用户名: 密码: 验证码:
大豆对大豆花叶病毒(SMV)的数量抗性研究及QTL定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大豆花叶病毒(Soybean Mosaic Virus,SMV)病是主要的大豆病害之一,严重影响大豆的产量和品质。目前,培育抗病品种仍是控制SMV流行、减少危害的最有效方法。大豆对SMV存在质量抗性与数量抗性两类,开展数量抗性研究对拓宽抗源、培育非专化抗性品种具有重要意义。
     本研究利用圣豆一号×汾豆72的P1、P2、Fl、F2和F2:3五个世代进行了主基因+多基因混合遗传分析。结果表明大豆对SMV的数量抗性由一对加性主基因+加性-显性多基因共同控制。遗传参数的估计结果表明,主基因遗传率大于多基因遗传率,因此在数量抗性育种进程中要重视对主基因的选择,同时兼顾对多基因的积累。
     利用圣豆一号×汾豆72组合的F2群体,构建了包含24个SSR标记覆盖9个连锁群的遗传图谱。利用构建的遗传连锁图谱,采用复合区间作图法(CIM)和多区间作图法(MIM)对F2和F2:3两个世代的数量抗性QTL进行了定位。结果表明:
     (1)在F2群体中,使用MIM以SDI-1138为指标检测到2个QTL,位于C2和F连锁群,共可解释表型变异的21.70%。两个QTL间存在加性×加性(AA)互作效应,效应值为-0.24,贡献率为37.90%;以SDI-SY指标,使用MIM,检测到2个QTL和3个QTL间互作,位于C2和F连锁群。其中qSRM22-C2和qSRM22-F对表型变异的解释比例分别为31.90%和19.30%,其显性×显性(DD)互作效应贡献率较高,为19.8%;以DI为指标,两种方法共检测到4个QTL和2个QTL间互作,位于C2和F连锁群。4个QTL对表型变异的解释比例均在11.00%之上,其中qSRC23-C2最高,为30.81%;以发病率为指标,仅检测到1个QTL,位于F连锁群,贡献率为7.29%;以平均病级为指标,两种方法共检测到3个QTL和3个QTL间互作,位于F连锁群。其中qSRM25-F1和qSRM25-F2的贡献率分别为6.10%和18.30%,其显性×显性(DD)互作的贡献率较高,为17.50%。
     (2)在F2:3群体中,以SDI-1138为指标两种方法共检测到6个QTL,分布于B2、C2、Dlb、I和M连锁群。其中CIM检测到4个QTL,但贡献率均较低,最高的仅有4.16%,使用MIM检测到2个QTL其中qSRM31-B2的贡献率最高,为53.5%;以SDI-SY为指标,两种方法共检测到6个QTL及1个QTL间互作,其中CIM检测到4个QTL,但贡献率均较低,平均仅为1.92%;MIM检测到2个QTL,qSRM32-B2和qSRM32-D1b,可解释表型变异的比例分别为19.90%和3.50%,两者的加性×显性(AD)效应贡献率为44.00%;以DI为指标,两种方法共检测到3个QTL和1个QTL间互作,位于D1b和I连锁群。其中qSRM33-Ⅰ的贡献率最高,为33.20%;以发病率为指标,使用MIM方法检测到3个QTL和2个互作QTL,位于B2、C2和M连锁群;共可解释表型变异的43.40%。其中qSRM34-B2和qSRM34-C2对表型变异的解释比例均为14.10%,两者的显性×显性(DD)互作效应较高,效应值为0.67,贡献率为50.50%;以平均病级为指标,两种方法检测到3个QTL和1个QTL间互作,位于D1b和I连锁群。qSRM35-D1、qSRM35-Ⅰ和qSRC35-Ⅰ的贡献率分别为7.10%、33.20%和3.16%,其中前两者的显性×显性(DD)贡献率为6.20%。
     (3)比较F2世代和F2:3世代的定位结果,以LOD≥2.0和贡献率R2≥10.00%为主效QTL的认定标准,互作效应≥10.00%的QTL亦认定为主效QTL,在F2中使用CIM和MIM两种方法共检测到了11个主效QTL,分布于C2和F两个连锁群;在F2:3中两种方法共检测到8个主效QTL,分布于B2、C2、Dlb、I和M等5个连锁群;比较使用5个指标检测出的主效QTL数目可知,以DI为指标时检测的主效QTL最多,且其调查方便,因此本研究认为以DI为指标描述数量抗性较为合适。此外,在F2和F2:3两个世代中都检测到一个位于C2连锁群控制大豆对SMV数量抗性的主效QTL。这印证了遗传分析时发现的大豆对SMV的数量抗性由一对加性主基因+加性-显性多基因共同控制的遗传方式。
Soybean mosaic virus (SMV) is one of the major diseases in soybean, which causes severe yield loss and seed quality deficiency. Developing resistant cultivars is still the most effective means to control SMV at present. There are two kinds of resistance to SMV in soybean, qualitative resistance and quantitative resistance. It's of great importance to study the quantitative resistance to widen resistance-donor and cultivate non-specialized cultivars in soybean.
