用户名: 密码: 验证码:
人胰岛素A、B链基因表达载体的构建与大豆遗传转化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物医药生物反应器的设想是在上个世纪八十年代末提出的。由于它在理论上是一个更为简便、廉价、安全、可靠的医用蛋白和多肽生产体系,因此,自二十世纪九十年代以来它受到人们越来越多的关注。一大批医用蛋白和多肽在植物中获得了表达,但是要应用于商业生产还任重道远。本研究通过分析大豆内源蛋白和多肽密码子使用情况,筛选大豆偏爱密码子,人工合成了人胰岛素A、B链基因,并经农杆菌介导转化常规大豆品种“吉30”,为最终人胰岛素基因在大豆中的表达奠定了基础。主要研究结果如下:
     1.根据大豆偏爱密码子和GeneBank中的人胰岛素A、B链氨基酸序列,人工合成了人胰岛素A、B链基因。
     2.将人胰岛素A、B链基因与含有超表达组成型启动子—CaMV35S启动子的质粒载体pBI121重组构建成植物表达载体pBI121-IN。通过电激法将pBI121-IN转化根癌农杆菌EHA105,获得了PCR检测呈阳性反应的EHA105(pBI121-IN)工程菌。
     3.用EHA105(pBI121-IN)工程菌液侵染大豆“吉30”子叶节,通过优化EHA105(pBI121-IN)对“吉30”子叶节遗传转化的各种参数指标,建立了农杆菌EHA105介导的大豆“吉30”子叶节遗传转化体系。
     4.通过共培养和抗性筛选获得了能够在含卡那霉素的生根培养基上正常生长的大豆抗性苗。
The theory of plant reactor of medicine was advanced in the end of 1980s. Nowadays,plant reactor have received more and more attention because theoretically, it is a prospective cheaper and safer way to produce medical proteins or polypeptides. A great number of medical proteins or polypeptides were already expressed effectively in plant. But there is a longer way before us before plant reactors are used to produce commercial medical proteins or polypeptides. Here, we synthesized the DNA sequence of A and B strand of human insulin with soybean biased codon after analyzing the soybean codon bias and introduced it into conventional soybean strain. "Ji30" through Agrobacterium-mediated transformation system. Consequently, paved the way for the expression of human insulin gene in soybean. The major results in the paper are abstracted as follows:
    1 we synthesized the DNA sequence of A and B strand of human insulin with soybean biased codon after analyzing the soybean codon bias according to the cDNA data of soybean in GeneBank.
    2.Insert the above DNA sequence into the pBI121 with CaMV35S and constructed the soybean binary expression vector pBI 121-IN. Then, we i ntroduced pBH21-IN into the cell of Agrobacterium tumefaciens EHA105 and obtain EHA105 (pBI121-IN) which was positive in PCR detection.
    3.By optimizing the parameters of co-culture between EHA105 (pBI121-IN) and cotyledonary node of soybean Ji30, we established a effective Agrobacterium EHA105-mediated genetic transformation system of cotyledonary node of Ji30.
    4. By the established EHA105-mediated genetic transformation system of Ji30, we obtained Km resistant seedling in rooting medium.
