用户名: 密码: 验证码:
图像引导放射治疗若干关键问题的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三维适形调强放射治疗已经在国内外的放疗科室和中心中广泛的使用。它可以投放高度适形的辐射剂量到静止的靶区,同时保护周围的危及器官免受过量辐射的伤害,从而减少并发症的发生。但是由于肿瘤和周围危及器官在治疗分次间和分次内的运动,使得调强放疗的好处大打折扣。四维CT和锥形束CT被广泛的用来获取肿瘤和危及器官在分次内和分次间的运动影像。通过开发四维计划和在线自适应放疗等运动管理方法,可以减少肿瘤和危及器官的运动引起的射线投放的偏差,达到精确放疗的目的。
     首先,通过四维CT分析了放射治疗过程中肿瘤和周围危及器官在治疗分次内的运动。针对四维CT中仍然存在的呼吸伪影现象,利用正常组织和器官的空间连续性,提出了相邻床位CT图像的空间连续性指数,并用此指数检测和校正四维CT中仍然存在的呼吸伪影,得到更清晰的四维CT图像。
     其次,在四维CT图像反映的周期呼吸运动的基础上,提出了子野最优变形的概念,以使变形后的子野在当前呼吸相位的单位加速器跳数产生的剂量分布与在参考相位的子野单位加速器跳数产生的剂量分布尽可能相同。这使得处于参考相位的子野形状可以跟随肿瘤和危及器官的运动而产生相应的变化,并通过共轭梯度法和模拟退火法同时优化各个子野的权重和处于参考相位的形状,得到最优的基于电动多叶准直器的实时跟踪四维放疗计划。实验结果显示,与基于ITV的三维适形放疗计划相比,在确保肿瘤辐射剂量的情况下,四维追踪放疗计划可以进一步的减少周围危及器官所受到的辐射量。
     最后,通过锥形束CT获取的在线影像来分析肿瘤和危及器官的分次间运动。针对锥形束CT图像电子密度不准确的问题,开发了基于梯度场的变形配准算法,改善了锥形束CT与扇形束CT间图像配准的精度。并针对在线应用对配准时间要求高的特点,进一步将此变形配准算法在GPU上并行实施,大大缩短了配准时间。根据配准算法产生的变形场,计划CT上的器官轮廓被自动的映射到在线获取的锥形束CT图像上,以用来进行在线的剂量评估。根据配准算法产生的变形场,一种直接射野修正算法被实施,以在线修改放疗计划,使之适应肿瘤和危及器官产生的位置和形状变化,进行更准确的剂量投放。
     综上所述,通过四维CT、四维追踪放疗计划和在线修改放疗计划可以更精确的投放辐射剂量到肿瘤,同时进一步减少周围危及器官受到的辐射剂量,从而减少放疗并发症的发生,提高患者的生存质量。
Intensity modulated radiotherapy can deliver highly conformal radiation dose to astationary target, while protecting the surrounding organs at risk from excessiveradiation. However, the inter-fraction and the intra-fraction motion of the tumor andsurrounding organs at risk can greatly compromise the effectiveness of the technique.Four-dimensional CT and cone beam CT is widely used to obtain the intra-fraction andinter-fraction motion of tumor and organs at risk. The development of four-dimensionalradiotherapy planning and on-line adaptive radiotherapy methods can reduce the dosedeviation induced by the tumor motion, to achieve the purpose of precise radiotherapy.
     First, the intra-fraction motion of the tumor and surrounding organs at risk wasanalyzed through four-dimensional CT. Making use of the spatial continuity betweenadjacent CT images, the artifacts in four-dimensional CT can be detected and correctedto get a clear four-dimensional CT dataset.
     Second, based on the four-dimensional CT, a concept of “optimum deformation”of aperture was proposed. The “optimum deformation” of aperture makes the aperture atthe reference phase can follow the movement of the tumor and organs at risk andproduce a corresponding tracking aperture. Then the shape and weight of all aperturesare separately optimized by the simulated annealing and conjugate gradient method togenerate the optimal multi-leaf collimator based four-dimensional radiation treatmentplanning.