     Genetic segregation analysis for disease index(DI) were conducted by using major gene plus polygenes mixed inheritance models and joint analysis method of P1, P2, F1, F2 and F2:3 generations. The results showed that quantitative resistance to SMV was controlled by an additive major gene plus additive-dominant polygenes. Estimates of genetic parameter indicated that heritability of major genes were higher than polygenes, it's necessary to pay more attention to major genes in resistance breeding.
     A genetic linkage map based on F2 population of Shengdoul and Fendou72 crossing was constructed and QTLs in F2 and F2:3 were mapped on the genetic map with methods of composite interval method (CIM) and multiple interval method (MIM). The results showed that:(1) In F2, two QTLs were detected on C2 and F for SDI-1138 using MIM, totally explaining 21.70% of phenotypic variation and giving high contribution rate of 37.9% with QTL ineractions (AA). For SDI-SY, two QTLs and three QTL interactions were detected on C2 and F using MIM. Among them qSRM22-C2 & qSRM22-F explained 31.90% and 19.30% of phenotypic variation respectively, with high contribution rate of 19.80% from QTL interaction (DD). Four QTLs and two QTL interactions were dectected on C2 and F for DI using CIM & MIM. The contribution rate of four QTLs was all beyond 11.00% with qSRC23-C2 giving the highest of 30.81%. There was one QTL for incidence locationg on F with constribution rate of 7.290%. For the mean disease scale, three QTLs and three QTL interactions locating on F were detected using CIM and MIM. Among them qSRM25-F1 & qSRM25-F2 explained 6.10% and 18.30% of phenotypic variation respectively, and 17.50% of phenotypic variation for their QTL interaction (DD).
     (2) In F2:3, six QTLs were detected on B2、C2、D1b、I and M for SDI-1138 using CIM and MIM. Four QTLs were detected by CIM, giving minor contribution rate with the highest of 4.16%. The qSRM31-B2 detecting by MIM explained 53.50% of phenotypic variation. For SDI-SY, six QTLs and one QTL were detected on B2、C2、D1b. I and M for SDI-SY using CIM and MIM. Four QTLs were detected by CIM, giving minor constribution rate averaging 1.92%. The qSRM32-B2 & qSRM32-D1b detecting by MIM explained 19.90% and 3.50% of phenotypic variation respectively, with QTL interaction (AD) of 44.00%. Three QTLs and one QTL interaction were dectected on D1b and I for DI using CIM & MIM. Among them gave the highest constribution rate of 33.20%. Three QTLs and two QTL interactions were detected on B2, C2 and M for incidence using MIM, totally explaining 43.40% of phenotypic variation. QTL interaction (DD) between qSRM34-B2 and qSRM34-C2 gave high constribution rate of 50.50%. For mean disease scale, three QTLs and one QTL were detected on D1b and I using CIM and MIM. Among them constribution rate of qSRM35-D1, qSRM35-Ⅰand qSRC35-Ⅰwere 7.10%,33.20% and 3.16% repectively. QTL interaction (DD) between qSRM35-D1 & qSRM35-Ⅰexplained 6.20% of phenotypic variation.
     (3) LOD value more than 2.0 and contribution rate more than 10.00% for QTLs and QTL interactions were used as the criterion for major QTLs. Mapping results indicated that eleven major QTLs in F2 located on C2 and F, and eight major QTLs on B2、C2、D1b、I and M in F2:3. More major QTLs were detected for DI plus easily using made DI the best trait for quantitative resistance reseach. In addition, a major QTL controlling quantitative resistance to SMV on C2 was detected both in F2 and F2:3. Genetic analysis and QTL mapping were essentially consistent.
