用户名: 密码: 验证码:
压力分散型锚索加固边坡效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文依托国家自然科学基金(50874085)“边坡加固的压力分散型锚索的加固机理与设计方法”和广东省科技计划项目(63123),以广贺高速公路建设工程为工程背景,通过室内模型试验和数值模拟方法系统研究了压力(分散)型锚索加固边坡的锚固效应。
     (1)简要介绍了相似原理、有限元强度折减法、极限平衡条分法以及离心机试验原理等相关基础理论。
     (2)在相关文献查阅基础上,受离心机模型试验原理和有限元强度折减法的启示,结合前期试验的经验,提出了模型试验思路。针对岩土工程多功能试验装置进行复杂边坡稳定性评价模型试验,创造性地提出了边坡内采用埋置钢管+配重的试验方案。针对提出的方案,应用FLAC软件分析研究了无钢管、边坡内部加设钢管且钢管与岩体边坡介质间粘聚力较小和粘聚力较大三种情况下钢管对边坡稳定性影响的变化规律。通过对计算结果的应力、位移以及边坡安全系数、剪切应变增量及塑性破坏区云图的对比分析,得出加钢管的方法会对边坡体的稳定性造成一定程度的影响,但是当钢管与介质材料之间界面c、ψ足够小时,这种影响作用可以忽略不计。验证了提出试验方案的可行性和合理性,并建议在室内模型中对钢管进行相应处理。
     (3)采用室内模型试验方法研究了压力(分散)型锚索的加固效应。以广贺高速公路第6标段K24+583~K24+810右侧的路堑高边坡为试验原型,设计制作了模型。试验中采用对Ⅰ~#模型(无锚边坡)、Ⅱ~#模型(锚固边坡)增加配重的方式使其发生破坏,通过分析边坡的变形情况、锚索预应力的变化规律以及锚索轴力的分布情况,研究了边坡的位移形态、压力(分散)型锚索的锚固效应,以及压力(分散)型锚索力的传递机理,并且基于相似原理、强度折减法以及极限平衡条分法推导了求解边坡的安全系数方法。在传统理论基础上提出一种计算安全系数的新方法,计算求得原型无锚边坡和群锚加固后边坡的安全系数,分别为1.073和1.444,满足边坡稳定性设计要求。
     (4)针对模型试验的模型,采用FLAC~(3D)对试验内容进行数值模拟计算。对无锚边坡和加固后边坡的稳定性以及压力(分散)型锚索的锚固效应进行了分析研究,研究结果显示:增加自重边坡发生了滑移,加固后边坡的安全系数大大提高,由无锚边坡的1.07提高到了锚固后的1.47,数值计算结果基本与模型试验相符合,更全面清晰的了解了锚索的加固效果,也进一步验证了试验方案的可行性。
     (5)在模型试验中通过旋转边坡降低了边坡的稳定性,加载使其失稳破坏,通过数值模拟,研究了边坡旋转和加载过程对边坡滑移面以及安全系数的影响。
     (6)依据广贺高速公路第6标段K24+583-K24+810右侧的路堑高边坡现场设计资料,作为室内模型试验的补充,采用数值模拟方法研究了边坡边开挖边锚固过程对边坡稳定性的影响,从边坡岩土体的受力特点、边坡的稳定性以及各工况压力分散型锚索的加固效应等方面进行了相关分析。研究结果显示:无锚边坡开挖后,安全系数为1.06,不满足工程设计要求,加固后边坡稳定性明显增加,为1.49,完全满足边坡稳定性设计要求。
Depended on the National Science Foundation of China (50874085) with title of "anchor reinforcement mechanism and design method of pressure diffusion cable in slope reinforcement" and the Guangdong Provincial Science and technology plan project (63123), the stress features and anchoring role of the pressure diffusion cable is studied by means of indoor model experiment and numerical simulation as engineering background of Guanghe highway construction projects in this paper. The main contents of the research are as follows:
     ①The general concept of similarity principle, finite-element strength reduction, limit equilibrium slice and centrifuge modeling test methods are briefly introduced.
     ②By the principle of centrifuge model tests and finite element strength reduction, as well as pre-trial experience, the test program was proposed in this paper. Multi-function testing equipment for the geotechnical engineering is used to evaluate slope stability model for complex slope. The test program which the buried pipe and added loading in the slope was creatively put forward. In response to the program, FLAC was used to analyze the variation of slope stability of 3 cases as the non-steel pipe, within steel pipe, smaller or greater cohesion force between the rock slope and the media. Through the comparative analysis of slope's stress, displacement and safety factor, shear strain increment and the velocity vector, the results showed that the intensity variation of slope would be changed when the slope was placed by steel pipes. However, this influence was negligible when the shear strength indicators c、φbetween the steel and the media material is enough to small. The model test was recommended to reduce the shear strength indicators c.φ, which could verify feasibility and rationality of the test program.
