用户名: 密码: 验证码:
不同灌溉方式对冬小麦籽粒产量和品质形成及水分利用效率的调控效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
试验于2009-2011年在山东省泰安市山东农业大学实验农场进行。供试材料为强筋小麦品种藁城8901(GC8901)和济麦20(JM20)。底墒水条件下设置灌3水(冬前水、拔节水和灌浆水)、2水(冬前水与拔节水)、1水(拔节水)和不灌水(CK);灌溉方式分别采取传统灌溉和隔畦灌溉、交替灌溉两种节水灌溉方式,主要研究了三种灌溉方式对籽粒产量、品质、水分利用效率及面团流变学特性的影响,结果如下:
     1不同灌溉方式对冬小麦籽粒产量及产量组成的影响
     三种灌溉方式下GC8901和JM20灌水处理的籽粒产量高于不灌水处理。常规灌溉方式的产量随灌溉频次的增加先增加后降低。灌2水(2T)的产量最高。隔畦灌溉和交替灌溉均以3水产量最高,年际间出现差异,2010年的产量高于2009年。三种灌溉方式的最高产量比较:GC8901与常规灌溉比较,交替灌溉相差-2.26%和-3.60%,隔畦灌溉相差-3.96%和-12.61%;JM20交替灌溉相差0.36%和-4.61%,隔畦灌溉相差-10.84%和-3.17%。两品种交替灌溉方式优于隔畦灌溉。
     分析产量形成的穗数、穗粒数和千粒重,不灌水处理千粒重偏高,穗数与穗粒数少是导致产量低的原因。水分处理的灌水均增加了小麦的穗数与穗粒数。增加灌浆水降低了千粒重。
     2不同灌溉方式对冬小麦各生理指标的影响
     开花后旗叶光合速率呈现先上升后下降趋势。11-17天各处理的光合速率值高于其它时期。花30天左右光合速率降至最低。前期的光合速率高于后期的光合速率。各处理中,两品种CK光合速率明显低于其它处理,灌水增加了光合速率,尤其增加了后期的光合速率。
     济麦20处理之间的旗叶光合速率彼此差异明显。随灌水频次增加后期的光合速率差异明显突出。与灌水频次呈正相关。其中3A与3T、2T在后期的光合速率出现的峰值差别不明显,后期光合速率下降也相一致。
     藁称8901开花后旗叶光合速率17天到达峰值,以后旗叶的光合速率急剧下降。不灌水处理CK旗叶光合速率显著低于其他处理旗叶光合速率,各灌水处理的旗叶光合速率之间差异不显著。叶绿素变化趋势与光合速率相似。
     水势随着灌水频次的增加而增高,17-23天由于灌溉,水势升高。成熟期两品种水势值均为最低。济麦20各灌水处理之间水势差异不显著;藁城8901水势随灌水频次增加趋势明显于济麦20,水势低于济麦20,说明藁城8901的叶水势诊断水分亏缺敏感,可以作为合适的度量水势高低的指示小麦品种。
     3不同灌溉方式对冬小麦土壤各土层含水量的影响
     三种灌溉方式下土壤含水量在拔节期、灌浆期和成熟期依次降低,成熟期达到最低点。隔畦灌溉和交替灌溉的灌溉畦和非灌溉畦在0-100cm土层出现水分侧渗,侧渗范围隔畦灌溉为-0.22-3.79%,交替灌溉为-0.21-3.29%。灌浆期0-200cm土层土壤含水量在0-140cm各土层,土壤水分含量比拔节期明显降低,灌溉处理高于不灌溉CK,处理T、I和A之间差值很小。各处理在拔节期、灌浆期和成熟期的0-100cm土层的含水量变化比100-200cm土层含水量变化明显,其中3I和3A之间差异小,在拔节期、灌浆期和成熟期保存了相近的土壤含水量。
     4不同灌溉方式对冬小麦土壤各土层硝态氮的影响
     水分作为硝态氮的载体,影响着硝态氮在土壤各土层的分布。2009-2010年降水均匀,常规灌溉藁城8901和济麦20各土层硝态氮在拔节期和灌浆期呈现逐渐降低,在80-120cm之间降至最低,然后升高,拔节期、灌浆期和成熟期,0-100cm下降明显,100-200cm变化不明显,灌溉促进了0-100cm土层硝态氮的下降幅度。灌浆期100-200cm土层出现硝态氮向上运移。2010-2011年0-200cm土层硝态氮变化趋势与2009-2010年不同:硝态氮含量在0-200cm之间先升高后降低再升高。2010-2011年80-120cm之间降低最明显,100-200cm呈上升趋势,呈“V”型。常规灌溉硝态氮下移深度达160cm-180cm,增加了淋溶风险。隔畦灌溉和交替灌溉的灌水畦和非灌水畦的硝态氮向下运移了60cm-100cm,降低了硝态氮淋溶到深层的风险。
     两品种在拔节期和灌浆期出现硝态氮向上运移现象。
     5不同灌溉方式对藁城8901和JM20水分利用效率的影响
     两生长季两品种均以对照CK的含水量最低,水资源全部依靠降水和土壤水,两者所占比例也最高,最大限度了利用了自然降水和土壤水资源。各灌溉方式随灌水量的增加所占比例增加,自然降水利用率降低,土壤供水量比例减少。2009-2010年与2010-2011年常规灌溉处理3T土壤供水量分别占总耗水量的18.14%和18.96%。耗水量值最高,自然降水利用率占比例最低,灌溉水利用率占比例最高。灌水量比例占总耗水量的比例分别为50.57%和47.19%。减少了对自然降水和土壤水的利用。而隔畦灌溉和交替灌溉的灌水、自然降水的利用效率高。
     两年的降水情况不一致,降水量差异不显著,比较中看出,交替灌溉3A处理耗水量最低,3A处理比3T、2T和3I处理下GC8901和JM20对降水和土壤水的利用率高。
     隔畦灌溉和交替灌溉各处理的产量随灌水量增加而增加。3A处理的产量高于3I处理,土壤水、灌溉水、降水和水分利用效率均高于3I处理,而且土壤耗水量低于3I处理,保存了土壤中的水分。两者比较,交替灌溉方式优于隔畦灌溉。
     比较常规灌溉2T处理和交替灌溉3A处理,连续两生长季,3A处理产量均略低于2T处理,耗水量3A<2T,土壤水、灌溉水、降水和水分利用效率均高于2T处理,3A处理由于减少灌溉面积,对灌溉水、降水和土壤水的利用率提高,节约了水分。所以,3A处理为节水栽培的优化种植模式。可见,灌溉方式和灌溉时期对籽粒产量和水分利用效率的影响效应不同。
     6不同水分处理对藁城8901和JM20品质的影响
     6.1不同水分处理对小麦谷蛋白大聚合体粒度分布的影响
     适量灌水显著增加了小麦籽粒中GMP含量。随灌水次数的增加,两个品种籽粒GMP含量均呈现增加趋势;但是继续增加灌水次数,小麦籽粒GMP含量则下降。不同灌水处理能够显著影响小麦籽粒GMP颗粒粒径分布,适量灌水能够显著提高大、中体积颗粒所占总体积比例,降低<10μm颗粒所占总表面积比例,提高>10μm颗粒数目比例。提升谷蛋白的聚合作用,利于高聚物的进一步聚合,促进大颗粒GMP的形成,干旱和过多灌水均不利于小麦籽粒GMP的积累和聚合成大的颗粒。
     6.2不同水分处理对小麦籽粒品质的影响