引文
[1] Ullrich A, Shine J, Chirgwin J, Picter R, Tischer E, Rutter W J.,Goodman HM. Rat insulin genes:construction of plasmids containing the coding sequence. Science, 1977, 196:1313—1319
    [2] Frank BH, Pettee JM, Zimmermann RE. Burck PJ. (1981)The production of human proinsulin and its transformation to human insulin and C-peptide. In: Rich DH, Gross E. editors peptides:synthesis structure function. Proceedings of the seventh American Peptide Symposium Pierece Chemical Co.,Rockford, IL. P729—738
    [3] 郭礼和,汪恩肇,等.人胰岛素A、B链基因的合成、克隆及其在人肠杆菌中的表达.实验生物学报,1992,25(3):283—288
    [4] 袁汉英,闵永洁,等.人胰岛素A链与B链基因的化学合成、克隆与表达.复旦学报(自然科学版),1997,36(5)
    [5] Wetzel R, D G Kleid, R Crea, H L Heyneker, et al. Expression in E.cole of a chemically synthesized gene for a "mini-C" analog of human proinsulin GENE, 1981, 19:63—71
    [6] 陈雅蕙,杜雅励,等.Met-Lys双C肽人胰岛素原基因的构建、表达及分离纯化.中国生物化学与分子生物学报.1999,15(4):558—562
    [7] 韦革,张北林,等.6个氨基酸小C肽人胰岛素原类似基因的构建和表达.北京大学学报(自然科学版),1994,30(6):722—726
    [8] 陈来同,胡美浩.从基因工程小C肽人胰岛素原类似物(B—R 2—A)制备人胰岛素.生物化学杂志,1995,11(1):1—5
    [9] 李雄彪,谢斌,等.人胰岛素原类似物(B—Arg—Arg—B)基因的构建和表达.北京大学学报(自然科学版),1995,31(1):84—91
    [10] Wang Chihchen, Tsou Chenlu. The insulin A and B chain contain sufficient structural information to form the native molecule. TIBS, 1991, 16(8):279—281
    [11] Thim Lars, Hamsen Mogers T, Norris Kjeld. Secretion and pricessing of insulin precursors in yeast. Proc Natl Acad Sci USA. 1986, 83:6766—6770
    [12] 陈新浦,尹东,等.[A6—A1a,A11—A1a]—人胰岛素突变体的构建及其生物活性.中国生物化学与分子生物学报,2000,16(5):612—615
    [13] 陈来同,姚蒙.B23—Gly—B24人胰岛素的分离纯化及性质研究.药物生物技术,2002,9(5):270—273
    [14] Lawrence S.Cousens, Jeffrey R Shuster, Carol Callegos, et al. High level expression of proinsulin in the yeast, Saccharomyces cerevisiae. GENE, 1987, 61:265—275
    
    
    [15] Tomas Kjebisen, Jakob Brandt, Asser S. Andersen, et al. Removable spacer peptide in an α-factor leader/insulin precursor fusion protein improves processing and concomitant yield of the insulin precursor Saccharomvecs cerevisiae. Elsevier Science, 1996, 170: 107—112
    [16] 张友尚,胡红明,等.单链胰岛素前体在酵母中的分泌表达及其转变为人胰岛素.中国科学,1997,27(1):1—6
    [17] Cregg JM, Vedvick TS, Raschke WC, Recent advances in the expression of foreign genes in Pichia pastoris. Bio/Technol, 1993, 11:905—910
    [18] Thomas Kjeldsen, Annette FrostPettersson and Morten Hach. Secretory expression and characterization of insulin in Pichia pastoris..Biotechnol Appl Bio-Chem., 1999, 29:79—86
    [19] 王燕,粱镇和,等.人胰岛素在甲醇酵母Pichia pastoris中的分泌表达.生物化学与生物物理学报,1999,3(5):587—589
    [20] Yan Wang, Zhen-He Liang, Yor-Shang Zhang, et al. Human insulin from a precursor overexpressed in the methylotrophic yeast Pichia pastorisand a simple procedure for purifying the expression product;. Biotechnology and Bioengineering, 2001, 73(i):74—79