     Last, the paper analyzed the inter-fraction motion of tumor and organs at risk byonline cone-beam CT images. For the poor electron density accuracy of cone-beam CTimages, a gradient based deformable registration algorithm was developed to improveregistration accuracy between cone-beam CT and fan-beam CT images. Because of thetime-critical features of online clinical applications, we further implemented thedeformable registration algorithm in parallel on the GPU. It dramatically shortenedregistration time. Based on the deformation field output by registration algorithm, anautomatic mapping algorithm can automatically map contours of tumor and organs from the planning CT to the cone-beam CT. Based on the deformation field output byregistration algorithm, a direct aperture modification algorithm has been used to modifythe radiation treatment plan, so that the new plan can adapt to the position and shapechanges of the tumor and organs at risk.
     In summary,4D-CT,4D tracking treatment plan and on-line modified treatmentplan can more accurately deliver dose to the tumor while further reducing the dosereceived by the surrounding organs at risk. It can reduce the incidence of radiationcomplications, improve patient quality of life.
引文
[1] C. Nutting, R. A'Hern, and M. S. Rogers, First results of a phase III multicenter randomizedcontrolled trial of intensity modulated (IMRT) versus conventional radiotherapy (RT) in headand neck cancer. J Clin Oncol,2009,27:18s.
    [2] F. M. Kong, R. K. Ten Haken, M. J. Schipper, et al., High-dose radiation improved local tumorcontrol and overall survival in patients with inoperable/unresectable non-small-cell lung cancer:long-term results of a radiation dose escalation study. Int J Radiat Oncol Biol Phys,2005,63(2):324-333.
    [3] P. Baumann, J. Nyman, M. Hoyer, et al., Outcome in a prospective phase II trial of medicallyinoperable stage I non-small-cell lung cancer patients treated with stereotactic bodyradiotherapy. J Clin Oncol,2009,27(20):3290-3296.
    [4] R. Timmerman, R. McGarry, C. Yiannoutsos, et al., Excessive toxicity when treating centraltumors in a phase II study of stereotactic body radiation therapy for medically inoperableearly-stage lung cancer. J Clin Oncol,2006,24(30):4833-4839.
    [5] M. Broderick, G. Menezes, M. Leech, et al., A comparison of kilovoltage and megavoltage conebeam CT in radiotherapy. Journal of Radiotherapy in Practice,2007,6:173-178.
    [6] J. Y. Jin, L. Ren, Q. Liu, et al., Combining scatter reduction and correction to improve imagequality in cone-beam computed tomography (CBCT). Med Phys,2010,37(11):5634-5644.
    [7] A. Richter, Q. Hu, D. Steglich, et al., Investigation of the usability of conebeam CT data sets fordose calculation. Radiat Oncol,2008,3:42.
    [8] Y. Yang, E. Schreibmann, T. Li, et al., Evaluation of on-board kV cone beam CT (CBCT)-baseddose calculation. Phys Med Biol,2007,52(3):685-705.
    [9] J. Hatton, B. McCurdy, and P. B. Greer, Cone beam computerized tomography: the effect ofcalibration of the Hounsfield unit number to electron density on dose calculation accuracy foradaptive radiation therapy. Phys Med Biol,2009,54(15):N329-346.
    [10] E. E. Ahunbay, C. Peng, S. Holmes, et al., Online adaptive replanning method for prostateradiotherapy. Int J Radiat Oncol Biol Phys,2010,77(5):1561-1572.
    [11] R. D. Wiersma, W. Mao, and L. Xing, Combined kV and MV imaging for real-time tracking ofimplanted fiducial markers. Med Phys,2008,35(4):1191-1198.
    [12] S. S. Vedam, P. J. Keall, V. R. Kini, et al., Acquiring a four-dimensional computed tomographydataset using an external respiratory signal. Phys Med Biol,2003,48(1):45-62.
    [13] E. D. Brandner, A. Wu, H. Chen, et al., Abdominal organ motion measured using4D CT. Int JRadiat Oncol Biol Phys,2006,65(2):554-560.
    [14] J. J. Sonke, L. Zijp, P. Remeijer, et al., Respiratory correlated cone beam CT. Med Phys,2005,32(4):1176-1186.
