用户名: 密码: 验证码:
自交对甘蓝型油菜(Brassica napus L.)主要性状的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甘蓝型油菜属于常异花授粉植物,一般认为自交不会产生衰退现象,但多代连续自交对甘蓝型油菜究竟有何影响鲜见报道。本试验以4个甘蓝型油菜品系为试验材料,研究了连续自交四代以后其主要经济性状、生育期、保护性酶活性等的变化,从而探讨自交对甘蓝型油菜的影响。主要研究结果如下:
     1.自交对甘蓝型油菜主要经济性状有显著影响。株高、分枝部位、有效分枝、主花序有效结角数、全株结角数及单株产量均随着自交世代的增加而减小,自交与主要经济性状之间的相关系数在-0.979~0.289之间变化,自交与株高、分枝部位、全株角果数、单株产量等呈显著负相关关系;而千粒重和角粒数受到的影响较小。03武240-1的生育期自交四代比开放授粉植株提前一周,其余三个品系无明显变化。
     2.参试品系自交世代的含油量、蛋白质含量与开放授粉相比显著降低(P<0.05),相关系数在-0.980~-0.724之间,呈高度负相关关系;而芥酸和硫甙含量的变化自交世代与开放授粉之间差异不显著。
     3.叶片保护酶活性SOD、CAT、APX均在初花期出现酶活性峰值,且自交世代明显低于开放授粉;POD活性在现蕾期和盛花期出现两次高峰,且均是开放授粉显著高于各自交世代;五叶期的POD同工酶四个品系均表现较小,但开放授粉的POD同工酶活性较自交世代的要强;EST同工酶在五叶期就很强,出现11条酶带,且开放授粉群体的EST活性强于自交世代,但是酶谱带数相同。
     4.参试品系的自交结实率随着自交世代的增加而减小,且显著低于OP(开放授粉群体),甘蓝型油菜的自交结实率与自交的相关系数在-0.992~-0.791之间变化,表现为高度负相关关系。品系03武240-1的自交四代出现不亲和现象(自交亲和指数<1)。连续严格自交使得甘蓝型油菜的自交结实率和自交亲和指数降低。
     5.本试验选用了29对油菜SSR引物,研究了连续严格的自交对甘蓝型油菜品系的影响。筛选出了6对具有多态性的引物,共检测出35个等位基因变异,每对引物检测出5~8个等位基因,平均5.83个。UPGMA聚类分析表明20份供试材料可划分为4大类,每一品系的开放授粉与其各自交世代聚为一大类。
     综上所述,自交对甘蓝型油菜性状有显著影响,表现出株高降低、产量下降、籽粒含油量和蛋白质含量降低、自交结实率降低、花期酶活性降低。说明严格的连续自交引起甘蓝型油菜自交后代的生活力减弱、品质下降、花期酶活性的降低。
Brassica napus L. is an often cross-pollinated plant, and is not generally considered selfing recession, but it was little reported about effects of selfing on main traits of Brassica napus L. In this experiment four Brassica napus L.lines as the test materials, the changes of major economic traits, growth period, protective enzyme activity were studied after four years selfing, and the impact on Brassica napus L. by selfing were discussed. Key findings are as follows:
     1. Selfing had significant impacts on the main economic characters of Brassica napus L. Plant height, branch height, effective branch, No. of pods in the main inflorescence, No. of pods of whole-plant and yield per plant were reduced as self-generations increased. The correlation coefficient between the major economic traits and selfing is from -0.979 to 0.289, and selfing with plant height, branch height, the number of pods of whole-plant, yield and other traits was a significant negative correlation; while the impact on seeds per pods and 1000-seed-weight was smaller. In addition to 03wu240-1 participant strains , the growth period of Brassica napus L which was selfing four years was a week ahead of that of open cross pollination plants, the remaining three lines did not have any changes.
     2. Compared to open pollination, oil content and protein content of self-generations significantly decreased(P <0.05), the correlation coefficient was between -0.980 and -0.724, with a remarkable negative correlation; but the difference of changes of erucic acid and glucosinolate content between self-pollination generations and the opening-up was not significant.
     3. The SOD、CAT and APX had peak activity in the early anthesis, and the self-generation was significantly lower than open pollinated; POD activity in squaring period and anthesis had two peaks, and which both of the open pollinated were higher than those of self-generations respectively; the POD isozyme of four strains at five-leaf stage were smaller, but the activity of the POD isoenzyme of open pollination were stronger than those of self-generations;While the EST isozyme of the open pollinated were stronger than self-generations, with 11 bands.
