用户名: 密码: 验证码:
草酸处理对冷敏型果实采后冷害的缓解效应及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
芒果、番茄属于冷敏型果实,在低温贮藏下易发生冷害,极大影响果实的贮藏期和品质。如何缓解低温贮藏下的冷害发生己成为冷敏型果实采后保鲜和品质调控亟待解决的关键问题。革酸是一种广泛存在于生物体的有机酸,草酸处理具有延缓果实采后成熟衰老进程,诱导提高果实的抗病性,降低果实褐变和冷害发生等效应。因此,草酸在采后果实贮藏保鲜中的应用研究已逐渐受到重视。
     为探讨草酸处理对冷敏型果实采后抗冷性的诱导作用及缓解冷害的机理,本文以芒果和番茄为材料,研究草酸处理对果实在低温胁迫下贮藏的冷害发生、品质变化、抗氧化代谢、脯氨酸代谢、能量代谢、差异表达基因等的影响。主要研究结果如下:
     1、低温胁迫下,芒果和番茄果实的冷害指数(CI)随贮藏时间的延长逐渐增加,贮藏末期草酸处理芒果和番茄的冷害指数分别比对照降低了25.32%和19.42%,这说明草酸处理能有效缓解果实采后的冷害。草酸处理显著抑制了芒果和番茄果实的呼吸速率和乙烯释放速率,延缓可滴定酸(TA)含量的下降;延缓芒果可溶性固形物(SSC)的上升,而对番茄SSC没有显著影响。另外,草酸处理延缓了芒果硬度的下降,但促进番茄后熟软化过程中硬度的下降。草酸处理延缓了采后果实成熟衰老进程,有助于维持低温贮藏下冷敏型果实的品质。
     2、低温胁迫下,草酸处理显著提高芒果和番茄果实的超氧化物歧化酶(SOD)、过氧化物酶(POD)、抗坏血酸过氧化物酶(APX)、谷胱甘肽还原酶(GR)、单脱氢抗坏血酸还原酶(MDHAR)、脱氢抗坏血酸还原酶(DHAR)酶活性,以及抗坏血酸(AsA)含量,从而显著提高芒果和番茄体内活性氧清除能力,维持较低的过氧化氢(H202)含量和超氧阴离子(02。-)生成速率,进而降低活性氧对细胞膜的损伤,提高细胞膜完整性,最终缓解果实在低温胁迫下的冷害发生。
     3、芒果中游离脯氨酸(Pro)含量在低温贮藏过程中呈逐渐下降趋势,但草酸处理显著提高了芒果Pro积累,提高吡咯啉-5-羧酸合成酶(P5CS)酶活性、抑制脯氨酸脱氢酶(PrDH)酶活性;番茄Pro含量在低温贮藏阶段逐渐下降,常温后熟阶段逐渐上升后下降,草酸处理显著提高了番茄Pro积累,提高P5CS和鸟氨酸转氨酶(OAT)酶活性、抑制PrDH酶活性。说明草酸处理对芒果和番茄的Pro代谢均有调控作用,而且Pro积累与提高P5CS、OAT酶活性、降低PrDH酶活性相关。同时,对番茄果实的P5CS、OAT、PrDH基因表达研究表明,贮藏过程中番茄P5CS、OAT、PrDH表达上升,而且草酸处理显著提高了番茄中P5CS、OAT基因表达,对PrDH基因表达没有显著影响。表明草酸处理通过调控番茄Pro生物合成的谷氨酸途径和鸟氨酸途径而使Pro积累,草酸处理调控芒果、番茄Pro生物合成代谢而积累Pro可能是其缓解冷敏型果实冷害发生的重要原因之一。
     4、低温胁迫下,草酸处理显著提高芒果ATP、ADP含量,显著抑制AMP含量上升和能荷的下降;草酸处理显著提高番茄常温后熟过程中ATP和ADP含量,但对番茄在低温胁迫下贮藏的ATP、ADP和AMP含量、以及能荷均没有显著影响。表明草酸处理显著提高芒果和番茄中能量物质的含量。草酸显著提高芒果和番茄中琥珀酸脱氢酶(SDH)、H+-ATPase、Ca2+-ATPase活性,说明草酸处理通过调节能量代谢及其相关酶活性而维持果实较高的能量水平,从而减轻低温胁迫下芒果和番茄的冷害。
     5、番茄红素不仅是番茄成熟的重要指标之一,也是番茄体内最主要的抗氧化物质之一,与番茄的抗逆性密切相关。草酸处理对番茄在低温胁迫下贮藏的番茄红素没有显著影响,但显著提高番茄从低温转入常温贮藏末期(20+9d和20+12d)的番茄红素含量。草酸处理显著提高番茄体内八氢番茄红素合成酶(PSY1)、<-胡萝卜素脱氢酶(ZDS)、八氢番茄红素脱氢酶(PDS)基因表达,从而导致番茄红素的积累。草酸处理提高番茄体内抗氧化能力等生理效应可能与其缓解低温胁迫下番茄的冷害相关。
     6、利用基因芯片技术筛选并得到草酸处理后贮藏20d、20+9d番茄果实全基因组表达谱中差异表达基因,结果表明20d番茄样本中共有1623条基因有差异表达,其中上调表达基因540条,下调表达基因1083条;20+9d番茄样本中共有1313条基因有差异表达,其中上调表达基因361条,下调表达基因952条。
     根据基因GO功能注释,草酸处理后20d以及20+9d番茄样本中的差异表达基因分子功能主要为结合活性、催化活性、裂解酶活性、氧化还原酶活性,参与防御反应、胁迫应答、代谢过程、氧化还原过程、磷酸化作用、细胞过程等生物学过程。GO富集分析结果表明,20d和20+9d番茄中差异表达基因分别有55个和47个功能聚类,富集基因条数较多的聚类参与胁迫应答、基础代谢过程、细胞代谢过程,此外还参与次级代谢过程。-PR蛋白、热激蛋白、病程相关蛋白P2、异柠檬酸裂合酶、蔗糖合成酶等12条基因在20d和20+9d番茄样本中均参与功能聚类;PSY1、PSY2、ZDS、几丁质酶、p-1,3-葡聚糖酶、琥珀酸脱氢酶、磷酸烯醇式丙酮酸羧化酶等只在20d或20+9d样本中有功能聚类。结合这些酶的差异表达倍数可得出,草酸处理明显调控了低温胁迫下番茄果实内抗性蛋白相关基因、能量代谢相关酶基因、番茄红素代谢酶基因的表达,推测草酸缓解番茄果实的冷害与抗性蛋白、能量代谢、番茄红素代谢等密切相关。
Mango (Mangifera indica L.) and tomato (Solanum lycopersicum L.) fruit belong to chilling sensitive fruits, and harvested mango and tomato fruit are susceptible to chilling injury during storage at low temperature, which result in decrease in storage period and fruit quality extremely. Thus, it is very important to alleviate chilling injury in these fruit for their preservation and quality maintaining during storage at low temperature. Oxalic acid is an organic acid ubiquitously occurring in various organisms. Recently, pre-storage application of oxalic acid for postharvest fruit has received more attention, and it has been found that oxalic acid plays important roles such as delaying the ripening process, inducing disease resistance, and alleviating browning and chilling injury in postharvest fruit. In order to further understanding the effect of oxalic acid on alleviating the chilling injury in chilling-sensitive fruit, influences of oxalic acid in chilling injury, fruit quality, antioxidant capacity, proline acumulation, energy metabolism and expression of differential genes in mango and tomato fruit under chilling stress were investigated in this paper. The main results were as follows:
     (1) Chilling injury index in mango and tomato fruit gradually increased with increase in storage time under chilling stress. Compared to the control, the chilling injury index in both fruit decreased by25.32%and19.42%at the end of storage respectively, which showed oxalic acid treatment could effectively alleviate chilling injury in mango and tomato fruit during storage under chilling stress. Oxialic acid significantly inhibited respiration rate and ethylene production, retarded the decrease in firmnes and titratable acid (TA) and the increase in soluble solid content (SSC) in mango fruit, whereas it had no significant efficency in SSC and promoted the decrease in firmness in tomato fruit as transferring to room temperature from chilling stress. These effects of oxalic acid might collectively contribute to delaying the ripening and senescent process of postharvest fruit and thus to maintaining fruit quality for mango and tomato in storage under chilling stress.