引文
[1]陈集双,高其康,洪健等.几种天南星科植物受芋花叶病毒感染后的叶片组织病变研究[J].电子显微学报,1994,13(3):1 83-188
    [2]陈庆山,张忠臣,刘春燕等.大豆主要农艺性状的QTL分析[J].中国农业科学,2007,40(1):41-47
    [3]陈怡等.大豆对两个大豆花叶病毒株系的抗性遗传研究[J].黑龙江农业科学,(5):21-24
    [4]陈永萱等.大豆花叶病毒(SMV)两个新株系的鉴定.植物保护学报,13(4):221-226
    [5]东方阳.大豆对SMV株系的遗传分析和RAPD标记研究[D].南京:南京农业大学,1999
    [6]方宣钧,吴为人,唐纪良.作物DNA标记辅助育种[M].北京:科学出版社,2001
    [7]盖钧镒,胡蕴珠,崔章林,等.大豆资源对SMV株系的抗性鉴定[J].大豆科学,1989,8(4):323-330
    [8]盖钧镒,王建康.利用回交世代或F2:3家系世代鉴定数量性状主基因-多基因混合遗传模型[J]作物学报,1998,24(4):402-409
    [9]盖钧镒,章元明,王建康.QTL混合遗传模型扩展至2对主基因+多基因时的多世代联合分析[J].作物学报,2000,26(4):385-391
    [10]盖钧镒,汪越胜.中国大豆品种生态区域划分的研究[J].中国农业科学,2001,34(2)139-145
    [11]高翔,王保通等.抗锈育种中慢条锈性品种鉴定方法和判别函数[J].作物学报,2000,26(3)372-376
    [12]耿迎春,李默然,李勇,等.大豆花叶病毒株系鉴定[J].大豆科学,1985,4(4):261-266.
    [13]巩鹏涛,木金贵,赵金荣,等.一张含有315个SSR和40个AFLP标记的大豆分子遗传图的整合[J].分子植物育种,2006,4(3):309-316
    [14]郭兴启,李向东,王秀芳,等.马铃薯Y病毒两分离物特性及其侵染寄主的超微结构比较[J].浙江农业大学学报(农业与生命科学版),2002,28(4):411-416
    [15]韩盛,向本春.植物病毒分子检测方法研究进展[J].石河子大学学报(自然科学版),2006,24(5):550-553
    [16]洪健,徐颖,黎军英,等.芜菁花叶病毒(TuMV)侵染寄主植物光合作用的影响[J].,电子显微学报,21(2):110-113
    [17]洪健,薛朝阳,徐颖,等.受番茄花叶病毒侵染后寄主的超微病变研究[J].植物学报,1999, 41(12):1259-1263
    [18]洪健.几种植物病毒所引起的寄主植物细胞病理学变化[J].浙江农业大学学报,1990,16(2):86-93
    [19]胡国华,吴宗璞,高凤兰.大豆抗种斑驳基因效应的遗传[J].遗传学报,1995,22(2):133-141
    [20]胡向武,唐剑云,张林普.烟草花叶病毒的侵染部位及细胞病理变化的电镜观察[J].安徽师范大学学报(自然科学版).1996,19(2):1 40-143
    [21]胡蕴珠,智海剑,沈文彪,等.对SMV不同抗性的大豆体内过氧化物活性变化的研究[J].大豆科学,1997,16(1):28-33
    [22]胡蕴珠,盖钧镒,智海剑.大豆对大豆花叶病毒中、美株系的抗性及其遗传研究[C].第五届全国大豆学术讨论会论文集,1993
    [23]赖世龙,谢水仙,曾士迈.小麦持久抗性品种对中国条锈菌抗病性特点的分析[J].植物保护学报,2002,29(1):36-40
    [24]兰玉菲,郗丽君,张德满,等.植物病毒检测技术[J].山东农业科学,2006(5):57-62
    [25]李海朝.大豆对大豆花叶病毒的抗性遗传与SSR标记定位研究[D].南京:南京农业大学,2006
    [26]李红叶,洪健,周雪平,等.葡萄扇叶病毒引起的寄主细胞病变研究[J].植物病理学报,2002,32(1):65-70
    [27]李学湛.复合病毒感染对大豆叶片细胞超微结构的影响[J].电子显微学报,1991,10(1):12-16
    [28]廖林,刘玉芝,孙大敏等.大豆花叶病引起的大豆顶端坏死症[J].作物学报,21(6):707-710
    [29]廖林,刘玉芝.多抗性大豆育种现状及对策分析[J].大豆通报,1996,(6):7-8
    [30]廖林,刘玉芝.抗花叶病大豆品种的抗病力和病毒毒株致病力的研究[J].中国油料作物学报,1996,18(3):56-9
    [31]刘峰,庄炳昌,张劲松,等.大豆遗传图谱的构建和分析[J].遗传学报,2000,27(11):1018-1026