     4. The seed-setting rate decreased as the self-generation increased, and which is significantly lower than OP (open pollinated groups).The correlation coefficient was between the -0.992 and -0.791.The 03wu240-1 turned into self imcompatible in the fourth self-generation(SC index <1). Strictly selfing made the self compatible index and seed-setting rate of Brassica napus L down.
     5. The impact on Brassica napus L was studied after continuous strict selfing with29 pairs SSR primer. Six pairs polymorphism SSR primer were obtained, with a total of 35 alleles variations, each primer detected five to eight allele, an average of 5.83. UPGMA clustering analysis showed that 20 tested materials can be divided into four broad categories, in each strains the open cross pollination with their responding self-generations clustered together.
     In a word, selfing had a significant impact on Brassica napus L traits, which led to the lower height and yield, the decrease of grain oil and protein content, the decline of seed-setting rate, the reduction of enzyme activity at anthesis stage.
引文
[1]傅廷栋.油菜的品种改良[J].作物研究,2007(3):159-162.
    [2]傅廷栋.中国油菜生产和品质改良的现状与前景[J].安徽农学通报,Anhui Agri. Sci. BμLl.2000, 6( 1):2-8.
    [3]张冬晓.我国油菜生产的发展与展望[J].中国油料作物学报,2001,23(4):79-81.
    [4]王汉中.我国食用油供给安全形势分析及对策[J].中国油料作物学报,2007,29(3):347-349.
    [5]刘春明.提升油菜产业的突破口——开发生物柴油专用品种[J].中国种业,2007(6):16-18.
    [6]周可金,童存泉,等.2007年油菜籽发展的现状、效益与前景分析[J].安徽农学通报, 2007,13 (19): 171-172.
    [7]刘后利.实用油菜栽培学[M].上海:上海科学技术出版社,1987,71-77.
    [8] Nagaharu.U.Genome Analysis in Brassica with special refrernce to the experimental formation of B.Napus and pecμLiar mode of fertilization[J],Jap bot,1935,7:389-452.
    [9]刘后利主编.油菜的遗传和育种[M].上海:上海科学技术出版社,1985,1-63.
    [10]王建林,栾运芳,等.中国栽培油菜的起源和进化[J].作物研究,2006(3):199-205.
    [11]曲延英,张强,等.栽培油菜进化关系的同工酶研究[J].新疆农业科学,1999(6):279-280.
    [12]栗根义.人工合成甘蓝型油菜(Brassica napus L.)的方法及效果研究.华中农业大学博士论文,1998.
    [13]牛应泽,汪良中,等.利用人工合成甘蓝型油菜创造油菜新种质[J].中国油料作物学报,2003,25(4): 11-15.
    [14]文雁成,张书芬,等.对甘蓝与大白菜种间杂交合成的甘蓝型油菜的研究[J].中国油料作物学报,1999,4:8-11.
    [15]张晓伟,高睦枪,等.人工合成甘蓝型油菜研究[J].河南农业科学,2001(2):7-10.
    [16] Mundges H, et al. Comparisons of Isozyme Patterns in Resynthesized Amphihaloid Rapeseed (Brassica napus) and Their Parental Species Brassica campestris and Brassica oleracea[J].Plant breeding,1989,(103):258-261.
    [17]张天真主编.作物育种学总论[M].中国农业出版社.2003:13-14.
    [18] Olsson G. Self-incompatibility and outcrossing in rape and white mustard. Hereditas. 1960, 46:241-252.
    [19]卢庆善主编.农作物杂种优势[M].中国农业出版社.2002:336-337.
    [20]胡宝成,陈凤祥,陈维生,等.南方白菜型油菜自交衰退和杂种优势利用方式的研究[J].中国油料作物学报.1996,18(4):6-9.
    [21]吴能表,徐光德,等.自交不亲和花粉萌发与花柱内保护酶活性变化[J].西南师范大学学报(自然科学学报).2004,29(5):848-853.
    [22]刘晓东,牟金贵,等.大白菜花期自交亲和指数测定及不同部位亲和性变化[J].河北农业科学.2004,8(4):34-36.
    [23]高永同,刘后利.甘蓝型黄籽油菜育种研究的回顾与展望[J].华中农学院学报,1985, 4(4):19-29.
    [24]刘后利.甘蓝型黄籽油菜的发现及其遗传行为的初步研究(摘要).遗传学报,1979,6(1):54.
    [25]孙逢吉.芸薹属之杂种优势[J].中华农学会会报.1943,175:35-38.
    [26] Ali M,Copeland L O,Elias S G,etal Relationship between genetic distance and heterosis for yield and morphological traits in winter canola(Brassica napus L.[J].Thero Appl Genet,1995,91,118-121.