     (2) Oxalic acid treatment obviously increased ascorbic acid (AsA) content and activities of superoxide disumutase (SOD), peroxidase (POD), ascorbate peroxidase (APX), glutathione reductase (GR), monodehydroascorbate reductase (MDHAR) and dehydroascorbate reductase (DHAR), which resulted in improvement on scavenging capacity for reactive oxygen species (ROS) such as hydrogen peroxide (H2O2) and the production rate of superoxide anion (O2'") in mango and tomato fruit, and thus contributed to maintaining membrane integrity associated with alleviating the chilling injury in these fruit under chilling stress.
     (3) Proline content in mango fruit decreased during storage under chilling stress, but oxalic acid inhibited the decrease in proline content accompanied with increase in△1-pyrroline-5-carboxylate synthetase (P5CS) activity and decrease in proline dehydrogenase (PrDH) activity. Proline content in tomato fruit also decreased under chilling stress and increaseed thereafter decreased as transfering to room temperature. However, oxalic acid treatment gradually increased proline content accompanied with increase in activities of P5CS and ornithine-5-aminotransferase (OAT) and decrease in PrDH activity. Also, the gene expression of P5CS, OAT and PrDH in tomato fruit during storage was further studied. The data showed that the expression of P5CS, OAT and PrDH in tomato fruit were greatly enhanced during storage, and oxalic acid significantly improved the expression of P5CS and OAT except for PrDH, so that it seemed that proline accumulation in tomato fruit was associated with glutamic acid pathway and ornithine pathway, and oxalic acid might regulate proline accumulation for alleviating chilling injury in chilling sensitive fruit under chilling stress.
     (4) Oxalic acid treatment enhanced the content of ATP and ADP in mango fruit, and inhibited the increase in AMP and the decrease in energy charge during cold storage. In tomato fruit, neither the contents of ATP and ADP during cold storage nor AMP content and energy charge during the whole storage were affected by oxalic acid treatment, but the contents of ATP and ADP were enhanced as fruit transferred to room temperature.. Furthermore, oxalic acid treatment increased activities of succinodehydrogenase (SDH), H+-ATPase and Ca2+-ATPase both in mango and tomato fruit, it was suggested that oxalic acid treatment could regulate energy metabolism for alleviating chilling injury in mango and tomato fruit under chilling stress.
     (5) Lycopene, as an important indicator for ripening and a primary antioxidant in tomato fruit, is closely related with stress resistance for fruit.. Oxalic acid treatment did not affect lycopene in tomato fruit during cold storage, but resulted in higher lycopene content at the latter days (20+9d and20+12d) as fruit were removed to room temperature. Also, oxalic acid treatment enhanced the gene expressions of phytoene synthasel (PSY1),ζ-carotene desaturase (ZDS) and phytoene desaturase (PDS). Thus, it was suggested that effect of oxalic acid on the accumulation of lycopene might also contribute to improving antioxidant ability in tomato fruit, and in turn for alleviating chilling injury in tomato fruit under chilling stress.
     (6) For obtaining an overall view on transcript modification and finding differentially expressed genes in tomato fruit with oxalic acid treatment during storage under chilling stress, a microarrary analysis was carried out by using Affymetrix tomato genechip arrays. As compared to control fruit,1623genes expressed more than two folds in oxalic acid treated fruit in storage under chilling stress for20days, in which540and1083genes were up-regulated and down-regulated, respectively. As fruit were removed to room temperature for9days (20+9d),1313genes still expressed more than two folds in treated fruit, in which361and952genes were up-regulated and down-regulated, respectively.
     The differentially expressed genes were analyzed by GO annotation. The differentially expressed genes in oxalic acid treated tomato fruit mainly involved in stress response, defense response, metabolic process, oxidation-reduction process, phosphorylation and cellular process, which were associated to binding, catalytic activity, lyase activity and peroxidase activity. Also, GO enrichment analysis showed that the differentially expressed genes in20d and20+9d tomato sample had55and47annotation cluster, respectively. Annotation cluster with more enrichment genes mainly participated in stress response, primary metabolism, cell metabolism process and secondary metabolism.12genes, including pathogenesis related protein (PR protein), heat shock protein, PR-P2pathogenesis-related proteins, isocitrate lyase and sucrose synthetase, participated in annotation cluster both in20d and20+9d tomato sample, while PSY1, PSY2, ZDS, chitinase, Beta-1,3-glucanase, succinodehydrogenase and phosphoenolpyruvate carboxylase participated in annotation cluster only in20d or20+9d sample. Based on the fold change of those differentially expressed genes, it was suggested that oxalic acid regulated the protein expressions including resistance protein and key enzymes involed in energy metabolism and lycopene metabolism, which might contribute to alleviating chilling injury in tomato fruit.
引文
曹建康,姜微波,赵玉梅.果蔬采后生理生化实验指导[M].北京:中国轻工业出版社,2007:32-41.
    陈杰忠,徐春香,梁立峰.低温对香蕉叶片中蛋白质及脯氨酸的影响[J].华南农业大学学报,1999,20(3):54-58.
    陈京京,金鹏,李会会,等.低温贮藏对桃果实冷害和能量水平的影响[J].农业工程学报,2012,28(4):275-281.
    崔文杰,费永俊,向娟.寒热胁迫下宜昌楠的生理生化响应[J].长江大学学报,2008,1(5):18-20.
    崔震海,王艳芳,樊金娟,等.植物渗透调节的研究进展[J].玉米科学,2007,15(6):140-143.
    邓建军,毕阳,谢东锋,等.草酸处理对厚皮甜瓜采后病害及果实品质的影响[J].甘肃农业大学学报,2008,43(1):82-86.
    冯双庆,Yao Y T, Buchaman Smith J,等.受冷害和未受冷害黄瓜中氨基酸含量的变化[J].北京农业大学学报,1994,20(3):251-256.
    冯双庆,Yao Y T, Buchaman Smith J,等.冷害温度下番茄氨基酸含量的变化[J].园艺学报,1995,22(1):95--96.
    弗朗克,茅林春.热水浸泡减轻樱桃番茄果实冷害的研究[J].浙江农业学报,1999,11(2):67-72.
    高慧,饶景萍,王毕妮,等.冷害与油桃果实采后生理及贮藏品质的关系[J].食品与发酵工业,2010,36(9):181-185.
