用户名: 密码: 验证码:
玉米叶片保绿性遗传分析和QTL定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
玉米(Zea mays L.)是世界上重要的粮食和饲料作物,近年来由于种质资源匮乏,玉米生产出现徘徊,在产量、品质和抗性育种上进展缓慢,育种家一直致力于优异基因资源发掘利用,以求在种质创新和品种选育上取得突破。玉米叶片保绿性指生长后期叶片衰老或黄化延缓而保持绿色的特性,是与产量、饲用品质、抗性具有直接联系的重要性状。保绿型玉米品种是当今最有价值的玉米品种,代表了玉米品种演进的方向,深入研究保绿性的遗传基础对玉米种质创新和品种选育具有重要意义。本文从玉米保绿性资源鉴定、玉米保绿性遗传分析和QTL定位三个方面开展研究。主要结果如下:
     1.通过对我国30份骨干玉米自交系保绿性进行鉴定表明,大部分自交系保绿性一般或较差,筛选出4份保绿性较强的玉米自交系,它们是沈3195、沈137、齐319和178。利用SSR标记将30份自交系划分为6个类群,其中4份保绿性自交系分布在B(旅大红骨)和E(PB种质)群,可用于改良类群内其它材料的保绿性;保绿型自交系沈137、齐319、178皆来自于PB种质,可用来组建保绿群体。
     2.对保绿(齐319、178)×非保绿(Mo17、BM)四套组合六个世代的保绿鉴定结果进行数量遗传分析表明,玉米叶片保绿基因的加性、显性和互作效应普遍存在。玉米保绿性状广义遗传力变化范围59.93~76.82%,加性方差占遗传方差的比值变化范围为40.70~60.10%。以齐319为保绿亲本的组合至少存在2对保绿基因,而以178为保绿亲本的组合至少由1对基因控制。
     3.利用115对SSR标记引物构建了覆盖玉米基因组1431.0cM含10个连锁群的分子标记连锁图谱,平均图距为12.44cM,基于分子标记排列顺序和位点比较,该连锁图谱与玉米基因组数据库所公布的玉米整合图谱有较高的一致性,可以用于进一步的QTL定位研究。
     4.对166个F_(2:3)家系的叶片保绿度、绿叶数、叶绿素含量、抽雄期、散粉期、吐丝期、雌雄间隔期、株高、穗位高、穗长、穗粗、秃尖长、穗行数、行粒数、出籽率、千粒重和单株产量等保绿相关性状进行测定和统计分析表明,各性状的平均数在家系间差异显著,存在超亲分离现象;玉米叶片保绿度与千粒重、穗粗和产量呈极显著正相关。
     5.以复合区间作图法(LOD≥2.5),对保绿相关性状进行QTL检测,总计检测出80个保绿相关性状的QTLs,其中31个为主效QTL(sR2≥10%)。每个性状检测到的QTLs数目在1~8个,单个QTL所能解释的表型变异4.68~24.75%之间,QTL位点基因作用方式以部分显性和超显性为主。
     6.发现保绿相关性状的QTL在染色体上有成簇分布的特点,初步找出保绿性QTL在染色体上的6个关键区域,包括第1染色体上的115.0~125.0cM区段和140.0~155.0cM区段;在第2染色体上的95.0~110.0cM区段;在第5染色体上的50.0~55.0cM区段;第8染色体上的0~10.0cM区段;第9染色体上的50.0~60.0cM区段。
     7.通过与前人研究比较,本研究不仅检测到与前人相近的保绿QTL位点,同时检测出了较多新的位点,为全面了解玉米保绿性状的遗传背景提供新的信息,也为玉米保绿性分子标记辅助育种奠定基础。
Maize (Zea mays L.) is an important food and forage crop. Recently, steps towards high yield, good quality and resistance in maize breeding programs have been limited due to a reduced genetic background in the maize germplasm. Maize breeders have been exploring different maize germplasm varieties for suitable genes to further enhance maize yield and in doing so, anticipate a breakthrough in maize breeding advancements. Stay-green is a generalterm applied to a variant in which senescence is delayed, compared to a standard reference genotype, and is regarded as a desirable character closely related to yield, forage character and resisitance. The stay-green maize varieties is the most valuable one nowadays. The inheritance of stay-green were studied focused on stay-green germplasm certification, genetic analysis and quantitative trait loci (QTL) mapping. The main results were as follows:
     1. Thirty elite maize inbred lines were evaluated for stay-green. The results showed that 4 lines (Shen3195, Shen137, Q319 and 178 ) had good stay-green trait, and others had normal or bad stay-green trait. The cluster analysis by SSR markers showed that 30 inbreds could be classified into 6 distinct groups. The 4 stay-green inbreds were found in 2 sources (B and E), respectively and could be used to improve the bad stay-green lines in the same group.