     ③Indoor model test was used to research the reinforcement effect of slope enforced by the distributed pressure-type unbonded pretressed anchorage cable. As Guanghe Highway of the No.6 Section from K24+583 to K24+810 of the right slope is the experimental prototype. The test model was designed based on the similar principles; In this experiment component ofⅠ~#model (non-reinforced slope),Ⅱ~# model (after anchoring slope), the slopes are increased weight to slide. The slope's deformation, the pre-stressed anchor's change and prestressed anchor the distribution of axial force were analyzed. And the destructive state of the slope and the pressure of the anchoring effect of dispersed, as well as pressure dispersed anchor force transfer mechanism were learned. Besides, a new method for calculating the safety factors was used based on similar principles, strength reduction, and limit equilibrium method of sub-solving the slope of the safety factor. The calculation results showed that the safety factor of the prototype non-anchor slope was 1.073 and the safety factor of the prototype anchor slop was 1.444, which meet the slope stability design requirements.
     ④Using FLAC3D, numerical simulation was acceptd to analyzed the research content of the model test. The slope's stability with no reinforcement and the reinforced slope's stability, and the anchoring effect of the pressure diffusion cable are learned. The results showed that:increasing the slope weight can make the slope sliding occurred and the slope whose safety factor would be greatly improved from 1.07 to 1.47. The numerical calculation results are similar with the model test results to master the reinforcing effect of the anchor, which could forward to verify rationality of the test program.
     ⑤The slope's stability was reduced by rotating the slope model in the model experiment, while, slope could be slided by increase loading. The slope's rotation and the loading process were studied for the slip surface and safety coefficien by numerical simulation.
     ⑥According to the design data of right side high slope-site at No.6 tenders(K24+583-K24+810) in Guanghe highway, as a complement of indoor model experiment, numerical simulation is used to study he impact of failure on the slope stability during excavation while anchoring. And the stress feature, slope stability, and dispersed anchor reinforcement effect of working conditions are analyzed in this paper. The results showed that:the slope's safety factor with no anchor is 1.06, which can not meet the requirement of engineering design. So the reinforced slope stability increased significantly and the safety factor was 1.49, which all meet the slope stability design requirements.
引文
[1]程良奎,范景伦,韩军等.岩土锚固[M].北京:中国建筑工业出版社,2003.
    [2]程良奎.我国岩土锚固技术的现状与发展.见:中国岩土锚固工程协会主编.岩土工程中的锚固技术.北京:地震出版社.1992.
    [3]许有飞.压力(分散)型锚索锚固机理及工程应用研究[硕士学位论文][D].成都:四川大学硕士论文,2005.
    [4]黄福德.李家峡水电站层状岩质高边坡现场大型预应力群锚加固机理试验研究[J].西北水电,1995,4:46-55,60.
    [5]张发明,刘宁,赵维炳等.岩质边坡预应力锚索加固的优化设计方法[J].岩土力学,2002,23(3):187-190.
    [6]徐祯祥.岩土锚固工程技术发展的回顾.岩石锚固技术与西部开发论文集.北京:人民交通出版社,2002.
    [7]徐年丰,陈胜宏.我国岩土预应力锚索加固技术的发展与存在的问题[J].水利水电快报,2001,22(10):20-23.
    [8]TH.汉纳著,胡定等译.锚固技术在岩土工程中的应用.北京:中国建筑工业出版社,1987.
    [9]张玉芳,李奇平,张治平.预应力锚索抗滑桩工程中锚索拉力实测与分析[J].中国铁道科学,2003,24(3):21-25.
    [10]任青文,罗军.锚杆应用及加固机理研究综述[J].水利水电科技进展,1997,17(1):29-33.
    [11]陈祖煜,杨健.岩土预应力锚固技术的进展[J].贵州水力发电,2004,18(5):5-10.
    [12]孙学毅.边坡加固机理探讨[J].预应力技术,2005,3:21-26.
    [13]张四平,侯庆.压力分散型锚杆剪应力分布与现场试验研究[J].重庆建筑大学学报,2004,26(2):41-47.
    [14]王清标,牛军,王立华等.高边坡压力分散型预应力锚索施工工艺研究[J].预应力技术,2007,64(5):18-21.