    [32]刘丽君,吴俊江,高明杰,等.大豆对SMV1株系抗性基因的分子标记研究[J].大豆科学,2002,21(2):93-95
    [33]吕文清,张明厚,魏培文,等.东北三省大豆花叶病毒(SMV)株系的种类与分布[J].植物病理学报,1985,15(4):225-228
    [34]吕文清,张明厚,魏培文等.东北三省大豆花叶病毒(SMV)株系的种类与分布[J].植物病理 学报,1985,15(4):225-228
    [35]吕祝章.大豆遗传图谱构建、重要农艺性状QTL定位及优异基因发掘[D].山东:山东农业大学,2006
    [36]栾晓燕,李宗飞,满为群,等.与大豆SMV3号株系抗性相关的分子标记的鉴定[J].分子植物育种,2006,4:(6):841-845
    [37]栾晓燕.大豆对SMV3号株系成株抗性遗传的研究[J].大豆科学,1997,(3):223-226
    [38]罗瑞梧,尚佑芬,杨崇良等.山东省大豆花叶病毒株系鉴定[J].山东农业科学,1990,(5):16-19
    [39]罗瑞梧,尚佑芬等.大豆花叶病的流行因素和发生预测研究[J].植物保护学报,1991,3(2):267-271
    [40]骆勇,曾士迈.小麦条锈病慢锈品种抗性组分的初步研究[M].中国科学,1988,B辑(31):217-227
    [41]马淑梅.中国大豆品种对大豆斌反对花叶病毒(SMV)病抗性鉴定结果[J].大豆科学,1991,10(3):240-244
    [42]马育华.试验统计[M].农业出版社,1982
    [43]马育华编著.植物育种的数量遗传学基础[M].江苏科技出版社,1982
    [44]苗洪芹.植物病毒检测技术和防止策略[J].河北农业科学,2005,9(3):103-106
    [45]濮祖芹,曹琪,房德纯.大豆花叶病毒的株系鉴定.植物保护学报,1982,9(1):15-19
    [46]濮祖芹,曹琪.大豆品种(品系)对大豆花叶病毒六个株系的抗性反应[J].南京农学院学报,1983,(3):41-45
    [47]尚佑芬,赵玖华,杨崇良,等.黄淮地区大豆花叶病毒株系鉴定[J].山东农业科学,1997,(6):24-27
    [48]尚佑芬等.大豆花叶痛的流行因素和发生预测研究[J].植物保护学报,1991,3(2):267-271
    [49]邵碧英.植物病毒分子检测方法概述[J].植物检疫,2002(6):377-379
    [50]沈文彪,徐朗莱,胡蕴珠,等.大豆花叶病毒(SMV)的侵染对大豆叶片过氧化物酶及其同二工酶的影响[J].南京农业大学学报,1997,20(4):88-92
    [51]沈文飙,徐朗莱,冯睛等.大豆抗SMV生化机制的初步研究[J].大豆科学,1999,18(1):22-26
    [52]孙志强等.大豆对大豆花叶病毒1,2,3号毒系的抗性遗传[J].中国油料,1990,(2):20-24
    [53]滕卫丽,李文滨,邱丽娟,等.大豆SMV3号株系抗病基因的SSR标记[J].大豆科学,2005,24(3):244-249
    [54]宛煜嵩,王珍,肖英华,等.一张含有227个SSR标记的大豆遗传连锁图[J].分子植物育种,2005,3(1):15-20
    [55]王建康,盖钧镒.利用杂种F2世代鉴定数量性状主基因-多基因混合遗传模型并估计其遗传效应[J].遗传学报,1997,24(5):432-440
    [56]王建康,盖钧镒.数量性状主基因-多基因混合遗传的P1,F1,P2,F2和F2:3联合分析方法[J].作物学报,1998,24(6):651-659
    [57]王健康,盖钧镒.利用图形分析鉴定数量性状遗传体系中的主基因[J].遗传,1998,20增刊:110-111
    [58]王健康,盖钧镒.利用杂种F2世代鉴定数量抗性主基因一多基因混合遗传模型并估计其遗传效应[J].遗传学报.1997,24(5):432-440
    [59]王健康,盖钧镒.数最抗性主基因一多基因混合遗传的P1,P2,F1,F2和F2:3联合分析方法[J].作物学报,1998,24(6):402-409
    [60]王健康,盖钧镒.主基因-多基因混合遗传分析中的EM算法[J].生物数学学报12(5):540-548
    [61]王林生,宋忠利,李毓珍,等.植物数量性状的QTL定位分析[J].安徽农业科学,2006,34(18):4527-4529
    [62]王贤智.大豆产量相关性状的遗传与稳定性分析及QTL定位研究[D].中国农业科学院博士学位论文,2008.