    韩涛,李丽萍,冯双庆.外源水杨酸处理对采后番茄和黄瓜果实抗冷性的影响[J].中国农业科学,2002,35(5):571-575.
    韩涛,李丽萍,黄万荣,等.歇升温对冷藏桃果实游离脯氨酸含量和冷害的影响[J].果树科学,1995,(51):46-49.
    胡位荣,刘顺枝,张昭其,等.1-甲基环丙烯处理荔枝果实减轻其贮藏中冷害的研究[J].园艺学报,2006,33(6):1203-1208.
    黄漫青,韩涛,李丽萍,等.温度调节对贮藏番茄冷害及相关生理变化的影响[J].中国食品学报,2006,(3):89-94.
    黄志,邹志荣,黄焕焕,等.甜瓜抗旱性相关基因MeP5CS的克隆、序列分析及表达[J].园艺学报,2010,37(8):1279-1286.
    吉宏龙,王支华.低温与生物膜的生物物理特征[J].国外医学:卫生学分册,1995,22(1):5-8.
    姜义宝,王成章,李德峰.高温胁迫下苜蓿抗氧化系统及叶绿素含量对草酸的响应[J].草业科学,2008,25(2):55-59.
    解静,罗自生.1-甲基环丙烯对番茄冷害的影响[J].园艺学报,2011,38(2):281-287.
    金鹏,吕慕雯,孙萃萃,等MeJA与低温预贮对枇杷冷害和活性氧代谢的影响[J].园艺学报,2012,39(2):461-468.
    金新文,沈征言.高温胁迫对三种蔬菜抗热性不同的品种萌动种子活力和ATP含量的影响[J].石河子大学学报(自然科学版),1997,1(2):112-116.
    阚娟,王红梅,金昌海,等.桃果实成熟过程中活性氧和线粒体呼吸代谢相关酶的变化[J].食品科学,2009,30(8):275-279.
    李丽萍,韩涛.果蔬采后冷协迫下生理及组织结构的变化[J].北京农学院学报,1997,12(3):93-98.
    李佩艳,周刚,周巧丽,等.草酸钾处理对‘华特’毛花猕猴桃果实后熟软化的影响[J].园艺学报,2013,40(8):1553-1559.
    刘亭,钱政江,杨恩,等.呼吸活性和能量代谢与荔枝果实品质劣变的关系[J].果树学报,2010, 27(6):946-951.
    刘长虹,蔡路昀,韩晓旭,等.UV-C照射后番茄差异表达基因的基因芯片检测[J].农业机械学报,2012,43(1):134-140.
    罗自生,徐晓玲,蔡侦侦,等.热激处理减轻柿果冷害与活性氧代谢的关系[J].农业工程学报,2007,23(8):249-252.
    吕昌文,齐灵,修德仁,等.桃波动温度贮藏及其机理研究[J].华北农学报,1994,9(1):75-80.
    马伟科,张宏艳.线粒体细胞色素C与细胞凋亡[J].实用医学杂志,2007,23(23):3786-3788.
    莫力根,刘棣宁,孙庆林.不同抗寒品种葡萄叶片中氨基酸积累的差异[J].内蒙古农牧学院学报,1992,(2):8-12.
    齐红岩,姜岩岩,华利静.短期夜间低温对栽培番茄和野生番茄果实蔗糖代谢的影响[J].园艺学报,2012,39(2):281-288.
    任晓平,张喜春,张楠,等.低温胁迫对番茄幼苗叶片中脯氨酸降解酶的活性及其基因表达量的影响[J].中国农学通报,2012,28(10):132-135.
    沈玫,王琪,赵宇瑛,等.外源草酸对冷藏绿竹笋的保鲜效果及其生理基础[J].园艺学报,2013,40(2):355-362.
    孙学成,胡承孝,谭启玲,等.施用钼肥对冬小麦游离氨基酸、可溶性蛋白质和糖含量的影响[J].华中农业大学学报,2002,21(1):40-43.
    孙艳,樊爱丽,徐伟君.草酸对高温胁迫下黄瓜幼苗叶片光合机构和叶黄素循环的影响[J].中国农业科学,2005,38(9):1774-1779.
    陶宗娅,邹琦.低温吸胀对大豆与豌豆种子呼吸代谢的影响[J].山东农业大学学报,1993,24(3):247-252.
    王国莉,郭振飞.水稻不同耐冷品种碳代谢有关酶活性对冷害的响应[J].作物学报,2007,33(7):1197-1200.
    王洪春.植物抗逆性与生物膜结构功能研究的进展[J].植物生理学通讯,1985,(1):60-66.
    王曼玲,Pedro R,李落叶,等.应用基因表达芯片分析水稻高温胁迫相关基因[J].生物技术通报,2009,(10):92-97.
    王琪,郑小林,励建荣,等.草酸处理对冷藏雷竹笋保鲜效果的影响[J].中国食品学报,2012,12(11),84-89.
    王青青,胡艳丽,周慧,等.根皮苷对平邑甜茶根系TCA循环酶的影响[J].中国农业科学,2012,45(15):3108-3114.
    王小华,庄南生.脯氨酸与植物抗寒性的研究进展[J].中国农学通报,2008,24(11):398-402.
    王中凤.细胞壁分解酶与果实软化的关系研究进展[J].中国农学通报,2009,25(18):126-130.
    吴彩娥,王文生,寇晓虹.果实成熟软化机理研究进展[J].果树学报,2001,18(6):365-369.
    徐云岭,余叔文.植物适应盐逆境过程中的能量消耗[J].植物生理学通讯,1990,(6):70-73.
    许祥明,叶和春,李国凤.脯氨酸代谢与植物抗渗透胁迫的研究进展[J].植物学通报,2000,17(6):536-542.
    薛锡佳,李佩艳,宋夏钦,等.草酸处理减轻杧果采后果实冷害的机理研究[J].园艺学报,2012,39(11):2251-2257.
    闫贵欣,陈碧云,许鲲,等.不同施氮水平下甘蓝型油菜发育种子中基因表达谱差异分析[J].作物学报,2012,38(11):2052-2060.
    姚明华,徐跃进,邱正明,等.茄子品种耐冷性与脯氨酸和可溶性糖含量的关系[J].湖北农业科学,2004,(4):88-90.
    殷有,苏宝玲,周永斌,等.抗氧化酶促防御系统对白皮松幼苗抗寒性的影响[J].沈阳农业大学学报,2001,32(4):278-280.
    尹永强,胡建斌,邓明军.植物叶片抗氧化系统及其对逆境胁迫的响应研究进展[J].中国农学通报,2007,23(1):105-110.
    詹佳红.枇杷果实酶促褐变控制研究[J].广州食品工业科技,2004,20(4):49-50,55.
    张保青,杨丽涛,李杨瑞.自然条件下甘蔗品种抗寒生理生化特性的比较[J].作物学报,2011,37(3):496-505.
    张波.采后草酸和苹果酸处理对贮藏期兰州“大接杏”挥发性物质和品质的影响[D].甘肃:甘肃农业大学食品科学与工程学院,2009:36-43.
    张红,张志斌,王怀松,等.应用基因芯片检测酸味抗病甜瓜果实基因表达[J].西北植物学报,2009,29(4):0669-0673.
    张佳佳,陈燕,敬国兴,等.草酸处理对杧果采后果实AsA-GSH循环系统的影响[J].园艺学报,2011,38(9):1633-1640.