    [15] L. Dietrich, S. Jetter, T. Tucking, et al., Linac-integrated4D cone beam CT: first experimentalresults. Phys Med Biol,2006,51(11):2939-2952.
    [16] K. M. Langen, J. Pouliot, C. Anezinos, et al., Evaluation of ultrasound-based prostatelocalization for image-guided radiotherapy. Int J Radiat Oncol Biol Phys,2003,57(3):635-644.
    [17] H. Keller, W. Tome, M. A. Ritter, et al., Design of adaptive treatment margins for non-negligiblemeasurement uncertainty: application to ultrasound-guided prostate radiation therapy. PhysMed Biol,2004,49(1):69-86.
    [18] R. George, T. D. Chung, S. S. Vedam, et al., Audio-visual biofeedback for respiratory-gatedradiotherapy: impact of audio instruction and audio-visual biofeedback on respiratory-gatedradiotherapy. Int J Radiat Oncol Biol Phys,2006,65(3):924-933.
    [19] G. S. Mageras and E. Yorke, Deep inspiration breath hold and respiratory gating strategies forreducing organ motion in radiation treatment. Semin Radiat Oncol,2004,14(1):65-75.
    [20] H. D. Kubo and L. Wang, Compatibility of Varian2100C gated operations with enhanceddynamic wedge and IMRT dose delivery. Med Phys,2000,27(8):1732-1738.
    [21] A. M. Berson, R. Emery, L. Rodriguez, et al., Clinical experience using respiratory gatedradiation therapy: comparison of free-breathing and breath-hold techniques. Int J Radiat OncolBiol Phys,2004,60(2):419-426.
    [22] K. E. Rosenzweig, J. Hanley, D. Mah, et al., The deep inspiration breath-hold technique in thetreatment of inoperable non-small-cell lung cancer. Int J Radiat Oncol Biol Phys,2000,48(1):81-87.
    [23] R. Kashani, J. M. Balter, J. A. Hayman, et al., Short-term and long-term reproducibility of lungtumor position using active breathing control (ABC). Int J Radiat Oncol Biol Phys,2006,65(5):1553-1559.
    [24] B. Gagel, C. Demirel, A. Kientopf, et al., Active breathing control (ABC): determination andreduction of breathing-induced organ motion in the chest. Int J Radiat Oncol Biol Phys,2007,67(3):742-749.
    [25] Y. Seppenwoolde, H. Shirato, K. Kitamura, et al., Precise and real-time measurement of3Dtumor motion in lung due to breathing and heartbeat, measured during radiotherapy. Int J RadiatOncol Biol Phys,2002,53(4):822-834.
    [26] E. Schreibmann, G. T. Chen, and L. Xing, Image interpolation in4D CT using a BSplinedeformable registration model. Int J Radiat Oncol Biol Phys,2006,64(5):1537-1550.
    [27] P. J. Keall, S. Joshi, S. S. Vedam, et al., Four-dimensional radiotherapy planning forDMLC-based respiratory motion tracking. Med Phys,2005,32(4):942-951.
    [28] L. Papiez, The leaf sweep algorithm for an immobile and moving target as an optimal controlproblem in radiotherapy delivery. Math Comput Modell,2003,37:735-745.
    [29] L. Papiez, DMLC leaf-pair optimal control of IMRT delivery for a moving rigid target. MedPhys,2004,31(10):2742-2754.
    [30] L. Papiez and D. Rangaraj, DMLC leaf-pair optimal control for mobile, deforming target. MedPhys,2005,32(1):275-285.
    [31] L. Papiez, D. Rangaraj, and P. Keall, Real-time DMLC IMRT delivery for mobile anddeforming targets. Med Phys,2005,32(9):3037-3048.
    [32] D. Rangaraj and L. Papiez, Synchronized delivery of DMLC intensity modulated radiationtherapy for stationary and moving targets. Med Phys,2005,32(6):1802-1817.
    [33] D. McQuaid and S. Webb, IMRT delivery to a moving target by dynamic MLC tracking:delivery for targets moving in two dimensions in the beam's eye view. Phys Med Biol,2006,51(19):4819-4839.