    [63]王修强,盖钧镒,濮祖芹.黄淮和长江中下游地区大豆花叶病毒株系鉴定与分布[J].大豆科学,2003,22(2)102-107
    [64]王延伟,智海剑,郭东全等.中国北方春大豆花叶病毒株系的鉴定与分布.大豆科学,2005,24(4):263-268
    [65]王永军,东方阳,王修强,等.大豆5个花叶病毒株系抗性基因的定位[J].遗传学报,2004,31(1):87-90
    [66]王永军,吴晓雷,喻德跃,等.重组自交系群体的检测调整方法及其在大豆NJRIKY群体的应用[J].作物学报,2004,30(5):413-418
    [67]王永军.大豆重组自交系群体的构建与调整及其在遗传作图、抗花叶病毒基因定位和农艺及品质性状分析中的应用[D].南京农业大学博士论文,2001
    [68]王珍.大豆SSR遗传图谱构建及重要农艺性状QTL分析[D].广西:广西大学,2004
    [69]吴晓雷,贺超英,王永军, 等.大豆遗传图谱的构建和分析[J].遗传学报,2001,28(11):1051-1061
    [70]吴晓雷,王永军,贺超英,等.大豆重要农艺性状的QTL分析[J].遗传学报,.2001, 28(10):947-955
    [71]吴云锋编著.植物病毒学研究方法[M].西安地图出版社,1999
    [72]向远道,盖钧镒等.大豆对四个大豆花叶病毒株系的抗性及其连锁遗传研究[J].遗传学报,1991,18(1):51-58
    [73]严隽析,马育华.大豆花叶病抗性遗传的初步研究[J].大豆科学,1985,4(4):249-259
    [74]杨崇良等.北方大豆品种资源抗大豆花叶病毒筛选[J].植物病理学报,27(1):27-28
    [75]杨家书,吴畏,吴友三.小麦品种对白粉病慢发性抗病性的因素分析[J].植物保护学报,1985,12(1):37-43
    [76]杨雅麟.长江中下游地区大豆花叶病毒(SMV)株系组成、分布及抗性研究[D].南京:南京农业大学硕士论文,2002
    [77]杨喆,关荣霞,王跃强,等.大豆遗传图谱的构建和若干农艺性状的QTL定位分析[J].植物遗传资源学报,2004,5(4):309-314
    [78]余子林等.湖北地区大豆花叶病毒的研究全国大豆病害学术讨论会论文摘要汇编,1986
    [79]袁军海,赵美琦,姚裕琪等.寄生适合度测定方法间关系的研究一以马铃薯晚疫病为例[J].河北农业大学学报,2003,26(1):51-55
    [80]袁军海,赵美琦,曾士迈等.寄主品种一病原物小种寄生适合度中水平抗性与侵袭力关系的初步研究[J].植物病理学报,2001,31(1):70-72
    [81]曾士迈,张树榛著.植物抗病育种的流行学研究[M].科学出版社,1998
    [82]曾士迈.品种抗病性持久度的估测(Ⅰ)[J].植物病理学报,1996,26(3):193-203
    [83]战勇.黄淮地区大豆花叶病毒的生物学检测、株系鉴定及大豆抗性的遗传与基因定位.南京农业大学博士论文,2005
    [84]张德水,董伟,惠东威,等.用栽培大豆与野生大豆间的杂种F2群体构建基因组分子标记连锁图谱框架图[J].科学通报,1997,42(2):1326-1330
    [85]张明厚.大豆花叶病毒育种概况[J].大豆科学,1985,4(4):318-325
    [86]张明厚等.我国东北五省市SMV对大豆主栽品种的毒力测定[J].植物病理学报,1998,28(3):237-242
    [87]张玉东,盖钧镒等.大豆对两个大豆花叶病毒本地株系抗性的遗传研究[J].作物学报,1989,15(3):213-220
    [88]张志永,陈受宜,盖钧镒等.大豆花叶病毒抗性基因Rsa的分子标记[J].科学通报,1998,43(20):2197-2201
    [89]张志永,张劲松,巩学千等,抗SMV栽培大豆种质资源的SCAR际记指纹图谱分析[J].高科 技通讯,1998,8(10):49-53
    [90]张忠臣.大豆基因组作图和重要农艺性状的基因定位[D].黑龙江:东北农业大学,2004
    [91]章元明,盖钧镒,张孟臣.利用P1、Fl、P2、和F2或F2:3世代联合的数量性状分离分析[J].西南农业大学学报,2000,2(22):6-9
    [92]章元明,作物QTL定位方法研究进展[J].科学通报,2006,51(19):2223-2231.