    张丽靖,杨郁.微生物发酵产生番茄红素的研究进展[J].生物技术通报,2006,(4):59-60,66.
    张林青.水杨酸对盐胁迫下番茄产量和品质的影响[J].浙江农业科学,2012a,40(5):103-105.
    张林青.盐胁迫下油菜素内酯对番茄产量和品质的影响[J].北方园艺,2012b,(20):23-25.
    张士功,高吉寅,宋景芝NaCl胁迫下水杨酸和阿司匹林对小麦幼苗体内ATP含量的影响[J].植物学报,1999,41(6):675-676.
    张衍荣,王小菁.阿魏酸和草酸对豆枯萎病的抑制效果[J].安徽农业科学,2006,34(13):3113-3114.
    张银武,孙秀兰,刘兴华,等.低温胁迫和变温处理对李子生理特性的影响[J].食品科学,2003,24(2):134-138.
    张中海,饶景萍,李玲玲.草酸对猕猴桃果锈清洗与贮藏效应的影响[J].西北农林科技大学学报(自然科学版),2006,34(7):101-105.
    张宗申,利容千,王建波.草酸处理对热胁迫下辣椒叶片膜透性和钙分布的影响[J].植物生理学报,2001,27(2):109-113.
    张宗申,彭新湘,姜子德,等.非生物诱抗剂草酸对黄瓜叶片中过氧化物酶的系统诱导作用[J].植物病理学报,1998,28(1):145-150.
    赵丹莹,申琳,于萌萌,等.采后番茄果实抗氧化酶活与抗冷性的关系[J].食品科学,2009,(14):309-313.
    赵可夫.植物抗盐生理[M].北京:中国科技出版社,1993:120-121.
    赵颖颖,陈京京,金鹏,等.低温预贮对冷藏桃果实冷害及能量水平的影响[J].食品科学,2012,33(4):276-281.
    郑光宇,赵荣乐,彭旭.草酸可诱导甜瓜对WMV-2的系统抗性[J].科学通报,1999,44(10):1059-1062.
    郑小林,陈燕,敬国兴,等.草酸处理对杧果采后果实AsA-GSH循环系统的影响[J].园艺学报,2011,38(9):1633-1640.
    郑小林,田世平,李博强.外源草酸延缓采后芒果成熟及其生理基础的研究[J].中国农业科学,2007,40(8):1767-1773.
    郑小林,田世平,李博强,等.革酸对冷藏期间桃果实抗氧化系统和PPO活性的影响[J].园艺学报,2005a,32(5):788-792.
    郑小林,田世平,徐勇,等.气调贮藏下草酸处理对杧果果实成熟和腐烂的影响[J].果树学报,2005b,22(4):351-355.
    朱丽琴,张伟,汪伟,等.外源草酸对辣椒保鲜效果和抗氧化防御系统的影响[J].江西农业大学学报,2013,35(3):521-524.
    朱竹,孟祥红,田世平.采前喷施草酸对芒果果实细胞钙含量和分布的影响[J].植物学报,2010, 45(1):23-28.
    祝美云,白欢,梁丽松,等.冷锻炼处理减轻低温贮藏桃果实冷害的能量代谢机理[J].农业工程学报,2012,28(23):257-264.
    周宝元,丁在松,赵明PEPC过表达可以减轻干旱胁迫对水稻光合的抑制作用[J].作物学报,2011,37(1):112-118.
    邹礼平,高和平,钟亚琴.植物番茄红素生物合成相关基因的表达调控研究进展[J].安徽农业科学,2009,37(33):16232-16233,16242.
    Ackrell B A, Keamery E B, Singer T P. Mammalian succinate dehydrogenase[J]. Methods in Enzymology,1978,53:466-483.
    Altunkaya A, Gokmen V. Effect of various inhibitors on enzymatic browning, antioxidant activity and total phenol content of fresh lettuce (Lactuca sativa) [J]. Food Chemistry,2008,107(3): 1173-1179.
    Altunkaya A, Gokmen V. Effect of various anti-browning agents on phenolic compounds profile of fresh lettuce (L. sativa) [J]. Food Chemistry,2009,117(1):122-126.
    Anjum F, Rishi V, Ahmad F. Compatibility of osmolytes with Gibbs energy of stabilization of proteins[J]. Protein Structure and Molecular Enzymology,2000,1476(1):75-84.
    Assi N M E. Alleviating chilling injury and maintaining quality of tomato fruit by hot water treatment[J]. Emirates Journal of Food and Agriculture,2004,16(1):1-7.
    Bartoli C G, Gomez F, Martinez D E, et al. Mitochondria are the main target for oxidative damage in leaves of wheat (Triticum aestivum L.) [J]. Journal of Experimental Botany,2004,55(403): 1663-1669.
    Bates L S, Waldren R P, Teare I D. Rapid determination of free proline for water-stress studies[J]. Plant and Soil,1973,39(1):205-207.
    Beers R F, Sizer I W. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase[J]. The Journal of Biological chemistry,1952,195(1):133-140.
    Biswas P, East A R, Brecht J K, et al. Intermittent warming during low temperature storage reduces tomato chilling injury [J]. Postharvest Biology and Technology,2012,74:71-78.
    Blokhina O, Virolainen E, Fagerstedt K V. Antioxidants, Oxidative Damage and Oxygen Deprivation Stress:a Review[J]. Annals of Botany,2003,91(2):179-194.
    Bramley P, Teulieres C, Blain I, et al. Biochemical characterization of transgenic tomato plants in which carotenoid synthesis has been inhibited through the expression of antisense RNA to pTOM5[J]. The Plant Journal,1992,2(3):343-349.
    Buescher R, Furmanski R. Role of pectinesterase and polygalacturonase in the formation of woolliness in peaches[J]. Journal of Food Science,1978,43(1):264-266.
    Cai C, Li X, Chen K S. Acetylsalicylic acid alleviates chilling injury of postharvest loquat (Eriobotrya japonica Lindl.) fruit[J]. European Food Research and Technology,2006,223(4):533-539.
    Cai Y T, Cao S F, Yang Z F, et al. MeJA regulates enzymes involved in ascorbic acid and glutathione metabolism and improves chilling tolerance in loquat fruit[J]. Postharvest Biology and Technology, 2011,59(3):324-326.
    Cao S F, Zheng Y H, Wang K T, et al. Methyl jasmonate reduces chilling injury and enhances antioxidant enzyme activity in postharvest loquat fruit[J]. Food Chemistry,2009,115(4): 1458-1463.
    Cao S F, Cai Y T, Yang Z F, et al. MeJA induces chilling tolerance in loquat fruit by regulating proline and y-aminobutyric acid contents[J]. Food Chemistry,2012,133(4):1466-1470.
    Chamovitz D, Sandmann G, Hirschberg J. Molecular and biochemical characterization of herbicide-resistant mutants of cyanobacteria reveals that phytoene desaturation is a rate-limiting step in carotenoid biosynthesis[J]. The Journal of Biological chemistry,1993,268(23): 17348-17353.
    Chan D C. Mitochondria:Dynamic Organelles in Disease, Aging, and Development[J]. Cell,2006, 125(7):1241-1252.
    Chen B X, Yang H Q.6-Benzylaminopurine alleviates chilling injury of postharvest cucumber fruit through modulating antioxidant system and energy status[J]. Journal of the Science of Food and Agriculture.2012,93(8):1915-1921.