    [15]吴学兵,靖洪文.压力分散型锚索剪应力分布规律的研究[J].山西建筑,2006,32(6):82-83.
    [16]曹兴松,周德培.压力分散型锚索锚固段的设计方法[J].岩土工程学报,2005,27(9):1033-1039.
    [17]王兴国,罗维宏,李鑫等.压力分散型锚索在边坡工程中的设计与应用[J].公路,2005,99-105.
    [18]尤春安.压力型锚索锚固段的受力分析[J].岩土工程学报,2004,26(6):828-831.
    [19]黄静美,许有飞,何江达等.压力分散型预应力锚索对边坡危岩体的加固效应分析[J].公路交通技术,26,4:17-22.
    [20]刘士虎.压力分散型预应力锚索结构与受力状态的研究[硕士学位论文][D].长春:吉林大学硕士论文,2006.
    [21]李国正.压力(分散)型锚索锚固作用的现场试验及数值模拟[硕士学位论文][D].成都:四川大学硕士论文,2005.
    [22]盛宏光.压力分散型锚索锚固性能与设计方法研究[硕士学位论文][D].成都:成都理工大学硕士论文,2003.
    [23]顾金才,沈俊,陈安敏等.预应力锚索加固机理及设计计算方法研究.第八次全国岩石力学与工程学术大会论文集,2004:32-39.
    [24]沈俊.预应力锚索加固机理与设计计算方法研究[博士学位论文][D].合肥:中国科技大学,2005,2.
    [25]李之光.相似与模拟(理论及应用).国防工业出版社,1982.
    [26]郑鸿泰.论岩石工程问题的相似材料模拟试验.见:第一界全国岩石力学数值与模型试验研讨会论文集.西南交通大学出版社,1988.
    [27]Zienkiewicz O C, Humpheson C, Lewis R W. Associated and non-associated visco-plasticity and plasticity in soil mechanics [J]. Geo technique,1975,25(4):671-689.
    [28]Naylor D J.Finite elements and slope stability [A].In:Numerical Methods in Geomechanics, Proceedings of the NATO Advanced Study Institute[C].Lisbon, Portugal:[s.n.], 1981.229-244.
    [29]Dawson E M, Roth W H, Drescher A.Slope stability analysis by strength reduction[J].Geotechnique,1999,49(6):835-840.
    [30]Donald I B, Giam S K.Application of the nodal displacement method to slope stability analysis[A].In:Proceedings of the 5th Australia-New Zealand Conference on Geomechanics[C].Sydney,Australia:[s.n.],1988.456-460.
    [31]Matsui T, San K-C. Finite element slope stability analysis by shear strength reduction technique [J]. Soils and Foundations,1992,32(1):59-70.
    [32]Duncan J M.State of the art:limit equilibrium and finite element analysis of slopes[J].Journal of Geotechnical and Geoenvironmental Engineering,1996,122(7):577-569.
    [33]Griffiths D V, Lane P A.Slope stability analysis by finite elements[J].Geotechnique,1999, 49(3):387-403.
    [34]Lane P A, Griffiths D V. Assessment of stability of slopes under drawdown condition [J]. Geotech Geoenv Eng ASCE,2000,126(5):443-450.
    [35]Smith IM, Griffiths D V. Programming the Finite Element Method,3rd Edition [M]. John Wiley and Sons Chichester, NewYork.,1998.
    [36]Matsui T, San K C.Finite element slope stability analysis by shearstrength reduction technique[J].Soils and Foundations,1992,32(1):59-70.
    [37]Ugai K, Leshchinsky D.Three-dimensional limit equilibrium and finite element analyses:a comparison of results[J].Soils and Foundations1995,35(4):1-7.
    [38]郑颖人,赵尚毅.有限元强度折减法在土坡与岩坡中的应用[J].岩石力学与工程学报,2004,23(19):3381-3388.
    [39]栾茂田,武亚军,年廷凯.强度折减有限元法中边坡失稳的塑性区判据及其应用[J].防灾减灾工程学报,2003,23(3):1-8.
    [40]宋二祥.土工结构安全系数的有限元计算[J].岩土工程学报,1997,19(2):1-7.
    [41]连镇营,韩国城,孔宪京.强度折减有限元法研究开挖边坡的稳定性[J].岩土工程学报,2001,23(4):407-411.
    [42]郑宏,李春光,李焯芬,等.求解安全系数的有限元法[J].岩土工程学报,2002,24(5):626-628.
    [43]唐春安,李连崇,李常文等.岩土工程稳定性分析RFPA强度折减法[J].岩石力学与工程学报,2006,25(8):1522-1530.