    [93]章元明,盖钧镒,张孟臣.利用P1、P2、F1、F2或F2:3世代联合的数量性状分离分析[J].西南农业大学学报.2000,22(1):6-9
    [94]章元明,王健康著.植物数量性状遗传体系[M].科学出版社,2003
    [95]郑翠明,常汝镇,邱丽娟.大豆对SMV·3号株系的抗性遗传分析及抗病基因RAPD标记研究[J].中国农业科学,2001,34(1):1-4
    [96]郑翠明,常汝镇,邱丽娟.大豆花叶病毒研究进展[J].植物病理学报,2000,30(2):97-103
    [97]郑翠明.大豆对SMV3株系的抗性遗传及分子标记研究[D].北京:中国农业科学院博士学位论文,2000
    [98]智海剑,胡蕴珠,刘天育,大豆花叶病毒对大豆生长的影响.中国油料[J],1996,18(1):44-47
    [99]智海剑.大豆对大豆花叶病毒抗侵染和抗扩展特性的鉴定、遗传和利用研究[D].南京:南京农业大学,2005
    [100]钟兆西,吴宗璞,高风兰,等,筛选SMV抗源品种的初步研究[J].大豆科学,1986,5(3):239-244.
    [101]周雪平,濮祖芹,方中达.豌豆病毒病病原研究[J].植物病理学报,1994,24(3):207-212
    [102]朱小源,杨祁云等.水稻品种对稻瘟病的质量抗性和数量抗性的初步研究[J].中国水稻科学,1996,10(3):181-184
    [103]朱晓丽.大豆遗传图谱构建及在两个群体重要农艺性状的QTL定位[D].黑龙江:东北农业大学,2006
    [104]祝其昌,张秋荣,宣亚南,等,不同杂交组合与选择方法对大豆花叶病毒选育效果的比较[J].大豆科学,1990,9(1)778-781
    [105]Akkaya MS, Bhagwat AA, Cregan PB. Length polymorphism equence repeat DNA in soybean [J]. Genetics,1992,132:1131-1139
    [106]Apuya NR, Frazier BL, Keim P, et al. Restriction fragment length polymer-phisms as genetic markers in soybean, Glycine max (L.) Merrill [J]. Theor Appl Genet,1988,75:889-901
    [107]Arumanagathan K. Nuclear DNA content of some important plantspecies [J]. Plant Mol Biol Rep, 1991,9:229-241
    [108]Botstein D, White RL, Skolnick M, et al. Construction of a genetic linkage map in man using restriction fragment length polymorphisms [J]. Amer J Hum Genet,1980,32:314-331
    [109]Brummer EC, Graef GL, Orf JR, et al. Mapping QTL for seed and oil content in eight soybean population [J]. Crop Sci,1997,37:370-398
    [110]Bubeck DM. Quantitative trait loci controlling resistance to gray leaf spot in maize [J]. Crop Sci. 1993,33:838-847
    [111]Burr B, Burr EA. Recombinant inbreds for molecular mapping in maize [J]. Trends Genet,1991, 7:55-60
    [112]Chapman A, Pantalone VR, Ustun A, et al. Quantitative trait loci for agronomic and seed quality traits in an F2 and F4:6 soybean population [J]. Euphytica,2003,129:387-393
    [113]Choi 1Y, Hyten DL, Song QJ, et al. A soybean transcript map:gene distribution, haplotype and SNP analysis [J]. Genetics,2007,176:685-696
    [114]Conover RA. Studies of two viruses causing mosaic disease of soybean [J]. Phytopathology,1948, 53:388-393.