    [21] 黄俊成,李文蓉,等.显微注射生产转人胰岛素原基因奶山羊.中国兽医学报,2001,21(3):252—254
    [22] 黄俊成,史洪才,等.人胰岛素原基因在转基因小鼠乳汁中的表达.西北农业大学学报,2000,28(4):65—68
    [23] 寿思明,陈英俊,等.转基因小鼠乳腺表达人胰岛素基因的研究.生物工程学报,1999,15(2):248—251
    [24] Takeshi Arakawa, Jie Yu, Daniel K X Chong, et al. A plant-based cholera toxin B subunit-insulin fusion protein protects against the development of auto-immune diabetes. Nature Biotechnology, 1998, 16:934—938
    [25] 徐香玲,邹联沛,等.向大豆导入几丁质酶基因的初步研究.大豆科学,1999,18(2):101-108
    [26] 徐香玲,高晶,等.TI质粒介导的B、t、k-δ-内毒素蛋白基因转化大豆的初步研究.大豆科学,1997,6(1):6-12
    [27] 张毅,李弘剑,等.根癌农杆菌介导β-1,4-半乳糖苷转移酶基因转化大豆及其转基因植株再生.药物生物技术,2001,8(3):131-134
    [28] 苏彦辉,王慧丽,等.苏云金芽孢杆菌杀虫晶体蛋白基因导入大豆的研究.植物学报,1999,41(10)
    [29] 徐香玲,刘伟华.利用Ri质粒向栽培大豆导入马铃薯Y病毒外壳蛋白基因的研究简报.大豆科学,1993,12(4):267
    
    
    [30] 王罡,王萍,等.大豆基因型对根癌农杆菌菌株敏感性的研究.遗传,2002,24(3):297-300
    [31] 周思军,李希臣,等.大豆农杆菌介导转化系统的优化研究.东北农业大学学报,2001,32(3):325-331
    [32] Mclabe DE,WF Swain,BJ Martinell and P Christon. Stable transformation of soybean(Glycine max) by particular acceleraTion[J].BIO/TECHNOL, 1988,6:923-926
    [33] 刘智宏,胡文华,等.大豆幼嫩子叶离体培养及辐照处理配合基因枪遗传转化研究.核农学报,2001,15(5):282-285
    [34] 南相日.多聚鸟氨酸介导外源基因的直接转化法,大豆科学,2000,19(1):26-29
    [35] Dhir S K,et al.Regeneration of transgenic soybean(Glycine max) plants from electroported protoplasts[J].Plant Physiol, 1992,99:81-88
    [36] 赵丽梅,刘德璞,等.外源DNA导入大豆获得一不育材料.大豆科学1995,14(1):83-88
    [37] 雷勃钧,卢翠华,等.导入外源总DNA获得优质高蛋白质和双高大豆新品系.大豆科学,1995,14(3):203-208
    [38] 张国栋,赵长山,等.外源DNA注入幼荚实现大豆遗传转化.大豆科学,1994,13(3):268-274
    [39] 卢翠华,韩玉琴,等.辐照外源DNA导入大豆的研究初报.黑龙江农业科学,2000(2):17-19
    [40] 王转斌.将杨树和野生大豆DNA直接导入栽培大豆的研究.东北农业大学学报,2001,29(3):93-94
    [41] 周延清,路淑霞,等.大豆遗传转化研究.河南师范大学学报,2002,30(2):116-119
    [42] 刘博林,岳绍先,等.龙葵Atrazine抗性基因向在大豆叶绿体的转移及在转基因植株中的表达.中国科学(B辑),1989:699-705
    [43] 刘德璞,廖林,等.导入外源DNA获得抗SMV大豆品系.大豆科学,1997,16(4):277-282
    [44] 麻浩,江巨鳌,等.将西洋参DNA导入大豆实现遗传转化的研究.中草药,2000,31(1):51-53
    [46] 南相日,刘文萍,等.PEG介导BT基因转化大豆原生质体获转基因植株.大豆科学,1998,17(4):226-229
    [47] 刘兰英.大豆品质改良基因工程[D].中国农业大学硕士学位论文,1996
    [48] 李友国,李杰,等.导入dctABD和parCBA/DE基因提高大豆慢生根瘤菌固氮效率和稳定性的研究.遗传学报,2000,27(8):742-750
    [49] 陈昌斌,戴小密,等.组成型nifA对大豆根瘤菌HNollux结瘤固氮效率的促进作用.科学通报,1999,44(5).
    
    
    [50] 赵桂兰,刘艳芝,等.影响农杆菌介导的大豆基因转化因素的研究.大豆科学,2001,20(2)84-88
    [51] Jeffrey R. Powell and Etsuko W. Moriyama. Evolution of codon usage bias in Drosophila.Proc. Natl. Acad. Sci. USA, 1997,94:7784-7790
    [52] 周思君,李希臣,等.通过农杆菌介导法将Bt(cryIA)基因导入大豆.大豆科学.2001,20(3):5157-162
    [53] 袁鹰,刘德璞,等.大豆组织培养再生植株研究.大豆科学.2001,20(1):9-12
    [54] 王萍,吴颖,等.抗生素对大豆愈伤组织的诱导和生长的影响.遗传.2001,23(4):321-324

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700