     2. The inheritance of stay-green was studied in progenies derived from four crosses between two stay-green lines, Q319 or 178, and two non-stay-green lines, Mo17 and BM. The results showed that additive and dominant gene effect as well as gene interactions could be found in the inheritance of stay-green. The broad heritability for stay-green ranged from 59.93% to 76.82% and the ratio of narrow heritability to genetic heritability ranged from 40.70% to 60.10%. Q319 and 178 were estimated to contain at least two and one stay-green genes, respectively.
     3. A genetic linkage map containing 115 SSR markers and 10 linkage groups was constructed, which spanned a total of 1431.0 cM with an average maker interval of 12.44 cM. Compared with other published maize linkage map in chromosome bin locus, the linkage map established in this study was consistent with them. The SSR linkage map can be used for QTL mapping.
     4. The major traits(stay-green degree, number of green leaf, chlorophyll content of leaf, emergence-anthesis interval, emergence-pollination interval, emergence-pollination interval, antheisis-silking interval, plant height, ear height, ear length, bald tip length, ear diameter, ear rows, row grains, percent grain, 1000-grain weight, individual plant yield) related to stay-green of 166 F_(2:3) family lines were surveyed an analysed. The results showed that the average values of all traits are significant among family lines. Correlation analysis showed significant correlations between stay-green traits at different days after flowering (DAF) and some yield-related traits such as ear diameter, 1000-grain weight and plant yield.
     5. By composite interval mapping(LOD≥2.5), 80 QTLs were detected for traits related to stay-green, in wich 31 QTLs were major effect QTLs(R2≥10%). Each traits have been identified 1–8 QTLs, which were responsible interpreting 4.68–24.75% of phenotypic variance individually, and showed partial dominant effect and over dominant.
     6. This results also showed that some QTLs trend to cluster the same chromosome region. The six key chromosome regions for stay-green mostly lie on following chromosome: chromosome 1, 115.0–125.0 cM and 140.0– 155.0 cM; chromosome 2, 95.0–110.0 cM; chromosome 5, 50.0–55.0 cM; chromosome 8, 0–10.0 cM; chromosome 9, 50.0–60.0 cM.
     7. Compared with the results of previous study, our study not only detected the similar stay-green QTLs reported previously, but also found out many new QTLs. The QTLs got in this study not only offered new information for understanding stay-greeen traits of maize, but also provided a potential starting point for marker assisted selection of maize stay-green .
引文
[1] 张世煌,田清震,李新海,等. 玉米种质改良与相关理论研究进展. 玉米科学, 2006, 14(1): 1–6
    [2] Thomas H. Sid: a Mendelian locus controlling thylakoid membrane disassembly in senescing leaves of Festuca pratensis.Theor Appl Genet, 1987, 73:551–555
    [3] Thomas H, Smart CM. Crops that stay green. Ann Appl Biol, 1993, 123:193–129
    [4] Thomas H, Howarth CJ. Five ways to stay green. J Exp Bot., 2000, 51:329–337
    [5] Subudhi PK, Rosenow DT, Nguyen HT. Quantitative trait loci for the stay–green trait in sorghum (Sorghum bicolor L. Moench): consistency across genetic backgrounds and environments.Theor Appl Genet, 2000, 101:733–741