    [115]Cregan PB, Jarivk T, Bush AL, et al. An integrated genetic linkage map of the soybean genome [J]. Crop Sci,1999,39:1464-1490
    [116]Darvasi A, Solier M. Optimum spacing of genetic markers for determining linkagebetween marker loci and quantitative trait loci [J]. Theor Appl Genet,1994,89:351-368
    [117]Dudley JW. Molecular markers in plant improvement:Manipulation of genes affecting quantitative traits [J]. Crop Sci,1993,33:660-668
    [118]Edwards MD. Molecular-marker-facilitated investigations of quantitative trait loci in maize-numbers, genomic distribution and types of gene action [J]. Genetics,1987,116:113-125
    [119]Elston RC, Stewart J. The analysis of quantitative traits for simple genetic models from parental, F1 and backcross data [J]. Genetics,1973,73:695-711
    [120]Ferreira AR, Keim P. Genetic mapping of soybean [Glycine max. (L)Merr.] using random amplified polymorphic DNA(RAPD)[J]. Plant Mol Biol Rep,1997,15:335-334
    [121]Gai JY, JK Wang. Identification and estimation of a QTL model and its effects [J]. Theor Appl Genet,1998,97:1162-1168
    [122]Ganal MW, Young ND, Tanksley SD. Pulsed field gel electrophoresis and physical mapping of large DNA fragments in the Tm-2a region of chromosome 9 in tomato-[J]. Mol. Gen. Genet,1989, 215:395-400
    [123]Gupta M, Chyi YS, Severson J, et al. Amplification of DNA markers from evolutionarily diverse genomes using single primers of simple sequence repeats [J]. Theor Appi Genet,1994,89: 998-1006
    [124]Hayes AJ, Ma GR, Saghai Maroof, et al. Molecular Marker Mapping of Rsv4, a gene conferring resistance to all known strains of soybean mosaic virus [J]. Crop Sci.2000,40:1434-1437
    [125]Helentjaris TA. Genetic linkage map for maize based on RFLPs [J]. Trends Genet,1987,3: 217-221
    [126]Imsande KP. QTL in Soybase:A new perspective [J]. Soybean Genetics Newsletter,1998,25:146-149
    [127]Jeong SC, Kristipati S, Hayes AJ, et al. Genetic and sequence analysis of markers tightly linked to the soybean mosaic virus resistance gene, Rsv3 [J]. Crop Sci,2002,42:265-270
    [128]Kao CH, Zeng ZB. General formulas for obtaining the MLEs and the asymptotic variance-covariance matrix in mapping quantitative trait loci when using the EM algorithm [J]. Biometrics,1997,53:653-665
    [129]Kearsey MJ, Farquhar AG. QTL analysis in plants:where are we now? [J]. Heredity,1998,80: 137-142
    [130]Keim P, Diers BW, Olson TC, et al. RFLP mapping in soybean:association between marker loci and variation in quantitative traits[J]. Genetics,1990,126:735-742
    [131]Keim P, Schupp JM, Travis SE, et al. A high-density soybean genetic map based on AFLP markers [J]. Crop Sci,1997,37:537-543
    [132]Lander ES, Botstein D. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps [J]. Genetics,1989,121:185-199
    [133]Lark KG, Weisemann JM, Matthews BF, et al. A genetic map of soybean (Glycine max L.) using in transpecific cross of two cultivars:"Minsoy"and"Noir 1" [J]. Theor Appl Genet,1993,86: 901-906
    [134]Lincoln S, Daly M, Lander E. Mapping genetic mapping with MAPMAKER/EXP3.0 [M]. Cambridge:1992, MA:Whitehead institute Technical Report
    [135]Mansur LM, Orf JH, Lark KG, et al. Interval mapping of quantitative trait loci for reproductive, morphological and seed trait of Soybean(Glycine max L.)[J]. Thero Appl Genet,1993,86: 907-913
    [136]Michelmore RW, Shaw DV. Quantitative genetics:Character dissection [J]. Nature,1988,335: 672-673
    [137]Narvel JM. A Retrospective DNA marker assessment of the development of insect resistant soybean [J]. Crop Sci,2001,41:1931-1939.