    Crawford R M M, Braendle R. Oxygen deprivation stress in a changing environment[J]. Journal of Experimental Botany,1996,47:145-159.
    Dawson D M, Melton L D, Watkins C B. Cell wall changes in nectarines (Prunus persica) solubilization and depolymerization of pectic and neutral polymers during ripening and in mealy fruit[J]. Plant physiology,1992,100(3):1203-1210.
    De Gara L, De Pinto M C, Arrigoni O. Ascorbate synthesis and ascorbate peroxidase activity during the early stage of wheat germination[J]. Physiologia Plantarum,1997,100(4):894-900.
    Delauney A J, Verma D P S. Proline biosynthesis and osmoregulation in plants [J]. The Plant Journal, 1993,4(2):215-223.
    Dhindsa R S, Plumb-Dhindsa P L, Reid D M. Leaf senescence and lipid peroxidation:Effects of some phytohormones, and scavengers of free radicals and singlet oxygen[J]. Physiologia Plantarum, 1982,56(4):453-457.
    Ding C K, Wang C Y, Gross K C, et al. Jasmonate and salicylate induce the expression of pathogenesis-related-protein genes and increase resistance to chilling injury in tomato fruit[J]. Planta,2002,214(6):895-901.
    Ding C K, Wang C Y, Gross K C, et al. Reduction of chilling injury and transcript accumulation of heat shock proteins in tomato fruit by methyl jasmonate and methyl salicylatefJ]. Plant Science,2001, 161:1153-1159.
    Ding Z S, Tian S P, Zheng X L, et al. Responses of reactive oxygen metabolism and quality in mango fruit to exogenous oxalic acid or salicylic acid under chilling temperature stress[J]. Physiologia Plantarum,2007,130(1):112-121.
    Duan X W, Jiang Y M, Su X G, et al. Role of pure oxygen treatment in browning of litchi fruit after harvest[J]. Plant Science,2004,167(3):665-668.
    Echevarria C, Garcia-Maurino S, Alvarez R, et al. Salt stress increases the Ca2+-independent phosphoenolpyruvate carboxylase kinase activity in sorghum leaves[J]. Planta,2001,214: 283-287.
    Errede B, Kamen M D, Hatefi Y. Preparation and properties of complexⅣ(ferrocytochrorne c:oxygen oxidoreductase EC 1.9.3.1). Methods in Enzymology[M].1978,53:40-47.
    Fan H F, Du C X, Guo S R. Effect of Nitric Oxide on Proline Metabolism in Cucumber Seedlings under Salinity Stress[J]. Journal of the American Society for Horticultural Science,2012,137(3): 127-133.
    Farneti B, Schouten R E, Woltering E J. Low temperature-induced lycopene degradation in red ripe tomato evaluated by remittance spectroscopy[J]. Postharvest Biology and Technology,2012,73: 22-27.
    Fowler S, Thomashow M F. Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway[J]. The Plant Cell,2002,14:1675-1690.
    Franck C, Lammertyn J, Ho Q T, et al. Browning disorders in pear fruit[J]. Postharvest Biology and Technology,2007,43(1):1-13.
    Fraser P D, Kiano J W, Truesdale M R, et al. Phytoene synthase-2 enzyme activity in tomato does not contribute to carotenoid synthesis in ripening fruit[J]. Plant Molecular Biology,1999,40(4): 687-698.
    Fray R, Grierson D. Identification and genetic analysis of normal and mutant phytoene synthase genes of tomato by sequencing, complementation and co-suppression[J]. Plant Molecular Biology,1993, 22(4):589-602.
    Goncalves B, Landbo A K, Knudsen D, et al. Effect of ripeness and postharvest storage on the phenolic profiles of cherries (Prunus avium L.) [J]. Journal of agricultural and Food Chemistry,2004,52(3): 523-530.
    Gonzalez-Aguilar G A, Fortiz J, Cruz R, et al. Methyl Jasmonate Reduces Chilling Injury and Maintains Postharvest Quality of Mango Fruit[J]. Journal of agricultural and Food Chemistry, 2000,48(2):515-519.
    Gorham J, Wyn Jones R G, McDonnell E. Some mechanisms of salt tolerance in crop plants. Biosalinity in Action:Bioproduction with Saline Water[J]. Springer Netherlands.1985,17:15-40
    Greenway H, Munns R. Interactions between growth, uptake of Cl-and Na+, and water relations of plants in saline environments. II. Highly vacuolated cells[J]. Plant, Cell & Environment,1983, 6(7):575-589.
    Greenway H, Munns R, Wolfe J O E. Interactions between growth, Cl- and Na+ uptake, and water relations of plants in saline environments. I. Slightly vacuolated cells[J]. Plant, Cell & Environment,1983,6(7):567-574.
    Guo Z, Ou W, Lu S, et al. Differential responses of antioxidative system to chilling and drought in four rice cultivars differing in sensitivity [J]. Plant Physiology and Biochemistry,2006,44(11): 828-836.
    Hardenburg R E, Watada A E, Wang C Y. The commercial storage of fruits, vegetables, and florist and nursery stocks[M]. U.S. Department of Agriculture, Agric.Res.Service, Washington, DC.1986.
    Hare P D, Cress W A. Tissue-specific accumulation of transcript encoding △1-pyrrolline-5-carboxylate reductase in Arabidopsis thaliana[J]. Plant Growth Regulation,1996,19(3):249-256.
    Hare P D, Cress W A. Metabolic implications of stress-induced proline accumulation in plants[J]. Plant Growth Regulation,1997,21(2):79-102.
    Hariyadi P, Parkin K L. Chilling-induced oxidative stress in cucumber fruits[J]. Postharvest Biology and Technology,1991,1(1):33-45.
    Harwood J L. Fatty acid metabolism[J]. Annual Review Plant Physiology Molecular Biology,1998,39: 101-138.
    Hmida-Sayari A, Gargouri-Bouzid R, Bidani A, et al. Overexpression of △1-pyrroline-5-carboxylate synthetase increases proline production and confers salt tolerance in transgenic potato plants[J]. Plant Science,2005,169(4):746-752.
    Hobson G E. Low-temperature injury and the storage of ripening tomatoes[J]. Jurnal of Horticultural Science and Biotechnology,1987,62:55-62.
    Hodges D M, DeLong J M, Forney C F, et al. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds[J]. Planta,1999,207(4):604-611.
    Imahori Y, Takemura M, Bai J. Chilling-induced oxidative stress and antioxidant responses in mume (Prunus mume) fruit during low temperature storage[J]. Postharvest Biology and Technology, 2008,49(1):54-60.
    Jiang Y M, Jiang Y L, Qu H X, et al. Energy aspects in ripening and senescence of harvested horticultural crops[J]. Stewart Postharvest Review,2007,2(5):1-5.
    Jin P, Zhu H, Wang J, et al. Effect of methyl jasmonate on energy metabolism in peach fruit during chilling stress[J]. Journal of the Science of Food and Agriculture,2013,93(8):1827-1832.
    Ju Z G, Yuan Y B, Liou C L, et al. Effects of low temperature on H2O2 and heart browning of chili and yali (Pyrus Bret Schenideri r.) [J]. Scientia Agriculture Sinica,1994,27:77-81.
    Kan J, Wang H M, Jin C H. Changes of reactive oxygen species and related enzymes in mitochondrial respiration during storage of harvested peach fruits[J]. Agricultural Sciences in China,2011,10(1): 149-158.