    [27] Brandle J E ,McVetty P B E.Geographical diversity,parental selection and heterosis in oilseed rape[J].Can J Plant Sci,1990,70,935-940;
    [28] Lefort-Buson M,Guillot-Lemoine B,Dattee Y.Heterosis and genetic distance in rapesed (Brassica napus L.)Cross between European and Asiatic selfed lines [J].Genome,1987, 29,413-418.
    [29]沈金雄,傅廷栋,等.甘蓝型油菜杂种优势及产量性状的遗传改良[J].中国油料作物学报,2005,27(1):5-9.
    [30]沈金雄,傅廷栋,杨光圣.甘蓝型油菜自交不亲和系杂种优势的初步研究[J],华中农业大学学报,2001,20(6):528-530.
    [31]易冬莲,陈卫江.甘蓝型油菜杂种优势利用研究与应用[J].湖南农业科学,2002,21-22,26.
    [32] Sernyk J L,Stefansson B R.Heterosis in summer rape (B.napus) [J].Can J Plant Sci, 1983,63: 407-413.
    [33]张书芬,傅廷栋,宋光文.甘蓝型单、双低油菜细胞质雄性不育杂种产量及有关性状的优势分析[J].华北农学报,1994,9(增刊):51-56.
    [34]林宝刚,张明龙,张龙.甘蓝型油菜杂种优势和过氧化物酶的关系分析[J].华北农学报,2005,20(4):36-39.
    [35]傅廷栋主编.杂交油菜的育种和利用[M].武汉:湖北科学技术出版社,2000:112-148.
    [36]孟金陵主编.植物生殖遗传学[M].北京:科学出版社,1995:195-214.
    [37]唐国永,徐青兰,等.白菜型大黄油菜自交亲和性初步研究[J].青海农林科技,2006(1):8-9.
    [38]孙万仓,范惠玲,等.白菜型油菜自交亲和性变异分析[J].西北植物学报.2006,26(4):0688-0695.
    [39]戚存扣,陈玉抑,等.白菜型油菜自交亲和性分析及自交系基础群体筛选[J].中国油料作物学报,1997,19(4): 11-13.
    [40]罗玉秀,杜德志.白菜型油菜自交不亲和性及授粉方式的研究[J].西北农业学报.2007,16(2):56-58.
    [41] Johnston T D.A comparison of inbreed lines and their F1 hybrids in forage rape (Brassica napus L.,Euphytica, 1971, 20(1):81-85.
    [42]志贺敏夫.ナタネのーへテロシス育种[J].农业技术,1977,32(4):157-160.
    [43]孟金陵,刘后利,高永同.甘蓝型黄籽油菜(Brassica napus L.)自交后代子叶黄化现象及其超微结构的研究[J].华中农业大学学报,1985(2):1-5.
    [44]伍晓明,陈碧云,陆光远等.油菜种质资源描述规范和数据标准[M].中国农业出版社,2007,12-33.
    [45]邹琦主编.植物生理学实验指导[M].北京:中国农业出版社,2000.
    [46]王宝成,孙万仓,等.芸芥自交亲和系与自交不亲和系SOD、POD和CAT酶活性[J].中国油料作物学报,2006,28(2):162-165.
    [47]赵亚华主编.生物化学试验技术教程[M].广州:中南大学技术出版社,2000,151-154.
    [48] NAKANO Y, ASADA K, Hydrogen peroxide scavenged by ascorbated specific peroxide in spinach chloroplas[J].Plant Cell Physiology,1989,22:857-880.
    [49]宋良图,郭书普.酯酶同工酶和过氧化物酶同工酶与植物抗寒性的关系[J].安徽农业科学,1995,23(4):333-335.
    [50]陈松,浦惠明,等.甘蓝型双低油菜三系及杂种酯酶同工酶分析[J].江苏农业科学,1995(2):27-28.
    [51]浦惠明,傅寿仲,戚存扣.甘蓝型双低杂交油菜的酯酶同工酶分析[J].作物研究,1995,9(3):37-39.
    [52]李殿荣,夏永真,王保仁.利用酯酶同工酶谱分析鉴定杂交油菜秦油2号种子纯度的方法[J].陕西农垦科技,1994,24(杂交油菜专辑):10-12.
    [53]严继勇.青花菜主要性状在自交后代中的遗传稳定性[J].北方园艺.2000,2:7-8.
    [54]金林.自交对棉花后代主要经济性状的影响[J].中国棉花,1995,22(9):11-13.