     随灌水频次增加,面团形成时间和面团稳定时间、面包体积和面包总评分均呈现先增加后降低的趋势。其中面包体积、最长面团形成时间和面团稳定时间均在灌2水(越冬水和拔节水)时达到最优,且与其它灌水处理差异显著。表明适宜的灌水有利于多项加工品质指标的改善,有利于面团形成时间和稳定时间的提高,改善籽粒品质;不灌水处理CK和3T处理缩短面团稳定时间,使小麦品质变劣。灌水对吸水率无显著影响。
     试验结果表明,适当灌水可以使籽粒产量和品质同步提高。土壤水分含量过多或过少均不利于籽粒产量的提高,而且导致籽粒营养品质和加工品质下降,适宜的土壤水分含量既可增加产量,又可改善品质。这与王月福等(王月福,2002)研究结果相一致。
     6.3小麦GMP粒径分布与籽粒品质参数间的相关关系
     面团形成时间和稳定时间均与<10μm和10-100μm和谷蛋白大聚合体颗粒体积百分比均呈显著或者极显著负相关,与>100μm谷蛋白大聚合体颗粒体积百分比呈极显著正相关;面包体积<10μm、10-100μm和谷蛋白大聚合体颗粒体积百分比均呈显著或者极显著负相关,与>100μm谷蛋白大聚合体颗粒体积百分比呈极显著正相关;表明大粒径谷蛋白大聚合体颗粒具有较长的面团形成时间和面团稳定时间以及较大的面包体积。
The research were conducted from2009to2011at experimental farm of Shandong Agricul-tural University,Shandong Province. The materials were Jimai20(JM20) and Gaocheng8901(GC8901), which were winter wheat varieties with strong gluten. In whole growing periodwith snowing irrigation, setting irrigation treatments: irrigation3times (before winter, joint-ing and grouting),2times (before winter and jointing),1time (jointing) and non-irrigation(CK), and setting irrigation modes: the traditional irrigation, interval-border irrigation andalternative irrigation. Under different irrigation modes, the effects of wheat grain yield,quality, water use efficiency and dough characteristics are studied. The results are shown asfollows:
     1Effects on winter wheat grain yield and grain yield components of different irrigationmodes
     The grain yield of GC8901and JM20with water treatment was higher than no rrigation bythree irrigation modes.With increasing times of irrigation, the grain yields of traditionalirrigation treatments were noted to be increased first but decreased then, in which of themwere the best when irrigated twice (2T). In two irrigation modes, the grain yield of treatments3A and3I were the highest, the difference appeared with annual precipitation, Yield washigher in2010-2011,
     Compared with the highest grain yield of three irrigation modes, the grain yield of the al-ternating irrigation of GC8901was-2.26%and-3.60%less than that of the traditional irriga-tion;-3.96%and-12.61%of interval-border irrigation less than the highest grain yield oftraditional irrigation. the grain yield of the alternating irrigation of JM20was0.36%and-4.61%less than that of the traditional irrigation;-10.84%and-3.17%of interval-border irrig-ation less than the highest grain yield of traditional irrigaion. Two varieties of alternatingirrigation was superior to interval-border irrigation
     Yield by alternating irrigation was higher than interval-border irrigation of GC8901withtwo growing season. the same as JM20in2009-2010, but it was similar by two modes in2010-2011. Yield was difference by different irrigation modes on two cultivars
     Yield conponents were formed by Spike number, Kernel numbers and Weight per1000kernels. The weight per1000kernels with no irrigation was highest.while spike number andkernel numbers were least, these were the cause of low yield. Water irrigation increased them.