    Kato M, Ikoma Y, Matsumoto H, et al. Accumulation of Carotenoids and Expression of Carotenoid Biosynthetic Genes during Maturation in Citrus Fruit[J]. Plant Physiology,2004,134:824-837.
    Kaur G, Kumar S, Thakur P, et al. Involvement of proline in response of chickpea (Cicer arietinum L.) to chilling stress at reproductive stage[J]. Scientia Horticulturae,2011,128:174-181.
    Kavi-Kishor P B, Sangam S, Amruth R N, et al. Regulation of proline biosynthesis, degradation, uptake and transport in higher plants:Its implications in plant growth and abiotic stress tolerance[J]. Current Science,2005, (88):424-438.
    Kishor P B K, Hong Z, Miao G H, et al. Overexpression of △ 1-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants[J]. Plant Physiology, 1995, (108):1387-1394.
    Kowaltowski A J, Souza-Pinto N C d, Castilho R F, et al. Mitochondria and reactive oxygen species[J]. Free Radical Biology & Medicine,2009,47:333-343.
    Lopez-Carrion A I, Castellano R, Rosales M A, et al. Role of nitric oxide under saline stress: implications on proline metabolism[J]. Biologia Plantarum,2008,52(3):587-591.
    Lenaz G. Role of mitochondria in oxidative stress and aging[J]. Biochim Biophys Acta,1998,1366: 53-57.
    Li B Q, Zhang C F, Cao B H, et al. Brassinolide enhances cold stress tolerance of fruit by regulating plasma membrane proteins and lipids[J]. Amino Acids,2012,43:2469-2480.
    Li P Y, Zheng X L, Liu Y, et al. Pre-storage application of oxalic acid alleviates chilling injury in mango fruit by modulating proline metabolism and energy status under chilling stress[J]. Food Chemistry,2014,142:72-78.
    Liu C, Jahangir M M, Ying T. Alleviation of chilling injury in postharvest tomato fruit by preconditioning with ultraviolet irradiation[J]. Journal of the Science of Food and Agriculture, 2012,92(15):3016-3022.
    Locato V, Gadaleta C, De Gara L, et al. Production of reactive species and modulation of antioxidant network in response to heat shock:a critical balance for cell fate[J]. Plant, Cell & Environment, 2008,31(11):1606-1619.
    Lyons J M. Chilling injury in plants[J]. Annual Review of Plant Physiology,1973,24(1),445-466.
    Lyons J M, Chapman E A. Low temperature stress in crop plants:the role of the membrane[M]. New York:Academic Press,1979:17-32.
    M(?)ller I M. Plant mitochondria and oxidative stress:electron transport, NADPH turnover, and metabolism of reactive oxygen species[J]. Annual Review of Plant Biology,2001,52(1):561-591.
    Malentic D, Vasic D, Popovid M, et al. Antioxidant Systems in Sunflower as Affected by Oxalic Acid[J]. Biologia Plantarum,2004,48(2):243-247.
    Manganaris G, Vicente A, Crisosto C, et al. Cell wall modifications in chilling-injured plum fruit[J]. Postharvest Biology and Technology,2008,48(1):77-83.
    Mao L C, Pang H Q, Wang G Z, et al. Phospholipase D and lipoxygenase activity of cucumber fruit in response to chilling stress[J]. Postharvest Biology and Technology,2007,44(1):42-47.
    Matysik J, Bhalu B, Mohanty P. Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plants[J]. Current Science,2002,82(5):525-532.
    Maul F, Sargent S, Sims C, et al. Tomato flavor and aroma quality as affected by storage temperature[J]. Journal of Food Science,2000,65(7):1228-1237.
    Meyer R, Wagner K G. Nucleotide pools in leaf and root tissue of tobacco plants:Influence of leaf senescence[J]. Physiologia Plantarum,1986,67(4):666-672.
    Mikami K, Murata N. Membrane fluidity and the perception of environmental signals in cyanobacteria and plants[J]. Progress in Lipid Research,2003,42(6):527-543.
    Mitra S K, Baldwin E. A. Postharvest physiology and storage of tropical and subtropical fruit[M]. New York:CAB International Press.1997.
    Mittler R. Oxidative stress, antioxidants and stress tolerance[J]. Trends in Plant Science,2002,7 (9):405-410.
    Moellering E R, Muthan B, Benning C. Freezing tolerance in plants requires lipid remodeling at the outer chloroplast membrane[J]. Science,2010,330:227-230.
    Mucharromah E, Kuc J. Oxalate and phosphates induce systemic resistance against diseases caused by fungi, bacteria and viruses in cucumber[J]. Crop Protection,1991,10(4):265-270.
    Murata N, Ishizaki-Nishizawa O, Higashi S, et al. Genetically engineered alteration in the chilling sensitivity of plants[J]. Nature,1992,356(6371):710-713.
    Nakano Y, Asada K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts[J]. Plant and cell physiology,1981,22(5):867-880.
    Nishida I, Murata N. Chilling sensitivity in plants and cyanobacteria:the crucial contribution of membrane lipids[J]. Annual review of plant biology,1996,47(1):541-568.
    Nunes M C N, Emond J P, Brecht J K, et al. Quality curves for mango fruit (cv. Tommy Atkins and Palmer) stored at chilling and nonchilling temperatures [J]. Journal of Food Quality,2007,30: 104-120.
    Pallanca J E, Smirnoff N. The control of ascorbic acid synthesis and turnover in pea seedlings[J]. Journal of Experimental Botany,2000,51(345):669-674.
    Paull R E, Chen C C. Mango. In Agricultural Handbook Number 66-The Commercial Storage of Fruits, Vegetables, and Florist and Nursery Stocks[M]. USD A, Washington, D. C.2004.
    Peng X X, Liu Y H, Li M Q. Protective role of oxalate against oxidative-stress-induced degradation of ribulose-1,5-bisphosphate carboxylase/oxygenase[J]. Acta Phytophysiologica Sinica,2001,26(6): 497-500.
    Peng Z, Lu Q, Verma D P S. Reciprocal regulation of △ 1-pyrroline-5-carboxylate synthetase and proline dehydrogenase genes controls proline levels during and after osmotic stress in plants[J]. Molecular and General Genetics MGG,1996,253(3):334-341.
    Phakawatmongkola W, Ketsa S, Doom W G V. Variation in fruit chilling injury among mango cultivars[J]. Postharvest Biology and Technology,2004,32(1):115-118.
    Phang J M:The regulatory function of proline and pyrroline-5-carboxylic acid[J]. Current Topics in Cellular Regulation,1985,25:91.
    Pinhero R G, Paliyath G, Yada R Y, et al. Modulation of phospholipase D and lipoxygenase activities during chilling. Relation to chilling tolerance of maize seedlings[J]. Plant Physiology and Biochemistry,1998,36(3):213-224.
    Posmyk M M, Janas K M. Effects of seed hydropriming in presence of exogenous proline on chilling injury limitation in Vigna radiata L. seedlings[J]. Acta Physiologiae Plantarum,2007,29(6): 509-517.
    Purvis A C. Free proline in peel of grapefruit and resistance to chilling injury during cold storage[J]. HortScience,1981, (16):160-161.
    Rajendrakumar C S V, Reddy B V B, Reddy A R. Proline-protein interactions:protection of structural and functional integrity of M4 lactate dehydrogenase[J]. Biochemical and Biophysical Research Communications,1994,201(2):957-963.