    [55]刘宏波,刘忠松.油菜远缘杂交亲和性研究进展[J].Crop Research.2006(5)456-458.
    [56]戚存扣,陈玉卿,等.白菜型油菜自交亲和性分析及自交系基础群体筛选[J].中国油料作物学报,1997,19(4):11-13.
    [57]陈斌.近红外光谱定量技术在方便面油份快速测定中的应用[J].中国粮油学报,2002, 17(4):44-47.
    [58] Sato Tetsuo,Uezono Ichiro.Nondestructive estim ate on of fatty acid composition in seeds of Brassica napus L.by near-infrared spectroscopy[J].Journal of the American Ol Chemists’Society, 1998,75(12).
    [59]顾伟株,汪廷祥.多元线性回归法分析菜籽油含油量的近红外光谱数据[J].中国粮油学报,1995,10(2):57-64
    [60]李廷莉,孙超才,等.油菜籽品质测定方法(近红外反射光谱法与传统化学方法)的比较[J].上海农业学报,2003,19(1):11-14.
    [61]陈蛋,陈斌,陆道礼,钟旭美.近红外光谱分析法测定菜籽油中芥酸的含量[J].农业工程学报,2007,23(1):234-237.
    [62]芮玉奎,黄昆仑,等.近红外光谱技术在检测转基因油菜籽中芥酸和硫甙上的应用研究[J].光谱学与光谱分析,2006,26(12):2190-2192.
    [63] WU Jian-guo,SHI chun-mei,FAN long-jiang.Journal of the Chinese Cereals and Oils.Association, 2002,17(2):59.
    [64] WANG Duo-jia,ZHOU Xiang-yang,JIN Tong-ming,etal.Spectroscopy and Spectral Analysis, 2004,24(4):447
    [65]Valescal L,Becker H C.Plant Breeding,1998b,117(B):97.
    [66]孟金陵,刘后利.连续自交对甘蓝型油菜胚胎发育的影响[J].作物学报,1986,12(2):79-85.
    [67] McCord J M, Fridovich I. Superoxide dismutase: an enzymatic function for erythrocuprein (hemocuprein)[J]. J Biol Chem, 1969,244:6049-6055.
    [68]刘昌玲,王国庆.细菌过氧化氢酶的分离、结晶及性质[J].生物化学与生物物理进展,1900, 17(5):380-383.
    [69] Asada K Ascorbate peroxides-a hydrogen peroxide scavenging enzyme in plants[J]. Physiol Plant, 1992, 85:235-241.
    [70]丁毅,李水莲.湖北大麦品种酯酶同工酶谱与地区分布关系的研究[J].武汉植物学研究,1998, 16(1):5-10.
    [71]刘学师,刘建秀.中国东部假俭草的种质资源多样性初步研究Ⅳ——同工酶分析[J].生物学杂志,2005,22(2):18-20.
    [72]林宝刚,张明龙,张龙.甘蓝型油菜杂种优势和过氧化物酶的关系分析[J].华北农学报,2005. 20(4):36-39.
    [73]梁顺祥,唐道城,等.万寿菊杂种优势与POD同工酶关系的研究[J].北方园艺,2007(1):161-164.
    [73]程昕昕,耿广汉,刘正.过氧化物酶杂合性与玉米F1产量性状相关性分析[J].中国农学通报, 2007,23(2):271-271.
    [75]杨青珍,王锋,季兰.平榛、欧榛及种间杂种过氧化物酶同工酶分析[J].中国农学通报,2007, 23(6):149-152.
    [76]李静,李明,等.白灵菇亲本及诱变杂交子代菌丝生长及酯酶同工酶分析[J].安徽农业科学,2007,35(29):9198-9200.
    [77]于澄宇,胡胜武,等.甘蓝型油菜显性核不育系的同工酶和蛋白质分析[J].西北农林科技大学学报(自然科学版),2003,31(6):71-74.
    [78]王永勤,曹家树,等.白菜核雄性不育两用系生理生化的分析[J].园艺学报.2003.30(2):212-214.
    [79]任雪松,李成琼,宋洪元.甘蓝胞质雄性不育系和保持系花药同工酶分析[J].西南农业大学学报,2004,26(4):433-436.
    [80]梁顺祥,唐道城,等.万寿菊雄性不育品系的POD同工酶分析[J].青海大学学报(自然科学版),2007,25(1):46-50.
    [81]张琪,司龙亭.萝卜不育系和保持系几种同工酶分析[J].北方园艺,2007(10):25-26.
    [82]戴亮芳,罗向东,等.辣椒细胞质雄性不育系的3种同工酶分析[J].西北植物学报,2007,27(9):1772-1776.