     2Effects on winter wheat various physiological indicator by different irrigation modes
     Flag leaf photosynthetic rate were noted to be increased first but decreased then after anthe-sis. The photosynthetic was higher in11-17days than the other times. And decreased thelowest about30after anthesis, and was higher in early than the late. Photosynthetic rateincreased by irrigation, especiarly the late.
     Flag leaf photosynthetic rate of JM20were difference each other.especialy the late. Thephotosynthetic rate was positive correlation.With increasing irrigation frequency. The peak ofphotosynthetic rate of3A,3I and2T were no difference, and decreased consistently.
     The peak of photosynthetic rate of GC890117after anthesis, and dropped sharply. Therewere nodifference with diff erent irrigation levels. Chlorophyll was similar to photosynthe-sis.
     The trend of flag leaf water potential increased with the irrigation frequency.and the lowestin mature stage. The potential increased of GC8901was obviously than JM20, this wasindicated that GC8901was sensitively with water deficity.3Effects on winter wheat soil moisture change by different irrigation modes
     The soil moisture change in joining stage, filling stage and mature stage reduced in turnlby three irrigation modes, reached its lowest point in mature stage. It was found that water canleak from irrigation border to non-irrigation border in0-100cm layer soil moisture no materinterval-border irrigation or alternating irrigation. The range of interval-border irrigation was-0.22-3.79%, and-0.21-3.29%by alternating irrigation. The soil moisture in0-140cm layerin filling stage reduced significantly than joining stage.The soil moisture in0-100cm layerchanged significantly different stage than100-200cm layer. Soil moisture similarily wassaved in100-200cm layer by treatment3I and3A.4Effects on winter wheat soil NO3--N change by different irrigation modes
     water was the carrier as NO3--N and affected the distribution of different soil layer. NO3--Nwas the lowest in80-120cm, there was significantly different stage in0-100cm layer than100-200cm, It was proved that irrigation accelerated NO3--N moving downward, which wasobvious for irrigation border but not significant for non-irrigation border below in100cm soil.
     Nitrogen content trend in2010-2011was different from2009-2010, it rised first thenreduced and rised again. It formed a “V” type. NO3--N content of traditional irrigationdropped down depth of160-180cm, increased leaching risk. However, irrigation border tonon-irrigation border of interval-border irrigation and alternating irrigation reached only60-100cm
     5Effects of different irrigation models on water use efficiency on winter wheat GC8901and JM20
     With the increase of irrigation, irrigation consumption increased, utilization rate of precipitation proportion was lower and soil water ratio decreased. Soil water supply accounted for18.14%and18.96%of total water consumption account respectively in2009-2010and2010-2011. Utilization rate of nature precipitation was the lowest, and reduced. Unliketrandition irrigation,the utilization efficiency of precipitation was high.
     Precipitation of two years was no difference significantly. Water consumption of alternativeirrigation was lowest, this indicated that interval-border irrigation and alternating irrigationpromoted precipitation and soil water use efficiency.
     2T with high yield by tranditional irrigation was high in water use efficiency and rainfalluse efficiency.
     Alternating irrigation was higher than interval-border irrigation in use efficiency of soilwate, irrigation, precipi tation and water use efficiency. Alternating irrigation was superior tointerval-border irrigation compare with interval-border irrigation.
     The yield of3A was slightly lower than2T during two seasons. The same as waterconsumption account, soil water, irrigation, precipi tation and water use efficiency. And theywere all saved account of reduced irrigation area. Therefore, it was a process optimization ofplanting patterns of water saving cultivation.
     6Effect on quality of irrigation levels of winter wheat GC8901and JM20
     6.1Effect of irrigation levels on GMP size distribution of winter wheat with stronggluten
     Irrigation appropriately increased GMP content of wheat grain. With increasing irrigationlevel, GMP content was noted to be increased first but decreased then, GMP size distributionof particle size did effected by irrigation, and Irrigation appropriately increased the percentof>100um and10-100um particle size. This reduced the particle size of10um, andimproved gluten polymerization, polymerization of polymers further conducived, andpromoted large GMP particles. Both water deficit and excess watering had detrimental effected on GMP accumulation and particle size distribution.
     6.2Effect of irrigation levels on grain qulity
     With increasing irrigation level, dough development time, dough stability time, loaf volume,total score were noted to be increased first but decreased then, and highest of loaf volume,long est of dough development time and dough stability time were achieved with treatment T2. This result was difference significantly from other irrigation level. The results suggested thatirrigation levels appropriately may improve a number of indicators with processing quality.Improved dough development time and dough stability time, to achieve quality. The resultssuggested that both water deficit and excess watering had detrimental effect on doughstability time and made the wheat weaken. No significant difference had effect grain waterabsorption by irrigation levels.
     The results suggested that Irrigation appropriately both improved yield and qulity. Bothwater deficit and excess watering had detrimental effect on grain yield and grain quality, andit led to decrease the grain nutritional and processing quality. Suitable soil moisture contentnot only increased grain yield, but also improved quality, this was consistent with Wangyuefu et al.