    [34] A. Sawant, R. Venkat, V. Srivastava, et al., Management of three-dimensional intrafractionmotion through real-time DMLC tracking. Med Phys,2008,35(5):2050-2061.
    [35] S. Webb and D. M. Binnie, A strategy to minimize errors from differential intrafraction organmotion using a single configuration for a 'breathing' multileaf collimator. Phys Med Biol,2006,51(18):4517-4531.
    [36] J. J. Lagendijk, B. W. Raaymakers, A. J. Raaijmakers, et al., MRI/linac integration. RadiotherOncol,2008,86(1):25-29.
    [37] W. Lu, M. L. Chen, G. H. Olivera, et al., Fast free-form deformable registration via calculus ofvariations. Phys Med Biol,2004,49(14):3067-3087.
    [38] C. X. Yu, D. A. Jaffray, and J. W. Wong, The effects of intra-fraction organ motion on thedelivery of dynamic intensity modulation. Phys Med Biol,1998,43(1):91-104.
    [39] T. Bortfeld, K. Jokivarsi, M. Goitein, et al., Effects of intra-fraction motion on IMRT dosedelivery: statistical analysis and simulation. Phys Med Biol,2002,47(13):2203-2220.
    [40] C. S. Chui, E. Yorke, and L. Hong, The effects of intra-fraction organ motion on the delivery ofintensity-modulated field with a multileaf collimator. Med Phys,2003,30(7):1736-1746.
    [41] R. W. Underberg, F. J. Lagerwaard, B. J. Slotman, et al., Benefit of respiration-gatedstereotactic radiotherapy for stage I lung cancer: an analysis of4DCT datasets. Int J RadiatOncol Biol Phys,2005,62(2):554-560.
    [42] H. Shirato, S. Shimizu, K. Kitamura, et al., Four-dimensional treatment planning andfluoroscopic real-time tumor tracking radiotherapy for moving tumor. Int J Radiat Oncol BiolPhys,2000,48(2):435-442.
    [43] Y. Liang, H. Xu, J. Yao, et al., Four-dimensional intensity-modulated radiotherapy planning fordynamic multileaf collimator tracking radiotherapy. Int J Radiat Oncol Biol Phys,2009,74(1):266-274.
    [44] C. Plathow, S. Ley, C. Fink, et al., Analysis of intrathoracic tumor mobility during wholebreathing cycle by dynamic MRI. Int J Radiat Oncol Biol Phys,2004,59(4):952-959.
    [45] E. A. Barnes, B. R. Murray, D. M. Robinson, et al., Dosimetric evaluation of lung tumorimmobilization using breath hold at deep inspiration. Int J Radiat Oncol Biol Phys,2001,50(4):1091-1098.
    [46] S. C. Davies, A. L. Hill, R. B. Holmes, et al., Ultrasound quantitation of respiratory organmotion in the upper abdomen. Br J Radiol,1994,67(803):1096-1102.
    [47] I. Suramo, M. Paivansalo, and V. Myllyla, Cranio-caudal movements of the liver, pancreas andkidneys in respiration. Acta Radiol Diagn (Stockh),1984,25(2):129-131.
    [48]吴瑞花,宋勇春,袁智勇,等,肺肿瘤运动规律及其影响因素的研究.中华放射肿瘤学杂志,2011,20(3):193-196.
    [49]王彦,包勇,张黎,等,基于四维CT影像肺内肿瘤运动度的测量与分析.中华放射肿瘤学杂志,2010,19(1):40-43.
    [50] P. J. Keall, V. R. Kini, S. S. Vedam, et al., Motion adaptive x-ray therapy: a feasibility study.Phys Med Biol,2001,46(1):1-10.
    [51] A. S. Beddar, K. Kainz, T. M. Briere, et al., Correlation between internal fiducial tumor motionand external marker motion for liver tumors imaged with4D-CT. Int J Radiat Oncol Biol Phys,2007,67(2):630-638.
    [52] D. A. Low, M. Nystrom, E. Kalinin, et al., A method for the reconstruction of four-dimensionalsynchronized CT scans acquired during free breathing. Med Phys,2003,30(6):1254-1263.