    [83]张凤兰,冯忠梅,等.大白菜新型细胞质雄性不育生理生化机制的研究[J].华北农学报,2007,22(5):101-105.
    [84]李鲁华,李世清,等.小麦根系与土壤水分胁迫关系的研究进展[J].西北植物学报,2001,21(1):1-7.
    [85]孙彩霞,刘志刚,荆艳东.水分胁迫对玉米叶片关键防御酶系活性及其同工酶的影响[J].玉米科学,2003,11(1):63-66.
    [86]韩瑞丽,陆海.转APX基因烟草抗旱能力研究[J].成都大学学报(自然科学版),2007,26(2):93-97.
    [87]王保,戴保威.同工酶电泳技术在作物遗传育种中的应用[J].贵州大学学报(农业与生物科学版),2002,21(6):453-458.
    [88]上海植物生理研究所,上海植物生理学会.现代植物生理学实验指南[M].北京:科学出版社出版,1999.314-315.
    [89] Stewartand R C,Bewley J D. Lipid peroxidation Associated with Accelerated Aging of Soybean Axes[J].Plant Physical,1980(65):245-248
    [90]袁有喜,牛应泽,汪良中,刘玉贞.人工合成甘蓝型油菜的同工酶分析.四川农业大学学报,2000, 18(2):153-156.
    [91]武孟祥,贾建兵,等.植物低温保护剂对番茄幼苗抗寒力的影响[J].西北植物学报,1994, 14(5):95-98.
    [92]王建华,刘鸿先,徐同.超氧化物岐化酶(SOD)在植物逆境和衰老生理中的作用[J].植物生理学通讯,1989(1):1-7.
    [93] Bowler C,et al.Superoxide Dismutase and Stess Tolerance Annu Rev Plant Physiol [J].Plant MolBiology,1992,43: 83-116.
    [94]李红玉,何晨阳.活性氧对植物防卫信号传导作用探讨[J].农业生物技术学报,1996,4(2):190-196.
    [95]朱有林,刘纪麟.受玉米大斑病菌浸染后玉米抗感近等基因系SOD动态变化的研究[J].植物病理学报,1996,26(4):133-137.
    [96]朱惠霞,孙万仓,等.白菜型冬油菜品种的抗寒性及其生理生化特性[J].西北农业学报,2007, 16(4):34-38.
    [97]王爱国,罗广华.大豆种子超氧化物歧化酶的研究[J].植物生理学报,1983,9(1):77-83.
    [98]岳寿松,于振文.小麦旗叶与根系衰老的研究[J].作物学报,1996, 22(1):55-58.
    [99]高明君.植物同工酶基因定位方法初探[J].青岛海洋大学学报,1994,24(2):195.
    [100]马之胜,贺普超.用过氧化物酶同工酶对中国葡萄属野生种分类和亲缘关系的研究[J].华化农学报,1998,13(2):122-126.
    [101]中川原正弘.用同工酶分析法确定栽培水稻(Dryza sativa L.)的分化、分类和遗传变异.Proc. of Symposinm on methods of crop breeding,1978:77-81.
    [102]周光宇.远缘杂交的分子基础——DNA片段杂交假设的一个论证.遗传学报,1979,6(4).
    [103] Litt M, Luty JA. A hypervariable microsatellite revealed by in vitroam plification of a dinucleotide repeat within the cardiac muscle action gene[J]. Am J Hum Genet,1989,44:397.
    [104] Condit R, S Hubbel. Abundance and DNA sequence of Two-base repeat regions in tropical tree genomes [J]. Genome,1991.33:66-71.
    [105] Akkaya MS,A A B hagwat, PB C regan. Length polymorphism of simple sequence repeat DNA in soybean[J]. Genetics, 1992,132:1131-1139.
    [106] Wu KS, S D Tanksley. Abundance, polymorphism and genetic mapping of microsatellite in rice[J]. Mol Gen Genet,1993,241:225-235.
    [107]袁力行,傅骏骅,Warburton M, et al.利用RFLP、SSR、AFLP和RAPD标记分析玉米自交系遗传多样性的比较研究[J].遗传学报,2000,27:725-733.
    [108] Bell CJ, JR Ecker. Assignment of 30 microsatellite loci to the linkage map of Arabidopsis[J]. Genetics,1994,19:137-144.
    [109]刘列钊,林呐.油菜简单重复序列SSR(simple Sequence repeat)研究进展[J].生命科学,2004, 16(3):173-177.
    [110]孟金陵.作物近交衰退的研究进展[J].华中农学院学报,1984,3(3):97-105.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700