     6.3Correlation between GMP particle size distribution and the grain qualityparameters
     The dough development time and dough stability time were negatively correlated with thevolume percent of GMP particle size <10μm,<100μm and the volume percent of GMPparticle size, while positively correlated with the volume percent of GMP particle size>100μm. loaf volume<10μm,10-100μm were negatively correlated with the volume percent ofGMP particle size, and positively correlated with the volume percent of GMP particle size>100μm. These showed that big size gluten polymer particles had a long dough develop menttime, dough stability time and with bigger loaf volume
引文
杜太生,唐绍忠,王振昌,王锋,杨秀英,苏兴礼.隔沟交替灌溉对棉花生长、产量和水分利用效率的调控效应[J].作物学报,2007,33(12):1982-1990
    曹琦,王树忠,高丽红,任华中,陈青云,赵景文,王倩,眭晓蕾,张振贤.交替隔沟灌溉对温室黄瓜生长季水分利用效率的影响[J].农业工程学报,2010,26(1):47-53
    曹树青,赵永强,温家立,王树安,张荣铣.高产小麦旗叶光合作用及与籽粒灌浆进程关系的研究[J].中国农业科学,2000,33(6):19-25
    陈佑良,张启刚,梁振兴,王福钧,梅楠.应用富集15N研究冬小麦对氮素的吸收规律及器官建成的影响[J].作物学报,1986,12(2):101-108
    陈培元.作物对水分胁迫的生理反映[M].见:山仑,陈培元主编.旱地农业生理生态基础,北京:科学出版社,1998(1):18-34
    党廷辉,蔡贵信,郭胜利,郝明德,郭明航,王百群.黄土旱塬黑鲈土—冬小麦系统中尿素氮的去向及增产效果[J].土壤学报,2002,39(2):199-205
    戴廷波,孙传范,荆奇,姜东,曹卫星.不同施氮水平和基追比对小麦籽粒品质形成的调控[J].作物学报,2005,31(2):248-253
    范雪梅,姜东,戴廷波,荆奇,曹卫星.花后干旱和渍水对不同品质类型小麦籽粒品质形成的影响[J].植物生态学报,2004,28(15):680-685
    范雪梅,姜东,戴廷波,荆奇,曹卫星.花后干旱或渍水逆境下氮素对小麦籽粒产量和品质的影响[J].植物生态学报,2006,30(1):71-77
    房全孝,陈雨海,李全起,于舜章,余松烈,董庆余,罗毅,于强,欧阳竹.灌溉对冬小麦灌浆期光合产物供应和转化及有关酶活性的影响[J].作物学报,2004,30(11):1113-1118
    冯伟.水氮运筹对两种穗型冬小麦品种生理调节效应的研究[D].河南农业大学国家小麦工程技术研究中心硕士学位论文,2003.6
    谷艳芳,丁圣彦,高志英,邢倩.干旱胁迫下冬小麦光合产物分配格局及其与产量的关系[J],生态学报,2010,30(5):1167-1173
    郭天财,贺德先,王志和.小麦穗粒重研究进展.北京:中国农业出版社,1995.1-24
    郭天财,冯伟,赵会杰,王化岑,王永华,夏国军,马冬云.水氮运筹对干旱年型冬小麦旗叶生理性状及产量的交互效应[J].应用生态学报,2004,15(3):453-457
    郭天财,马冬云,朱云集,王晨阳,夏国军,罗毅.冬播小麦品种主要品质性状的基因型与环境及其互作效应分析[J].中国农业科学,2004,37(7):948-953
    贺明荣,王振林.小麦光合物质在小穗间的分配及与穗粒重的关系[J].作物学报,2000,26:190-194
    贺明荣,杨雯玉,王晓英,王振林,杨万立.不同氮肥运筹模式对冬小麦籽粒产量品质和氮肥利用率的影响[J].作物学报,2005,31(8):1047-1051
    何中虎,林作揖,王龙俊,肖志敏,万富世,庄巧生.中国小麦品质区划的研究[J].中国农业科学,2002,35(4):359-364
    何照范编著.粮油籽粒品质及其分析技术[M].1985,中国农业科学出版社,北京
    黄振喜,王永军.产量15000kg/ha以上夏玉米灌浆期间的光合特性[J].中国农业科学,2007,40(9):1898-1906
    黄彩霞,柴守玺,赵德明,李志贤,常磊,王婷.不同水分处理对冬小麦产量和水分利用效率的影响[J].草业学报,2010,19(5):196-203
    贾殿勇.水分运筹对强筋小麦籽粒产量和品质的调控效应[D].2010,山东农业大学博士论文
    姜东,于振文,李永庚,余松烈.施氮水平对高产小麦蔗糖含量和光合产物分配及籽粒淀粉积累的影响[J].中国农业科学,2002,35(2):157-162
    姜东,于振文,李永庚,余松烈.高产小麦强势和弱势籽粒淀粉合成相关酶活性的变化[J].中国农业科学,2002,35(4):378-383