    [138]O'Brien SJ. Locus maps of complex genomes [J]. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 1993
    [139]Paran I, Michelmore RW. Development of reliable PCR based markers linked to down mildew resistance genes inlettuce [J]. Theor Appl Genet,1993,85:985-993
    [140]Pateson AH, Landef ES, Hewitt JD, et al. Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment Length polymorphysiums [J]. Nature, 1988,335:721-726
    [141]Powell W, Morgante M, Ande C, et al. The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis [J]. Mol Breeding,1996,12:225-238
    [142]Pritchard JK, Rosenberg NA. Use of unlinked genetic markers to detect population stratification in association studies[J]. Am J Hum Genet,1999,65:220-228
    [143]Rongwen J, Akkaysa MS, Bhagwat AA, et al. The use of micro-satellite DNA markers for soybean genotype identification [J]. Theor Appl Genet,1995,90:43-48
    [144]Rooney M, Jellen W, Phillips E, et al. Identification of homoeologous chromosome in hexaploid oat(A-byzantina cv kanota)using monosomics and RFLP analysis [J]. Theor Appl Genet,1994, 89:329-335
    [145]Schuler GD, Ganal MW, Martin GB, et al. A gene map of the human genome [J]. Science,1996, 274:540-567
    [146]Sharp PJ, Chao S, Desai S, et al. The isolation, characterization and application in the Triticeae of a set of wheat RFLP probes identifying each homoeologous chromosome arm [J]. Theor Appl Genet,1989,78:342-348
    [147]Singh RJ, Hymowitz T. The genomic relationship between Glycine max (L.)Merr. and G. Soja Sieb and Zucc, as revealed by pachytene chromosomal analysis [J]. Theor Appl Genet,1988,76: 705-711
    [148]Soller M, Brody T, Genizi A. On the power of experimental design for the detection of linkage between marker loci and quantitative loci in crosses between inbred lines [J]. Theor Appl Genet, 1976,47:35-39
    [149]Song QJ, Marek LF, Shoemaker RC, et al. A new integrated genetic linkage map of the soybean [J]. Theor Appl Genet,2004,109:122-128
    [150]Specht JE, Chase K, Macrander M, et al. Soybean Response to Water:A QTL Analysis of drought tolerance [J]. Crop sci,2001,41:493-509
    [151]Tanksley SD, Ganal MW, Martin GB. Chromosome landing:A paradigm for map based gene cloning in plants with large genomes [J]. Trends Genet,1995,11:63-68
    [152]Tanksley SD. Mapping polygenes [J]. Annu Rev Genet,1993,27:205-233
    [153]The Complex trait consortium. The nature and identification of quantitative trait loci:A community's view [J]. Nat Rev Genet,2003,4:911-916
    [154]Thoday JM. Location of polygenes [J]. Nature,1961,22:368-370
    [155]Wang G, Graef GL, Procopiuk AM, et al. (C-A) and (G-A) anchored simple sequence repeats (ASSRs) generated polymorphism in soybean, Glycine max (L.)Merri. [J]. Theor Appl Genet, 1998,96:1086-1096
    [156]Weller JI. Maximum likelihood techniques for the mapping and analysis of quantitative trait loci with the aid of genetic markers [J]. Biometrics,1986,42:627-640
    [157]Williams J, Kubelik A, Livak K, et al. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers [J]. Nucl Acid Res,1990,18:6531-6535
    [158]Xu SJ, Singh RJ, Hymowitz T. Establishment of a cytogenetic map of soybean:progress and prospective [J]. Soybean Genet Newslet,1997,24:121-122
    [159]Yang RQ, Tian Q, Xu S. Mapping quantitative trait loci for longitudinal traits in line crosses [J]. Genetics,2006,173:2339-2356
    [160]Yi N, Yandell BS, Churchill GA, et al. Bayesian model selection for genome-wide epistatic quantitative trait loci analysis [J]. Genetics,2005,170:1333-1344
    [161]Yu YG, Maroof MAS, Buss GR, et al. Divergence and allelomorphic relationship of a soybean virus resistant gene on tightly linked DNA microsatellite and RFLP markers [J]. Theor Appl Genet, 1996,92:64-69
    [162]Yu YG, Maroof MAS, Buss GR, et al. RFLP and microsatellite mapping of a gene for soybean mosaic virus resistance [J]. Phytopathology,1994,84:60-64
    [163]Yu, C Y, M, Saghai Maroof, Q R. Buss, et al. RFLP and microsatelite mapping of a gene for soybean mosaic virus resistance[J]. Phytopathology,1994,84:60-64
    [164]Zabeau M, Vos P. Selective restriction fragment amplification:a general method for DNA fingerprinting:European Patent Office Publication,0535858AI [P].1993
    [165]Zeng ZB. Precision mapping of quantitative trait loci [J]. Genetics,1994,136:1457-1468
    [166]Zeng ZB. Theoretical basis of separation of multiple linked gene effects on mapping quantitative trait loci [J]. Proc Natl Acad Sci USA,1993,90:10972-10976
    [167]Zhang YM, Xu S. Advanced statistical methods for detecting multiple quantitative trait loci [J]. Recent Res Dev Genet Breed,2005,2:1-23
    [168]Zhang YM. Advances on methods for QTL mapping in plants [J]. Chin Sci Bull,2006,51:2809-2818
    [169]Zhang Z, Chen S, Gai J. A codominant SCAR marker linked to SMV resistance gene Rsa [J]. Soybean Genetics Newsletter,1998,25:27-28
    [170]Zhu C, Wang C, Zhang YM. Modeling segregation distortion for viability selection I. Reconstruction of linkage maps with distorted markers [J]. Theor Appl Genet,2007,114:295-305
    [171]Zhu S, Walker DR, Boerma HR, et al. Fine mapping of a major insect resistance QTL in soybean and its interaction with minor resistance QTLs [J]. Crop Sci,2006,46:1094-1099

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700