    [44]李亮.智能优化算法在土坡稳定分析中的应用[博士学位论文][D].大连:大连理工大学,2005,10.
    [45]陈希哲.土力学地基基础(第4版).清华大学出版社,2004.
    [46]蔡正银,李景林,徐光明,焦志斌.土工离心模拟技术及其在港口工程中的应用[J].港工技术,2005,12(增):47-50.
    [47]刘守华,蔡正银,徐光明等.用离心模型研究港区软基变形特性[J].工业建筑,2004,34(12):54-58.
    [48]陈桂香,孙红亮,肖昭然.CFG桩复合地基处理软弱地基的离心机实验研究[J].建筑科学,24-27.
    [49]卢国胜,蒋昌贵,王迅.搅拌桩处理软土地基的离心机试验研究[J].岩土力学,2007,28(10):2200-2204.
    [50]张俊,杨志银.土工离心模型试验的发展与应用[J].岩土工程界,2004,8(6):29-30.
    [51]钱立平,马建林.土工离心模型试验原理与若干问题分析[J].路基工程,2007,(03).
    [52]DEWOOLKAR MANDAR M,KO Hon-Yim,STADLER ALAN T,et al.A substitute pore fluid for seismic centrifuge modeling[J].Geotechnical Testing Journal,1999,22(3):196-210.
    [53]Zhang M.Centrifuge modelling of potentially liquefiable loose fill slopes with and without soil nails [D].Hong kong:Hong Kong University of Science and Technology,2006.
    [54]Garnier J. Properties of soil samples used in centrifuge models [A].Physical Modelling in Centrifgue,ICPMG02[C].[s.l.]:Phillips,2002,5-19.
    [55]Laut P.Application of centrifugal model tests in connection with studies of flow patterns of contaminated water in soil structures[J].Geotechnique,1975,25:401-406.
    [56]SUN L X. Centrifugemodeling and finite element analysis ofpipeline buried in liquefiable soil[D]. USA:ColumbiaUniversity,2001.
    [57]MARK C, GEMPERLINE D,HON Y.Centrifuge model tests for ultimate bearing capacity of footing on step slopes in cohesionless soils[C]//Proc of Int Conference Centrifuge'88,1988:203-221.
    [58]Santamarina J C, Goodings D J. Centrifuge modeling:a study of similarity. Geotechnical Testing Journal,GTJODT,1989,17(2):163-166.
    [59]LEI Guo-hui,SHI Jian-yong. Physical meanings of kinematics in centrifuge modelling technique[J]. Rock and Soil Mechanics,2003,24(3):188-193.
    [60]Schofield A N.An introduction to centrifuge modeling[A].Centrifuges in soil mechanics[C],Rotterdam, Balkema, Craig,James & Schofield(eds),1988:1-9.
    [61]Ng C W W.Applications of geotechnical centrifuge modelling techniques for engineering designs[A].Proc.Construction Challenges into the Next Century[C].The Hong Kong Institution of Engineers.1999:241-252.
    [62]张嘎,王爱霞,张建民,李焯芬.土工织物加筋土坡变形和破坏过程的离心模型试验[J].清华大学学报(自然科学版),2008,48(12):2057-2060.
    [63]Sharma J S, Bolton M D. Centrifuge modeling of anembankment on soft clay reinforced with a geogrid [J].Geotextiles and Geomembranes,1996,14(1):1-17.
    [64]Porbaha A, Goodings D J. Centrifuge modeling ofgeotextile-reinforced steep clay slopes [J].Can Geotech J,1996,33(5):696-703.
    [65]Zornberg J G, Sitar N, Mitchell J K. Performance of geosynthetic reinforced slopes at failure [J].J Geotech Geoenvir Eng,ASCE,1998,124(8):670-682.
    [66]LU Xun-sun.Centrifuge modeling and finite elementanalysis of pipeline buried in liquefiable soil[D].[S.l.]:Columbia University,2001.
    [67]高长胜,徐光明,张凌,杨守华.边坡变形破坏离心机模型试验研究[J].岩土工程学报,2005,27(4):478-481.
    [68]章为民,窦宜.土工离心模拟技术的发展[J].水利水运科学研究,1995,(3):294-301.
    [69]包承纲,饶锡保.土工离心模型的试验原理[R].长江科学院院报,1998,15(2):1-5.
    [70]杜延龄.土工离心模型试验基本原理及其若干基本模拟技术研究[J].水利学报,1993,(8):19-27.
    [71]Itasca Consultinig Group,Inc.,. Fast Lagrangian analysis of Continue in 3 Dimensions,Version 3.0, User's mannual. USA:Itasca Consultinig Group,Inc,2005.