    [6] Haussmann, BIG, Mahalakshmi V, Reddy BVS, et al. QTL mapping of stay–green in two sorghum recombinant inbred populations. Theor Appl Genet, 2002, 106: 133–142
    [7] Duvick, D. N. Genetic contribution to yield gains of US hybrid maize 1930 – 1980. In Genetic contribution to yield gains of five major crop plants (CSSA special publication7). EDWRFehr. Madison: Crop Sciece Sciety of America.1984:15–47
    [8] Bekavac GP. Analysis of stay-green trait in maize. Cereal Research Communications, 1998, 26(2):161–167
    [9] Russell WA. Registration of B93 and B94 inbred lines of maize. Crop Science, 1991, 31(1):247– 248
    [10] 何萍, 金继运. 保绿型玉米的营养生理研究进展. 玉米科学, 2000, 8(4): 41–44
    [11] 刘开昌,王庆成,张海松,等. 玉米叶片保绿性生理机理及遗传特性研究进展. 山东农业科学, 2003, (2): 48–51
    [12] Crafts–Brandner SJ, Below FE, Wittenbach VA, et al. Differential senescence of maize hybrids following ear removal. II Selected Leaf. Plant Physiology, 1984, 47: 368–373
    [13] Ma BL, Ma BL, Dwyer LM. Nitrogen uptake and use of two contrasting maize hybrids differing in leaf senescence. Plant and Soil, 1998 ,199:283–291
    [14] Gentinetta E, Ceppi D, Lepori C, et al. A major gene for delayed senescence in maize. Pattern of photosynthates accumulation and inheritance. Plant Breed, 1986, 97: 193–203
    [15] 董树亭, 王空军,胡昌浩,等.玉米品种更替过程中群体光合特性的演变. 作物学报, 2000, 26(2): 200–204
    [16] Cavalieri AJ, Smith O S: Grain filling and field drying of a set of maize hybrids released from 1930 to 1982. Crop Sci., 1985, 25:856–860
    [17] Rosenow DT. Breeding for resistance to root and stalk rots in Texas. In: Mughogho LK (ed) Sorghum root and stalk rots, a critical review. Proc Consultative group discussion of research needs and strategies for control of sorghum root and stalk diseases, Bellagio, Italy, 27 Nov –2 Dec 1983, ICRISAT, Patancheru, AP, India, 1992:209–217
    [18] Rosenow DT. Breeding sorghum for drought resistance. In: Menyonga JM, Bezuneh T, Youdeowei A (eds) Food and grain production in semi–arid Africa. Proc Intl Drought Symp, Sponsored by OAU/STRC–SFGRAD, May 19–23, 1986. Kenyatta Conf Center, Nairobi, Kenya, 1987:83–89
    [19] Rosenow DT, Quisenberry JE, Wendt CW, et al. Drought–tolerant sorghum and cotton germplasm. Agric Water Manage, 1983, 7:207–222
    [20] Rosenow, DT, Clark LE. Drought tolerance in sorghum. In: Proc 36th Annual Corn and Sorghum Res Conf, 9–11 Dec 1981, Chicago, Illinois, 1981:18–30
    [21] Ambler JR, Morgan PW, Jordan WR. Genetic regulation of senescence in a tropical grass. In: Thomson WW, Nothnage, 1987
    [22] Woodfin CA, Rosenow DT, Clark LE. Association between the stay–green trait and lodging resistance in sorghum. Agronomy abstracts. ASA, Madison, Wisconsin, 1988:102
    [23] Xu WW, Subudhi PK, Crasta OR, et al. Molecular mapping of QTLs conferring stay–green in grain sorghum (Sorghum bicolor L. Moench). Genome, 2000, 43:461–469
    [24] Miller FR, Toler RW. Registration of RTx2858MDMV–Aresistant germplasm. Crop Science, 1990, 30(3):764.
    [25] Tao YZ ,Mcintyre CL , Henzell RG. Applications of molecular markers to Australian sorghum breeding programs. Construction of a RFLP map using sorghumrecombinant inbred lines. Proceedings of the Third Australian Sorghum Conference, amworth, 20-22 February 1996. AIAS–Occasional–publication. 1996, 93:443–450.
