘结性状的研究.混凝土工学年次讲演会讲演论文集,昭和54年(120):477~480
    [88]富井政英,吉村浩二,森下阳一.关于正方形和正八角形钢管混凝土柱内钢管与充填混凝土间粘结性状改善法的试验研究.昭和55年(94):373~376
    [89]Tomii M. Bond Check for Concrete-Filled Steel Tubular Columns. Composite and Mixed
    [90]Constructions, ASCE, Reston,1984.195~214
    [91]杨勇,赵鸿铁,薛建阳.型钢混凝土粘结机理与粘结强度的研究.西安建筑科技大学学报,2001(2):103~107
    [92]钟善桐.钢管混凝土的刚度分析.哈尔滨建筑大学学报,1999(3):13~18
    [93]H. Shakir-Khalil. Resistance of Concrete-filled Steel Tubes to Push-out Forces. The Structural Engineer,1993,71 (13/6):234~243
    [94]Bazant Z P. Task Committee on Finite Element Analysis of Reinforced Concrete Structures.
    [95]State-of-the Art Report on Finite Element Analysis of Reinforced Concrete, New York: Published by ASCE,1982
    [96]Bangash M Y H. Numerical modelling of bond and bond-slip. Concrete and Concrete Structures:Numerical Modelling and Applications. London, Elsevier Applied Science,1985
    [97]宣兆城,李兴斯.接触分析的光滑模型及迭代算法.力学学报,2001,33(3):340~348
    [98]马季道夫(俄).土体与混凝土结构相互作用的数值模拟.水利水电快报,2002,8
    [99]陈波.土-桩基-结构动力相互作用体系的模拟及分析.上海:同济大学,2002
    [100]CECS2:02,钢管混凝土结构设计与施工规程
    [101]DL/T5085-1999,钢-混凝土组合结构设计规程
    [102]P H Emmons, A M Vaysburd, J E McDonald, et al.Selecting durable repair materials: performance criteria. Concrete International,2000,3
    [103]Standard Specification for concrete Structures-2002, Materials and Construction, Japan Society of Civil Engineer,2002,52-53
    [104]Sherif E1—Tawil, Deierlein Gregory G. Nonlinear Analysis of Mixed Steel-Concrete Frames.11: Implementation and Verification. Journal of Structural Engineering,2001, 127(6):656-665
    [105]Rangan, B. V., and Joyce, M. Strength of eccentrically loaded slender steel tubular columns filled with high strength concrete. ACI Struct.1992,89 (6),676-681.
    [106]Shan-Tong Zhong, Hong-Tao Cheng and Sui-Mei Zhang.The Continuity of Behaviours for Circular, Square and Octagonal Forms for Concrete Filled Steel Tube (CFST) Members under Axial Compression. International Journal of Steel Structures,2002,12(2), (Korea)
    [107]张巍,吕志涛.光纤传感技术用于桥梁监测.公路交通科技,2003,3
    [108]R.kunimori et al, on the Coefficient of thermal Expansion of Young Concrete, Proceedings of the Japan Concrete Institute,2000,22,1033-1038
    [109]Koji Morita, Gong yi Fu, Masaru Tiraoka, et al Experimental study on connections with eccentricity between concrete filled square tubular steel column and steel beam. Tokyo: Pacific Structural Steel Conference,1994.25-32
    [110]Massimo Laffranchi, Peter Marti. Robert Maillart's Curved Concrete Arch Bridges. Journal of structural engineering.1997,123(10):1280-1286
    [111]陈洪涛,钟善桐,张素梅.钢管混凝土中混凝土的三向本构关系[J].哈尔滨建筑大学学报,2000,33(6):13-16.
    [112]丁庆军,彭艳周,等.巫山长江大桥钢管混凝土配合比与施工[J].混凝土,2006(10):61-64.
    [113]Lally Column Company. Lally Handbook of Lally Column Construction [M]. Steel Columns-Concrete Filed. Tenth Edition, New York,1926
    [114]李悦,胡曙光,丁庆军.钢管膨胀混凝土的研究及其应用[J].山东建材学院学报,2000,14(3):189~192.
    [115]杨克锐,张彩文,郭永辉,等.延缓硫铝酸盐水泥凝结的研究[J].硅酸盐学报,2002,30(2):155-160.
    [116]张宇峰,谈文龙,对等效荷载法的几点看法和建议,江苏交通科技,NO.6,2003
    [117]P H Emmons, A M Vaysburd, J E McDonald, eta 1.Selecting durable repair materials: performance criteria. Concrete International,2000,3.
    [118]徐定华,徐敏.混凝十材料学概论[M].中国标准出版社,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700