    Ramanjulu S, Sudhakar C. Proline metabolism during dehydration in two mulberry genotypes with contrasting drought tolerance[J]. Journal of plant physiology,2000,157(1):81-85.
    Rawyler A, Arpagaus S, Braendle R. Impact of oxygen stress and energy availability on membrane stability of plant cells[J]. Annals of Botany,2002,90:499.
    Rawyler A, Pavelic D, Gianinazzi C, et al. Membrane lipid integrity relies on a threshold of ATP production rate in potato cell cultures submitted to anoxia[J]. Plant Physiology,1999,120: 293-300.
    Rodrigo M J, Marcos J F, Zacarias L. Biochemical and Molecular Analysis of Carotenoid Biosynthesis in Flavedo of Orange (Citrus sinensis L.) during Fruit Development and Maturation[J]. Journal of Agricultural and Food Chemistry,2004,52(22):6724-6731.
    Roosens N, Bitar F, Loenders K, et al. Overexpression of ornithine-8-aminotransferase increases proline biosynthesis and confers osmotolerance in transgenic plants[J]. Molecular Breeding,2002, 9(2):73-80.
    Rosati C, Aquilani R, Dharmapuri S, et al. Metabolic engineering of beta-carotene and lycopene content in tomato fruit[J]. The Plant Journal,2000,24(3):413-420.
    Roskruge C, Smith M. Peroxidative changes associated with chilling injury in soybean seeds during imbibition[J]. Journal of Plant Physiology,1997,151(5):620-626.
    Rui H J, Cao S F, Shang H T, et al. Effects of heat treatment on internal browning and membrane fatty acid in loquat fruit in response to chilling stress[J]. Journal of the Science of Food and Agriculture, 2010,90(9):1557-1561.
    Sala J M. Involvement of oxidative stress in chilling injury in cold-stored mandarin fruits[J]. Postharvest Biology and Technology,1998,13(3):255-261.
    Sala J M, Lafuente M A T. Catalase enzyme activity is related to tolerance of mandarin fruits to chilling[J]. Postharvest Biology and Technology,2000,20(1):81-89.
    Saltveit M E, Morris L L. Overview on chilling injury of horticultural crops. Chilling injury of orticultural Crops[M]. CRC Press, Boca Raton FL,1990:3-13.
    Saquet A A, Streif J, Bangerth F. Changes in ATP, ADP and pyridine nucleotide levels related to the incidence of physiological disorders in 'Conference' pears and 'Jonagold' apples during controlled atmosphere storage[J]. Journal of Horticultural Science and Biotechnology,2000,75(2):243-249.
    Saquet A A, Streif J, Bangerth F. On the involvement of adenine nucleotides in the development of brown heart in'Conference'pears during delayed controlled atmosphere storage[J]. Gartenbauwissenschaft,2001,66(3):140-144.
    Saquet A A, Streif J, Bangerth F. Energy metabolism and membrane lipid alterations in relation to brown heart de velopment in 'Conference' pears during delayed controlled atmosphere storage[J]. Postharvest Biology and Technology,2003,30:123-132.
    Saradhi P P, AliaArora S; Prasad K. Proline accumulates in plants exposed to UV radiation and protects them against UV-induced peroxidation[J]. Biochemical and Biophysical Research Communications,1995,209(1):1-5.
    Sayyari M, Castillo S, Valero D, et al. Acetyl salicylic acid alleviates chilling injury and maintains nutritive and bioactive compounds and antioxidant activity during postharvest storage of pomegranates[J]. Postharvest Biology and Technology,2011,60(2):136-142.
    Sayyari M, Valero D, Babalar M, et al. Prestorage oxalic acid treatment maintained visual quality, bioactive compounds, and antioxidant potential of pomegranate after long-term storage at 2℃[J]. Journal of agricultural and Food Chemistry,2010,58(11):6804-6808.
    Scandalios J G. Oxygen stress and superoxide dismutases[J]. Plant physiology,1993,101(1):7.
    Scebba F, Sebastiani L, Vitagliano C. Changes in activity of antioxidative enzymes in wheat (T riticum aestivum) seedlings under cold acclimation[J]. Physiologia Plantarum,1998,104:747-752.
    Serrano M A, Diaz-Mula H M, Zapata P J, et al. Maturity stage at harvest determines the fruit quality and antioxidant potential after storage of sweet cherry cultivars[J]. Journal of agricultural and Food Chemistry,2009,57(8):3240-3246.
    Shang H T, Cao S F, Yang Z F, et al. Effect of exogenous γ-aminobutyric acid treatment on proline accumulation and chilling injury in peach fruit after long-term cold storage[J]. Journal of agricultural and Food Chemistry,2011,59(4):1264-1268.
    Shimada M, Akamtsu Y, Tokimatsu T, et al. Possible biochemical roles of oxalic acid as a low molecular weight compound involved in brown-rot and white-rot wood decays[J]. Journal of Biotechnology,1997,53(2-3):103-113.
    Song L L, Jiang Y M, Gao H Y, et al. Effects of adenosine triphosphate on browning and quality of harvested litchi fruit[J]. American Journal of Food Technology,2006,1(2):173-178.
    Su X G, Jiang Y M, Duan X W, et al. Effects of pure oxygen on the rate of skin browning and energy status in longan fruit[J]. Food Technology and Biotechnology,2005,43(4):359-365.
    Sun H P, Li L, Wang X, et al. Ascorbate-glutathione cycle of mitochondria in osmoprimed soybean cotyledons in response to imbibitional chilling injury[J]. Journal of Plant Physiology,2011,168(3): 226-232.
    Thorne S, Alvarez J. The effect of irregular storage temperatures on firmness and surface colour in tomatoes[J].Journal of the Science of Food and Agriculture,1982,33(7):671-676.
    Tian S P, Wan Y K, Qin G Z, et al. Induction of defense responses against Alternaria rot by different elicitors in harvested pear fruit[J]. Applied Microbiology and Biotechnology,2006,70(6): 729-734.
    Toor R K, Savage G P. Antioxidant activity in different fractions of tomatoes[J]. Food Research International,2005,38(5):487-494.
    Toor R K, Savage G P. Changes in major antioxidant components of tomatoes during post-harvest storage[J]. Food Chemistry,2006,99(4):724-727.
    Trick M, Cheung F, Drou N, et al. A newly-developed community microarray resource for transcriptome profiling in Brassica species enables the confirmation of Brassica-specific xpressed sequences[J]. BMC Plant Biology,2009,9:50-59.
    Turrens J F. Mitochondrial formation of reactive oxygen species[J]. The Journal of Physiology,2003, 552(2):335-344.
    Valero D, Diaz-Mula H M, Zapata P J, et al. Postharvest treatments with salicylic acid, acetylsalicylic acid or oxalic acid delayed ripening and enhanced bioactive compounds and antioxidant capacity in sweet cherry[J]. Journal of agricultural and Food Chemistry,2011,59(10):5483-5489.
    Valluru R, Lammens W, Claupein W, et al. Freezing tolerance by vesicle-mediated fructan transport[J]. Trends in Plant Science,2008,13:409-414.
    Van Loon L C, Van Strien E A. The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins[J]. Physiological and Molecular Plant Pathology,1999, 55(2):85-97.