    [26] Bekavac G, Purar B, Stojakovih M, et al. Genetic analysis of stay–green trait in broad–based maize populations. Cereal Research Communications, 2007, 35(1):31–41
    [27] 王建国, 杜桂娟, 蔡纪新, 等. 玉米持绿性与其它农艺性状的相关研究. 杂粮作物, 2003, 23(6):336–339
    [28] Subudhi P L, Magpantay GB, Rosenow DT, et al. Mapping and marker–assisted selection to improve the stay–green trait for drought tolerance in sorghum[A] . In : O. Ito. J . O’Tool and B. Hardy ( Eds. ) Genetic Improvement of Rice for Water Limited Environments. Proceedings of the Workshop on Genetic Improvement of Rice for Water Limited Environments (Los Banos ,Manilla , Philippines, 1–3 December 1998), International Rice Research Institute, Los Banos, 1999:353
    [29] Hardwick RC. Leaf abscission in varieties of Phaaseolus vulgaris L. and Clycine max (L.) –a correlation with propensity to produce adventitious roots. Jour Exp Bot., 1979, 30:795–804
    [30] Pierce RO, Knowles PF, Phillips DA. Inheritance of delayed leaf senescence in soybean. Crop Sci., 1984, 24:515–518
    [31] Vietor DM, Cralle HT, Miller FR. Partitioning of 14C–photosynthate and biomass in relation to senescence characteristics of sorghum. Crop Sci., 1989: 1049–1053
    [32] Mondal WA, Choudhuri MA. Comparison of phosphorus mobilization during monocarpic senescence in rice cultivars with sequential and non sequential leaf senescence. Physiol Plant, 1985, 65:221-227
    [33] Crafts-Brandner SJ, Leggett JE, Sutton TG et al. Effect of root system genotype and nitrogen fertility on physiological differences between burley and flue-cured tobacco Ⅰ . Sigle leaf measurements. Crop Sci., 1987, 27:535–539
    [34] Zacarias L, Reid MS. Role of growth regulatiors in the senescence of Arabidopsis thaliana Leaves. Physiol Plant, 1990, 80:549–554
    [35] Spano G, Di Fonzo N, Perrotta C, et al. Physiological characterization of ‘stay green’ mutants in durum wheat. J Exp Bot., 2003, 54:1415–1420
    [36] Ceppi D, Sala M, Gentinetta E, et al. Genotype–Dependent Leaf Senescence in Maize Inheritance and effects of pollination – prevention. Plant Physiol., 1987, 85 :720–725
    [37] Pommel B, Gallais A, Coque M, et al. Carbon and nitrogen allocation and grain filling in three maize hybrids differing in leaf senescence. Europ. J. Agronomy. 2006, 24:203–211
    [38] Thomas H. Ultrastructure, polypeptide composition and photochemical activity of chloroplasts during foliar senescence of a non–yellowing mutant genotype of Festuca pratensis.Planta, 1977, 137:53–60
    [39] Thomas H. Leaf senescence in a non–yellowing mutant of Festuca pratensis. I. Chloroplast membrane polypeptides.Planta, 1982 154: 212–218
    [40] Thomas H. Introgression, tagging and expression of a leaf senescence gene in Festulolium. New Phytol, 1997, 137:29–34
    [41] Thomas H, Matile P. Photobleaching and chloroplast pigments in leaves of non–yellowing mutant genotypes of Festuca pratensis. Phytochemistry, 1988, 27:345–348
    [42] Thomas H, Morgan WG, Thomas AM, et al. Expression of the stay–green character introgressed into Lolium temulentum ceres from a senescence mutant of Festuca pratensis. Theor Appl Genet, 1999, 99:92–99
    [43] Oosterom EJ van, Jayachandran R, Bidinger FR. Diallel analysis of the stay green trait and its components in sorghum. Crop Sci., 1996, 36:549–555
    [44] Crasta OR, Xu W, Rosenow DT, et al. Mapping of post–flowering drought tolerance traits in grain sorghum: association of QTLs influencing premature senescence and maturity. Mol Gen Genet, 1999, 262:579–588
    [45] 杜桂娟, 王建国, 张宝石. 玉米持绿性的遗传研究. 辽宁农业科学,2003, (4): 7–9
    [46] Risch NJ. Searching for genetic determinants in the new milennium. Natrure. 2000, 405:847–856
    [47] 刘纪麟.玉米育种学.北京:中国农业出版社,2002.