    姜东,谢祝捷,曹卫星,戴廷波,荆奇.花后干旱和渍水对冬小麦光合特性和物质运转的影响[J].作物学报,2004,30(2):175-182
    康绍忠,张建华,梁宗锁,胡笑涛,蔡焕杰.控制性交替灌溉—一种新的农田节水调控思路[J].干旱地区农业研究,1997,15(1):1-6
    李建民,周殿玺,王璞著.冬小麦水肥高效利用栽培技术原理[D].中国农业大学出版社,2000
    梁银丽.小麦根系生长及对土壤水分的反应[D].见:山仑,陈培元主编.旱地农业生理生态基础,北京:科学出版社,1998(1):203-213
    梁宗锁,康绍忠,胡炜,张建华,高俊风.控制性分根交替灌水的节水效应[J].农业工程学报.1997,13(4):58-63
    梁宗锁,康绍忠,石培泽,潘英华,何立绩.隔沟交替灌溉对玉米根系分布和产量的影响及其节水效益[J].中国农业科学,2000,33(6):26-32
    刘克礼,翟利剑,高聚林,张永平,刘景辉.春小麦源库特性及其关系的研究(Ⅱ)-群体库源比及其与产量的关系[J].麦类作物学报,2003,23(4):63-65
    吕金印,刘军,曹翠玲,汪沛洪,高俊凤.水分胁迫下小麦叶片蛋白质、淀粉和纤维素合成的示踪研究[J].西北植物学报,1996,16(4):46-50
    潘英华,康绍忠.交替隔沟灌溉水分入渗特性[J].灌溉排水,2000,19(1):1-4
    宋海星,李生秀.根系的吸收作用及土壤水分对硝态氮、铵态氮分布的影响[J].中国农业科学,2005,38:96-101
    山仑.有限灌溉及其生理生态基础[D].见:山仑,陈培元主编,旱地农业生理生态基础,北京:科学出版社.1998,(1):159-173
    王晨阳,郭天财,彭羽,朱云集,马冬云,张灿军.花后灌水对小麦籽粒品质性状及产量的影响[J].作物学报,2004,30(10):1031-1035
    王晨阳,马冬云,朱云集,郭天财,冯伟,周苏玫.小麦不同水氮运筹对面条煮制品质的影响[J].中国农业科学,2004,37(2):256-262
    王晨阳,马冬云,郭天财,朱云集,王化岑,冯伟.不同水氮处理对小麦淀粉组成及特性的影响[J].作物学报,2004,30(8):843-846
    王晨阳,马元喜.不同土壤水分条件下小麦根系生态生理效应的研究[J].华北农学报,1992,7(4):1-8
    王立秋,曹敬山,靳占忠.水肥耦合对春小麦产量和品质的研究[J].干旱地区农业研究,1997,15(1):58-63
    王立秋,靳占忠,曹敬山,王占宇.水肥因子对小麦籽粒及面包烘烤品质的影响[J].中国农业科学,1997,30(3):67-73
    王月福.小麦蛋白质和核酸代谢特性及其与品质和产量的关系[D].山东农业大学博士论文,2001
    王月福,于振文,李尚霞,余松烈.土壤肥力对小麦籽粒蛋白质组分含量及加工品质的影响[J].西北植物学报,2002,22(6):1318-1324
    王月福,于振文,李尚霞,余松烈.氮素营养水平对冬小麦氮代谢关键酶活性变化和籽粒蛋白质含量的影响[J].作物学报,2002,28(6):743-748
    王月福,于振文,李尚霞,余松烈.施氮量对小麦籽粒蛋白质组分含量及加工品质的影响[J].中国农业科学,2002,35(9):1071-1078
    王月福,姜东,于振文,曹卫星.高低土壤肥力下小麦基施和追施氮肥的利用效率和增产效应[J].作物学报,2003,29(4):491-495
    王月福,姜东,于振文,曹卫星.氮素水平对小麦籽粒产量和蛋白质含量的影响及其生理基础[J].中国农业科学,2003,36(5):513-520
    王月福,于振文,李尚霞,余松烈.土壤肥力和施氮量对小麦根系氮同化及子粒蛋白质含量的影响[J].植物营养与肥料学报,2003,9(1):39-44
    王晓英,贺明荣.水氮耦合对济麦20籽粒蛋白质组分及品质的影响[J].作物学报,2007,33(1):126-131
    王晓英,贺明荣,李飞,刘永环,张洪华,刘春刚.水氮耦合对强筋冬小麦子粒蛋白质和淀粉品质的影响[J].植物营养与肥料学报,2007,13(3):361-367
    王德梅,于振文,张永丽,许振柱.不同灌水处理条件下不同小麦品种氮素积累、分配与转移的差异[J].植物营养与肥料学报,2010,16(5):1041-1048
    王西娜,王朝辉,李生秀.种植玉米与休闲对土壤水分和矿质态氮的影响,中国农业科学,2006,39(6):1179-1185
    许振柱,于振文,王东,张永丽.灌溉条件对小麦籽粒蛋白质组分积累及其品质的影响[J].作物学报,2003,29(5):682-687
    许振柱,于振文,张永丽.土壤水分对小麦籽粒淀粉合成和积累特性的影响[J].作物学报,2003,29(4):595-600
    姚凤娟,贺明荣,贾殿勇,代兴龙,曹倩.花后灌溉对小麦籽粒贮藏蛋白聚合程度和面团流变学特性的影响[J].植物生态学报,2010,34(3):271-278
    于振文,田奇卓,潘庆民,岳寿松,王东.黄淮麦区冬小麦超高产栽培的理论与实践[J].作物学报,2002,28(5):577-585
    于振文.冬小麦高产高效灌水方案的研究[J].山东农业科学,1994,(2):3-6
    岳鸿伟,谭维娜,姜东,戴廷波,荆奇,曹卫星.花后干旱和渍水对小麦籽粒HMW-GS及GMP含量的影响[J].作物学报,2007,33(11):1845-1849
    袁锋明,陈子明,姚造华.土壤中的氮素淋洗.见:陈子明.氮素产量环境[M],北京:中国农业科技出版社,1996:191-208.