    [72]胡斌,张倬元,黄润秋,许强.FLAC3D前处理程序的开发及仿真效果检验.岩石力学与工程学报,2002(9):1387-1391.
    [73]黄润秋,许强.显示拉格朗日差分分析在岩石边坡工程中的应用.岩石力学与工程学报,1995,14(4):346-354.
    [74]寇晓东,周维垣,杨若琼.FLAC3D进行三峡船闸高边坡稳定分析.岩石力学与工程学报,2001,20(1):6-10.
    [75]谢和平,周宏伟,王金安等.FLAC在煤矿开采沉陷预测中的应用及对比分析.岩石力学与工程学报,1999,18(4):397-401.
    [76]范卫琴.锚索预应力损失规律的数值模拟.[硕士学位论文][D].武汉:武汉理工大学,2007,5.
    [77]陈育民,徐鼎平.FLAC/FLAC~(3D)基础与工程实例.北京:中国水利水电出版社,2009.
    [78]李仲奎,卢达溶,中山元等.三维模型试验新技术及其在大型地下洞群研究中的应用[J].岩石力学与工程学报,2003,22(9):1430-1436.
    [79]曾亚武,赵震英.地下洞室模型试验研究[J].岩石力学与工程学报,2001,20(增):1745-1749.
    [80]顾金才,沈俊,陈安敏等.锚索预应力在岩体内引起的应变状态模型试验研究[J].岩石力学与工程学报,2000,19(增):917~921.
    [81]陈安敏,顾金才,沈俊,等.地质力学模型试验技术应用研究[J].岩石力学与工程学报,2004,23(22):3785-3789.
    [82]张林,费文平,李桂林,等.高拱坝坝肩坝基整体稳定地质力学模型试验研究[J].岩石力学与工程学报,2005,24(19):3466-469.
    [83]袁大祥,朱子龙,朱乔生.高边坡节理岩体地质力学模型试验研究[J].三峡大学学报(自然科学版),2001,23(3):193-212.
    [84]黄昌乾,丁恩保.边坡工程常用稳定性分析方法[J].水电站设计,1999,15(1):53-58.
    [85]林韵梅.试验岩石力学——模拟研究[M].北京:煤炭工业出版社,1984.
    [86]陈从新,黄平路,卢增木岩层倾角影响顺层岩石边坡稳定性的模型试验研究[J].岩土力学,2007,28(3):476-481.
    [87]陈安敏,顾金才,沈俊等.岩土工程多功能模拟试验装置的研制及应用[J].岩石力学与工程学报,2004,23(3):372-378.
    [88]刘波,韩彦辉.FLAC原理、实例与应用指南.北京:人民交通出版社,2005:7-46.
    [89]Hoek, E., and E. T. Brown. "Practical Estimates of Rock Mass Strength," Int. J. Rock Mech. Min.Sci.,34(8),1165-1186 (1998). Hoek, E., and E. T. Brown. Underground Excavations in Rock. London:MM,1980.
    [90]Cundall, P., C. Carranza-Torres and R. Hart. "A New Constitutive Model Based on the Hoek-Brown Criterion," in FLAC and Numerical Modeling in Geomechanics-2003 (Proceedings of the 3rd International FLAC Symposium, Sudbury, Ontario, Canada, October 2003), pp.17-25.R. Brummer et al., Eds. Lisse:Balkema,2003.
    [91]McGuire, W., and R. H. Gallagher. Matrix Structural Analysis. New York:John Wiley& Sons, Inc.,1979.-Beneito, C. and Ph. Gotteland. "Three-Dimensional Numerical Modeling of Geosynthetics Mechanical Behavior," in FLAC and Numerical Modeling in Geomechanics (Proceedings of the Second International FLAC Symposium on Numerical Modeling in Geomechanics, Lyon, France,29-31 October 2001). D. Billaux, X. Rachez, C. Detournay and R. Hart, Eds. Lisse:Balkema,2001.
    [92]许明,唐树名,李强,等.单锚及群锚失效对边坡稳定性影响的模型试验研究[J].岩石力学与工程学报,2007,26(增1):2755-2760.
    [93]唐芬,郑颖人.边坡渐进破坏双折减系数法的机制分析[J].地下空间与工程学报,2008,4(3):436-441+464.
    [94]郑颖人,赵尚毅,宋雅坤.有限元强度折减法研究进展[J].后勤工程学院学报,2005,3:1-6.
    [95]邓科.边坡开挖卸荷条件下稳定性研究[J].灾害与防治工程,2006,1,44-49.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700