    [48] Bostein D, White RI, Skolni XKM, et al. Construction of genetic linkage map in man using restriction fragment length polymorphism. Amer Genet, 1993, 32: 314–318
    [49] 方宣钧, 吴为人, 唐纪良. 作物 DNA 标记辅助育种. 北京:科学出社, 2001. 50–58
    [50] Helentjaris T, Slocum M, Wright S, et al. Construction of genetic linkage map in maize and tomato using restriction fragment Length polymorphisims. Theor. Appl. Genet., 1986, 72:761–769
    [51] Coe EH, Hoisington DA, Neuffer MG. Linkage map corn (maize) (Zea mays L.). Maize genet. Coop, Newslett., 1987, 61: 116–147
    [52] Burr B, Burr FA, Thompson KH, et al. Gene mapping with recombinant inbreds in maize. Genetics, 1988, 118: 519–526
    [53] Cardinal AJ, Lee M, Sharopova N, et al. 2001. genetic mapping and anylysis of quantitative trait loci for resistance to stalk tunneling by the European corn borer in maize. Crop Sci., 41:835–845
    [54] 曹永国, 王国英. 玉米RFLP遗传图谱的构建及矮生基因定位. 科学通报, 1999, 44(20): 2178–2182
    [55] 杨俊品, 荣延昭, 向道权,等. 玉米数量性状基因定位. 作物学报, 2005, 31(2): 188–196
    [56] Weller JI. Maximum likelihood techniques for the mapping and anylysis of quantitative trait loci with the aid of genetic markers. Biometrics, 1986, 42:627–642
    [57] Edwards MD, Stuber CW, Wendel JF. Molecular–marker–facilitated investigation of quantitative loci in maize. Ⅰ .Numbers, genomics distribution and types of gene action. Genetics, 1987, 116:113–125
    [58] Lander E S, Botstein D. Mapping medelian factors underlying quantitative traits using RFLP linkage maps. Genetics, 1989,121:185–199
    [59] Zeng ZB. Theoretical basis of separation of multiple linked gene eVects on mapping quantitative trait loci. Proc Natl Acad Sci USA 90, 1993, 10972–10976.
    [60] Zeng ZB. Precision mapping of quantitative trait loci.Genetics, 1994. 136:1457–1468
    [61] 朱军,1998. 复杂数量性状基因定位的混合线性模型方法. 见:王连铮,戴景瑞主编. 全国作物育种学术讨论会论文集. 北京: 中国农业科技出版社, 11–20
    [62] Thorogood D, Humphreys M, Turner L, et al. QTL analysis of chlorophyll breakdown in Lolium perenne. Abstracts, Plant and Animal Genome VII, San Diego, California, USA, 1999: 280
    [63] Subudhi PK, Rosenow DT, Nguyen HT (2000) Quantitative trait loci for the stay-green trait in sorghum (Sorghum bicolor L. Moench): consistency across genetic backgrounds and environments.Theor Appl Genet., 2000, 101:733–741
    [64] Tao YZ, Henzell RG, Jordan DR, et al. Identification of genomic regions associated with stay–green in sorghum by testing RILs in multiple environments. Theor Appl Genet., 2000, 100:1225–1232
    [65] Haussmann BIG, Mahalakshmi V, Reddy BVS, et al. QTL mapping of stay-green in two sorghum recombinant inbred populations. Theor Appl Genet., 2002, 106:133–142
    [66] Jiang GH, He Y Q, Xu CG, et al. The genetic basis of stay–green in rice analyzed in a population of doubled haploid lines derived from an indica by japonica cross. Theor Appl Genet., 2004,108:688–698
    [67] Beavis WD, Smith O S, Grant D, et al. Identification of quantitative trait loci using a small sample of top crossed and F4 progeny from maize. Crop Sci., 1994, 34: 882–896
    [68] 仪治本, 梁小红, 孙毅, 等. 高粱抗旱数量性状位点基因定位研究进展. 杂粮作物, 2003, 23(5): 262–268
    [69] 王永飞, 马三梅, 刘翠萍, 等. 遗传标记的发展和分子标记的检测技术. 西北农林科技大学学报(自然科学版), 2001, 29(6): 130–136