    翟丙年,李生秀.水氮配合对冬小麦产量和品质的影响[J].植物营养与肥料学报,2003,9(1):26-32
    赵忠宝,王福绪,刘奕琳,张维玲.杨粮复合系统内生态因子的变化及对小麦产量的影响[J].南京林业大学学报(自然科学版),2008,32(1):136-138.
    赵广才,张保明,王崇义.应用15N研究小麦各部位氮素分配利用及施肥效应[J].作物学报,1998,24(6):854-858.
    赵广才,何中虎,刘利华,杨玉双,张艳,李振华,张文彪.肥水调控对强筋小麦中优9507品质与产量协同提高的研究[J].中国农业科学,2004,37(3):351-356
    赵广才,常旭虹,陈新民,刘利华,杨玉双,李振华,周双月.不同施肥灌水处理对不同小麦品种产量和品质的影响[J].植物遗传资源学报,2007,8(4):447-450
    赵广才,何中虎,天齐卓,刘利华,立振华,张文彪,张全良.农艺措施对中优小麦蛋白组份和加工品质的一调节效应[J].作物学报,2003,29:408-412
    赵广才,何中虎,王德森,张艳,周桂英,汤秀维,刘会.棉栽培措施对面包小麦产量及烘烤品质的调控效应[J].作物学报,2002,28:797-802
    赵广才.不同肥水对冬小麦植株性状、产量和品质的影响[J].北京农学院学报,19893:56-59
    赵广才,万富世,常旭虹,杨玉双,李珊珊,丰明,李乃新.灌水对强筋小麦籽粒产量和蛋白质含量极其稳定性的影响[J].作物学报,2008,34(7):1247-1252
    赵广才,何中虎,刘利华,杨玉双,张艳,李振华,张文彪.沸水调控对强筋小麦中优9507品质与产量协同提高的研究[J].中国农业科学,2004,37(3):351-356
    赵惠贤,胡胜武,吉万全,薛秀庄,郭蔼光.小麦谷蛋白聚合体粒度分布于面粉揉面特性关系的研究[J].中国农业科学,2001,34(5):465-468
    张永平,张英华,王志敏.不同供水条件下冬小麦叶与非叶绿色器官光合日变化特征[J].生态学报.2011,31(5):1312-1322
    张永丽,翟丙年,李生秀.水氮配合对冬小麦产量和品质的影响[J].植物营养与肥料学报,2003,9(1):26-32
    张永丽,肖凯,李雁鸣.灌水次数对杂种小麦冀矮1/C6-38旗叶光合特性和产量的影响[J].作物学报,2006,32(3):410-414
    张永丽,于振文,郑成岩,谷淑波.不同灌水处理对强筋小麦济麦20耗水特性和籽粒淀粉组分积累的影响[J].中国农业科学,2009,42(12):4218-4227
    张永胜,王继宗,冯静霞.甜椒交替隔沟灌溉土壤水分时空分布及节水机理研究[J].水资源与水工程学报,2010,21,03
    周顺利,张福锁,王兴仁.冬小麦不同氮营养品种对氮反应吸收与土壤硝酸盐耗竭的研究[J].中国农业科学,2002,35(6):667-672
    周顺利,张福锁,王兴仁,米国华,毛达如.高产条件下不同品种冬小麦氮素吸收与利用特性的比较研究[J].土壤肥料,2000,6:20-24
    周顺利,张福锁,王兴仁.土壤硝态氮时空变异与土壤氮素表观盈亏研究Ⅰ.冬小麦[J].生态学报,2001,21(11):1782-1789
    支虎明,刘建华.不同生育期(阶段)有限灌溉对小麦产量、水分利用效率及经济效率的影响[J].中国农学通报,2011,27(9):314-319
    Bean S R, Lyne R K, Tilley K A,Chung O K, Lookhart. A rapid method for quantitation ofinsoluble polymeric proteins in flour[J]. Cereal chemistry,1998,75(3):374-379
    Blackow W M, Incoll L D. Nitrogen stress of winter wheat changed the determ inants of yieldand the distribution of nitrogen and total dry matter during drain filling[J]. A ust J PlantPhysiol,8:191-200
    Carceller J L, Aussenac T. Size characterisation of glutenin polymers by HPSEC-MALLS[J].Journal of Cereal Science,2001,33(2):131-142
    Chen Z M, Yuan F M, Yao Z H, Zhou C S, Fu G M, Song Y L, Li X P. Soil and fertilizersinstitute The movement and leaching loss of NO3-N in profile of chao soil in Beijing[J].Pla-nt Nutrition and Fertilizer Science,1995,1(2):71-79
    Ciaffi M, Tozzi L, Lafiandra D. Relationship between flour composition determined by size-exclusion high-performance liquid chromatography and dough rheological parameters[J].Cereal chemistry,1996,73:346-351
    Clothier B, Green S. Rootzone processes and the efficient use of irrigation water[J]. Agricultu-ral Water Management,1994,25:1-12
    Colom M R, Vazzana C. Photosynthesis and PSⅡ functionality of drought-resistant anddrought-sensitive weeping loregrass plants[J]. Environmental Experimental Botany,2003,49:135-144
    Don C, Lichtendonk W, Plijter J, Plijiter J J, Hamer R J.Glutenin macropolymer: a gelformed by glutenin particles[J]. Journal of Cereal Science,2003,37:1-7
    Don C., Lichtendonk W., Plijter J. J. Hamer R J.Understanding the link between GMP anddough from glutenin particles in flour towards developed dough[J]. Journal of CerealScience,2003,38:157-165
    Don C, Lookhart G, Naeem H, et al. Heat stress and genotype affect the gluten in particles ofthe gluten in macropolymer-gel fraction[J]. Journal of Cereal Science,2005,42:69-80
    Don C, Mann G, Bekes F, Hamer R J.HMW-GS affects the properties of glutenin particles inGMP and thus flour quality[J]. Journal of Cereal Science,2006,44:127-130
    Fan X-M, Jiang D,Dai T-B,Jing Q,Cao W X. Effects of nitrogen supply on flag leaf photosynthesis and grain starch accumulation of wheat from its anthesis to maturity under droughtor waterlogging[J]. Journal of Applied Ecology,2005,16(10):1883-1888
    Fang B T,Guo T C,Wang C Y, Xia L K. Effects of limited irrigation on starch accumula-tionof grain of strong-gluten wheat[J]. Acta Agriculturae Boreali-Occidentalis Sinica,2005,14(1):153-157