    Verbruggen N, Hermans C. Proline accumulation in plants:a review[J]. Amino Acids,2008,35(4): 753-759.
    Verslues P E, Sharma S. Proline metabolism and its implications for plant-environment interaction. The Arabidopsis Book/American Society of Plant Biologists,2010.
    Wang A G, Luo G H. Quantitative relation between the reaction of hydroxylamine and superoxide anion radicals in plants[J]. Plant Physiology Communications,1990,6:55-57.
    Wang B G, Wang J H, Hao L, et al. Reduced chilling injury in mango fruit by 2,4-dichlorophenoxyacetic acid and the antioxidant response[J]. Postharvest Biology and Technology,2008,48(2):172-181.
    Wang C, Kramer G, Whitaker B, et al. Temperature preconditioning increases tolerance to chilling injury and alters lipid composition in zucchini squash[J]. Journal of plant physiology,1992,140(2): 229-235.
    Wang C Y. Chilling Injury of Horticultural Crops[M]. Boca Raton FL, CRC Press.1990.
    Wang C Y. Approaches to reduce chilling injury of fruits and vegetables[J]. Horticultural Reviews, 1993,15:63-95.
    Wang C Y. Effect of temperature preconditioning on catalase, peroxidase, and superoxide dismutase in chilled zucchini squash[J]. Postharvest Biology and Technology,1995,5(1):67-76.
    Wang L J, Li S H. Salicylic acid-induced heat or cold tolerance in relation to Ca2+ homeostasis and antioxidant systems in young grape plants[J]. Plant Science,2006,170(4):685-694.
    Wang L J, Chen S J, Kong W F, et al. Salicylic acid pretreatment alleviates chilling injury and affects the antioxidant system and heat shock proteins of peaches during cold storage[J]. Postharvest Biology and Technology,2006,41(3):244-251.
    Wang L J, Chen S J, Kong W F, et al. Salicylic acid pretreatment alleviates chilling injury and affects the antioxidant system and heat shock proteins of peaches during cold storage[J]. Postharvest Biology and Technology,2006,41(3):244-251.
    Wang Q, Lai T F, Qin G Z, et al. Response of Jujube Fruits to Exogenous Oxalic Acid Treatment Based on Proteomic Analysis[J]. Plant and cell physiology,2009,50(2):230-242.
    Wang Y S, Tian S P, Xu Y. Effects of high oxygen concentration on pro-and anti-oxidant enzymes in peach fruits during postharvest periods[J]. Food Chemistry,2005,91(1):99-104.
    Whangchai K, Saengnil K, Uthaibutra J. Effect of ozone in combination with some organic acids on the control of postharvest decay and pericarp browning of longan fruit[J]. Crop Protection,2006, 25(8):821-825.
    Wu F W, Zhang D D, Zhang H Y, et al. Physiological and biochemical response of harvested plum fruit to oxalic acid during ripening or shelf-life[J]. Food Research International,2011,44:1299-1305.
    Yadegari L Z, Heidari R, Carapetian J. The Influence of Cold Acclimation on Proline, Malondialdehyde (MDA), Total Protein and Pigments Contents in Soybean (Glycine max) Seedlings[J]. Journal of Biological Sciences,2007,7(8):1436-1441.
    Yamaguchi-Shinozaki K, Shinozaki K. Organization of cisacting regulatory elements in osmotic-and cold-stress responsive promoters[J]. Trends in Plant Science,2005,10:88-94.
    Yang E, Lu W J, Qu H X, et al. Altered energy status in pericarp browning of litchi fruit during storage[J]. Pakistan Journal of Botany,2009,41(5):2271-2279.
    Yi C, Jiang Y M, Shi J, et al. ATP regulation of antioxidant properties and phenolics in litchi fruit during browning and oathogen infection process[J]. Food Chemistry,2010,118:42-47.
    Yi C, Qu H X, Jiang Y M,et al. ATP-induced Changes in Energy Status and Membrane Integrity of Harvested Litchi Fruit and its Relation to Pathogen Resistance[J]. Journal of Phytopathology,2008, 156(6):365-371.
    Yoruk R, Yoruk S, Balaban M O, et al. Machine vision analysis of antibrowning potency for oxalic acid: a comparative investigation on banana and apple[J]. Journal of Food Science,2004,69(6): 281-289.
    Zhang C F, Tian S P. Crucial contribution of membrane lipids' unsaturation to acquisition of chilling-tolerance in peach fruit stored at 0° C[J]. Food Chemistry,2009,115(2):405-411.
    Zhang C F, Tian S P. Peach fruit acquired tolerance to low temperature stress by accumulation of linolenic acid and N-acylphosphatidylethanolamine in plasma membrane[J]. Food Chemistry, 2010,120(3):864-872.
    Zhang X H, Shen L, Li F J, et al. Hot air treatment-induced arginine catabolism is associated with elevated polyamines and proline levels and alleviates chilling injury in postharvest tomato fruit[J]. Journal of the Science of Food and Agriculture,2013,93(13):3245-3251.
    Zhang X H, Sheng J P, Li F J, et al. Methyl jasmonate alters arginine catabolism and improves postharvest chilling tolerance in cherry tomato fruit[J]. Postharvest Biology and Technology,2012, 64(1):160-167.
    Zhang Y, Chen K S, Zhang S L, et al. The role of salicylic acid in postharvest ripening of kiwifruit[J]. Postharvest Biology and Technology,2003,28(1):67-74.
    Zhao Z L, Jiang W B, Cao J K, et al. Effect of cold-shock treatment on chilling injury in mango (Mangifera indica L. cv.'Wacheng')fruit[J]. Journal of the Science of Food and Agriculture,2006, 86(14):2458-2462.
    Zheng X L, Tian S P. Effect of oxalic acid on control of postharvest browning of litchi fruit[J]. Food Chemistry,2006,96:519-523.
    Zheng X L, Tian S P, Gidley M J, et al. Effects of exogenous oxalic acid on ripening and decay incidence in mango fruit during storage at room temperature[J]. Postharvest Biology and Technology,2007a,45:281-284.
    Zheng X L, Jing G X, Liu Y, et al. Expression of expansin gene, MiExpAl, and activity of galactosidase and polygalacturonase in mango fruit as affected by oxalic acid during storage at room temperature[J]. Food Chemistry,2011,132(2):849-854.
    Zheng X L, Tian S P, Gidley M J, et al. Slowing the deterioration of mango fruit during cold storage by pre-storage application of oxalic acid[J]. Joural of Horticultural Science and Biotechnology,2007b, 82:707-714.
    Zheng X L, Tian S P, Meng X H, et al. Physiological and biochemical responses in peach fruit to oxalic acid treatment during storage at room temperature[J]. Food Chemistry,2007c,104:152-162.
    Zheng X L, Tian S P, Yue H,et al. Effects of oxalic acid treatment on mango fruit during storage[J]. Acta Horticulturae Sinica,2007d,34(3):579-584.
    Zhu S H, Zhou J. Effects of nitric oxide on fatty acid composition in peach fruits during storage[J]. Journal of agricultural and Food Chemistry,2006,54(25):9447-9452.
    Zhu X Y, Li X P, Zou Y, et al. Cloning, characterization and expression analysis of △1-pyrroline-5-carboxylate synthetase (P5CS) gene in harvested papaya (Carica apaya) fruit under temperature stress[J]. Food Research International,2012,49:272-279.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700