    [70] 张德水, 陈受宜. DNA 分子标记、基因作图及其在植物遗传育种上的应用. 生物技术通报, 1998, (5): 15–22
    [71] 沈新莲, 张天真. 作物分子标记辅助选择育种研究的进展与展望. 高技术通讯, 2003, (2): 105–110
    [72] Murray M G, Thompson W F. Rapid isolation of highmolecular–weight plant DNA. Nucleic Acids Res, 1980, 8:4321
    [73] Causse MA, Fulton TM, Cho YG, et al. Saturated molecular map of the rice genome based on an interspecific backcross population.Genetics, 1994, 138:1251–1274
    [74] Bassam BJ, Anolles GC, Gresshoff PM. Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal Biochem, 1991, 196:80–83
    [75] 刘开昌. 不同玉米基因型叶片保绿性生理机理及遗传研究. 泰安,山东农业大学, 2003
    [76] 石雷. 引入美国种质对我国玉米育种的影响.玉米科学,2007,25(2):
    [77] 焦仁海,刘兴贰,孙发明. 浅谈 78599 种质杂种优势模式.玉米科学, 2004, 12(3):52-54
    [78] 唐启义, 冯明光. 实用统计分析及其 DPS 数据处理系统.北京:科学出版社,2007
    [79] 刘定富. 数量性状基因数目估计的程序设计. 湖北农学院学报, 1994, 14(4):47-53
    [80] Lincoln S, Daly M, Lander E. Constructing genetics maps with MAPMAKER/EXP 3.0. Whitehead Institute Technical Report, Whitehead Institute, Cambridge, Massachusetts, USA, 1992
    [81] Yano M, Harushima Y , Nagamura Y. dentification of quantitative trait loci controlling heading date in rice using a high density linkage map.Theor Appl Genet, 1997, 95:1025–1032
    [82] 刘勋甲,尹艳,郑用琏.分子标记在农作物遗传育种中的运用及原理.湖北农业科学,1998,(1):27-32
    [83] 沈金雄,易斌,傅廷栋 等.植物数量性状基因定位研究概述.植物学通报, 2003,20(3):257-263
    [84] Wang S, Basten CJ, and Zeng ZB. Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NC. 2007, http://www.statgen. ncsu. edu/qtlcart/WQTLCart.htm
    [85] 张宪政主编. 作物生理研究法. 北京: 农业出版社, 1992:119–218
    [86] Stuber CW, Edwards MD, Wendel JF. Molecular marker–facilitated investigation of quantitative trait loci in maize. Ⅱ:Factors influencing yield and its component traits. Crop Sci., 1987, 27:639–648
    [87] 沈成果.植物叶片衰老过程中基因的表达与调控. 植物生理学通讯, 1998, 34(4): 304–3121
    [88] 李少昆.我国常用自交系光合特性研究. 中国农业科学, 1999, 32(2): 53–591
    [89] 王建国, 杜桂娟. 玉米持绿性评价方法的探讨. 辽宁农业科学.2003, (5): 1–4
    [90] 蔡一林, 何晓阳. 玉米叶面积分布及估测. 西南农业大学学报, 1994, (1): 12–15
    [91] 丁希泉, 赵化春. 玉米叶片生长及其在产量形成中的作用. 吉林农业科学, 1979, (2): 1–5
    [92] 董振国. 农田叶面积与产量的关系. 河北农业科技, 1987, (3): 18–23
    [93] 郝引川, 陈润沧. 不同熟性玉米品种叶面积的快速测量法. 陕西农业科学,1994, (1): 25–28
    [94] 何萍, 金继运, 林葆. 氮肥用量对春玉米叶片衰老的影响及其机理研究. 中国农业科学, 1998, 31(3): 66–71
    [95] 罗瑶年, 张建华, 李霞. 玉米叶片的衰老. 玉米科学, 1992(创刊号): 40–47
    [96] 罗瑶年, 张建华. 种植密度对玉米叶片衰老的影响. 玉米科学, 1994, 2 (4): 23–25
    [97] 罗瑶年, 张建华. 玉米叶片衰老田间因素的分析及其与产量的关系. 玉米科学, 1995, 3(4): 34–38, 52
    [98] Tollenaar M, Daynard TB. Leaf senescence in short season maize hybrids. Can. J. Plant Sci., 1978, 58:869–874
    [99] Tollenaar M, and Wu J. Yield improvement in temperate maize is attributable to greater stress tolerance. Crop Sci., 1999, 39:1597–1604
    [100]Duncan RR. The association of plant senescence with root and stalk diseases in sorghum. In: Mughogho LK (ed) Sorghum root and stalk rots, a critical review. ICRISAT, Patancheru, AP, India, 1984: 99–110
    [101]Duncan RR, Bockholt AJ, Miller FR. Descriptive comparison of senescent and nonsenescent sorghum genotypes. Agron J 1981, 73:849–853
    [102]吴国海. 玉米几个数量性状在不同发育阶段的基因效应分析. 遗传学报. 1987, 14(5):363–369
    [103]Stuber CW. Mapping and manipulating quantitative traits in maize. Trends genet,1995 11:477–481

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700