    Fu B X, Sapirstein H D. Procedure for isolating monomeric proteins and polymeric gluteninof wheat flour[J]. Cereal chemistry,1996,73:143-152
    GIFFORD R M, EVAN SL T, Photosunthesis R M, EVANSL T. Carbon portioning and yield[J]. Ann Rev.Plant Physio,1981,32:548-569
    Govindjee. A role for a hight harvesting antenna complex of photosystem Ⅱ in photoprotec-tion[J]. Plant Cell,2002,14:1663-1667
    Guo Y Q, Wang L M, He X H, Zhang X Y, Chen S Y, Chen J, Yang Y H. Water use efficien-cy and evapotranspiration of winter wheat and its response to irrigation regime in the Nor-th China Plain[J]. Agricultural and Forest Meteorology,2008,148:1848-1859
    Gupta R B, Khan K, MacRitchie F. Biochemical basis of flour properties in bread wheats: I.Effects of variation in the quantity and size distribution of polymeric protein[J]. Journal ofCereal Science,1993,18:23-41
    Guttieri M J, Ahmad R, Stark J C, Souza E. End-use quality of six hard red spring wheatcul tivars at different irrigation levels[J]. Crop Science,2000,40:631-635
    Huang Y L, Chen L D, Fu B J, Huang Z L, Gong J. The wheat yields and water-use efficien-cy in the Loess Plateau: straw mulch and irrigation effects[J]. Agricultural Water Manage-ment,2005,72(3):209-222
    Lan T, Jiang D, Xie Z-J, Dai T-B. Effects of post-anthesis drought and waterlogging on grainquality traits in different specialty wheat varieties[J]. Journal of Soil and WaterConservation,2004,18(1):193-196
    Liang R Q, Zhang Y-R, You MS,Mao S-F,Song J M,Liu G T. Multi-stacking SDS-PAGEfor wheat glutenin polymer and its relation to bread-making quality[J]. Acta AgonomicaSinica,2002,28(5):609-614(in Chinese)
    Li J M, Inanaga S, Li Z H, Eneji A E, Optimizing irrigation scheduling for winter wheat in theNorth China Plain[J]. Agricultral Water Management,2005,76(1):8-23
    Logsdon S D, Thomas C K, David W M, John H P. Nitrate leaching as influenced by covercrops in large soil monoliths[J]. Agronomy Journal,2002,94:807-814
    Liu G S,Guo A H,An S Q,Lv H Q,Bai Y M,Wen M.Effeet of available soil water atplanting on growth of root, canopy and soil water use of winter wheat in field[J]. J NatDisasters,2003,12(3):149–154
    MacRitchie F. Conversion of weak flour to a strong one by increasing the proportion of itshigh molecular weight gluten protein. Journal of the science of food and agriculture,1976,24:1325-1329
    Ma D Y, Zhu Y J, Guo T C, Feng W,Zhou S M. Henan Province and the stability analysis[J].Journal of Triticeae Crops,2002,22(4):13-18
    Maydup M L, Antonietta M, Guiamet J J, Graciano C, López J R, Tambussi E A. Thecontribution of ear photosynthesis to grain filling in bread wheat(Triticum aestivum L)[J].Field Crops Res.2010,119:48-58
    Men H W, Zhang Q,Dai X L,Cao Q,Wang C,Y,Zhou X H,He M R. Effects of differentirrigation modes on winter wheat grain yield and water and nitrogen use efficiency[J].Journal of Applied Ecology,2011,22(10):2517-2523
    Meng W W,Zhang Y L,Ma X H,Shi Y,Yu Z W.Effects of irrigation stage and amount onwater consumption characterstics flag leaf photosynthesis and grain yield in wheat[J].Acta Agronomica Sinica,2009,35(10):1884-1892
    Jones H G. Stomat al control of photosynthesis and transpiration[J].J Exp Bot,1998,49(special issue):387-398
    Kemper W D, Ruffing B J, Bondurant J A. Furrow intake rates and water management[J].Trans of the ASAE,1982,25:333-339,343
    Ozturk A, Aydin F. Effect of water stress at various growth stages on some quality characteri-stics of winter wheat[J]. Journal of Agronomy and Crop Science,2004,190:93-99
    Panda R K, Behera S K, Kashyap P S. Effective management of irrigation water for wheatunder stressed conditions[J].Agric Water Manag,2003,63:37-56
    Pan Yinghua, Kang Shaozhong. Irrigation water infiltration of alternative furrow irrigation[J].Journal of Irrigation and Drainage,2000,19(1):1-4.
    Passioura J B. Physiology of grain yield on wheat growing on stored water[J]. Journal PlantPhysiology,1977,9:559-565
    Peter R. Shewry, Claudia Underwood, Yongfang Wan, Alison Lovegrove, Dhan Bhandari,Geraldine Toole, E.N. Clare Mills, Kay Denyer, Rowan A.C. Mitchell. Storage productsynthesis and accumulation in developing grains of wheat[J].Journal of Cereal Science,50(2009),106-112
    Plaut Z, Butow B J, Blumenthal C S, Wrigley C W. Transport of dry matter into developingwheat kernels and its contribution to grain yield under post-anthesis water deficit andelevated temperature[J].Field Crops Research,2004,86:185-198
    Rajala A, Hakala K, M kel P, Muurinen S, Peltonen-Sainio P.Spring wheat trsponse totiming of water deficit through sink and grain filling capacity[J].Field Crops Res,2009,114:263-271
    Sapirstein H D, Fu B X. Intercultivar variation in the quantity of monomeric proteins, solubleand insoluble glutenin, and residue protein in wheat flour and relationships to breadmak-ing quality[J]. Cereal chemistry,1998,74:500-507
    Shan L,Deng X P, Zhang S Q. Advances in biological water-saving research: challenge andperspectives[J]. Bull Natl Nat Sci Found China,2006,(2):66-71
    Sylvester Bradley R, Scott R K, Wright C E, Physiology in the production and improvementof cereals, Home grown Cereals Authority, Research Review No.18[M]. London: HomeGrow-n Cereals Authority,1990,156
    Sun H Y, Liu C M, Zhang X Y, Shen Y J, Zhang Y Q. Effects of irrigation on water balance,yield and WUE of winter wheat in the North China Plain[J]. Agric Water Manag,2006,85:211-218
    Sun H, Yao D N, Li B Y.Correlation between content of glutenin macropolymer (GMP) inwheat and baking quality[J]. Journal of the Chinese Cereals and Oils Association,1998,13(6):13-16
    Sugiyama T,Rafalski A, Peterson D,Sol D.A wheat HMW glutenin subunit gene reveals ahighly repeated structure[J]. Nucl Acids Res,1985,13:8729-8737
    Turner N C. Crop water deficits: A decade of progress[M]. Adv Agron,1986,39:1-51
    Virgona J W, Barlow E W R. Drought stress induces changes in the nonstructural carbohydrate composition of wheat system[J].Aust J Physiol,1989,18:239-247
    Wang W,Zhang J H,Yang J C,Zhu Q S. Effects of controlled soil drought on remobilizationof stem-stored carbohydrate and grain filling of wheat with unfavorably-delayed senescence[J]. Acta Agron Sin,2004,30(10):1019-1025
    Wang X Y, He M R. Coupling effects of irrigation and nitrogen fertilizer on protein composition and quality of winter wheat cultivar Jimai20[J]. Acta Agonomica Sinica,2007,33(1):126-131
    Wang Z Q,Liang W W,Fan W-W,Lin T-B. Studies on compensation effects of rewatering onwinter wheat suffering from droughts during spring under different soil fertility condition-s[J]. Sci Agric Sin,2011,44(8):1628-1636
    Wang Z,Gao Y Z. The photosynthetic characteristics of wheat ear[J]. Acta Bot Sin,1991,33(4):286-291
    Wyland L J, Jackson L E, Chmney W E. Winter cover crops in a vegetable cropping system:Impacts on nitrate leaching soil water, cover yield pests and management cost[J]. Agriculture, Ecosystems and Environment,1996,59:1-27
    Weegels P L, van de Pijpekamp A M, Graveland A,Hamer R J, Schofield JD. Depolymerisation and repolymer isation of wheat glutenin during dough processing: I. Relationshipsbetween glutenin macropolymer content and quality parameters[J]. Journal of CerealScience,1996,23:103-111
    Xu X L,Wang Z M. Effect of heat stress during grain filling on photosynthetic characteristicsof different green organs in winter wheat[J]. Acta Bot Sin,2001,43(6):571-577
    Xu Z Z, Yu Z W, Wang D, Zhang Y L. Effect of irrigation conditions on proteincomposition accumulation of grain and its quality in winter wheat[J]. Acta AgonomicaSinica,2003,29(5):683-687
    Yuan F M,Chen Z M,Yao Z H.Soil nitrogen leaching In:Chen Z M,ed.Nitrogen Yield andEnvironment.Beijing:Chinese Agricultural Science and Technology Press,1996:191-208.(in Chinese)
    Zhu J, Khan K. Characterization of glutenin protein fractions from sequential extraction ofhard red spring wheat s of different breadmaking quality. Cereal chemistry,2004,81(6):681-685

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700