    [53] I. El. Naqa, D.A. Low, J.O. Deasy, et al., Automated Breathing Motion Tracking for4DComputed Tomography. IEEE Nuclear Science Symposium Conference Record,2003,5:3219-3222.
    [54] T. Kleshneva, J. Muzik, and M. Alber, An algorithm for automatic determination of therespiratory phases in four-dimensional computed tomography. Phys Med Biol,2006,51(16):N269-276.
    [55] A. F. Abdelnour, S. A. Nehmeh, T. Pan, et al., Phase and amplitude binning for4D-CT imaging.Phys Med Biol,2007,52(12):3515-3529.
    [56] K. Eck, J. Bredno, and T. Stehle, Absolute alignment of breathing states using image similarityderivatives. Proc. SPIE: Medical Imaging2005: Visualization, Image-Guided Procedures andDisplay,2005,5744:79-86.
    [57] G. Carnes, S. Gaede, E. Yu, et al., A fully automated non-external marker4D-CT sortingalgorithm using a serial cine scanning protocol. Phys Med Biol,2009,54(7):2049-2066.
    [58] R. Zeng, J. A. Fessler, J. M. Balter, et al., Iterative sorting for four-dimensional CT imagesbased on internal anatomy motion. Med Phys,2008,35(3):917-926.
    [59] A. Brahme, Optimization of stationary and moving beam radiation therapy techniques.Radiother Oncol,1988,12(2):129-140.
    [60] S. Webb, Optimization of conformal radiotherapy dose distributions by simulated annealing:2.Inclusion of scatter in the2D technique. Phys Med Biol,1991,36(9):1227-1237.
    [61] J. R. McClelland, S. Webb, D. McQuaid, et al., Tracking 'differential organ motion' with a'breathing' multileaf collimator: magnitude of problem assessed using4D CT data and amotion-compensation strategy. Phys Med Biol,2007,52(16):4805-4826.
    [62] D. M. Shepard, M. A. Earl, X. A. Li, et al., Direct aperture optimization: a turnkey solution forstep-and-shoot IMRT. Med Phys,2002,29(6):1007-1018.
    [63] Y. Feng, C. Castro-Pareja, R. Shekhar, et al., Direct aperture deformation: an interfraction imageguidance strategy. Med Phys,2006,33(12):4490-4498.
    [64] P. M. Pardalos and G. P. Rodgers, Computational Aspects of a Branch and Bound Algorithm forQuadratic Zero-One Programming. Computing,1990,45:131-144.
    [65] Y. Li, J. Yao, and D. Yao, Genetic algorithm based deliverable segments optimization for staticintensity-modulated radiotherapy. Phys Med Biol,2003,48(20):3353-3374.
    [66] S. V. Spirou and C. S. Chui, A gradient inverse planning algorithm with dose-volumeconstraints. Med Phys,1998,25(3):321-333.
    [67] T. Neicu, R. Berbeco, J. Wolfgang, et al., Synchronized moving aperture radiation therapy(SMART): improvement of breathing pattern reproducibility using respiratory coaching. PhysMed Biol,2006,51(3):617-636.
    [68] J. Cai, P. W. Read, T. A. Altes, et al., Evaluation of the reproducibility of lung motionprobability distribution function (PDF) using dynamic MRI. Phys Med Biol,2007,52(2):365-373.
    [69] D. Yan, F. Vicini, J. Wong, et al., Adaptive radiation therapy. Phys Med Biol,1997,42(1):123-132.
    [70] M. Birkner, D. Yan, M. Alber, et al., Adapting inverse planning to patient and organ geometricalvariation: algorithm and implementation. Med Phys,2003,30(10):2822-2831.
    [71] G. X. Ding, D. M. Duggan, C. W. Coffey, et al., A study on adaptive IMRT treatment planningusing kV cone-beam CT. Radiother Oncol,2007,85(1):116-125.
    [72] W. Fu, Y. Yang, N. J. Yue, et al., A cone beam CT-guided online plan modification technique tocorrect interfractional anatomic changes for prostate cancer IMRT treatment. Phys Med Biol,2009,54(6):1691-1703.
    [73] A. de la Zerda, B. Armbruster, and L. Xing, Formulating adaptive radiation therapy (ART)treatment planning into a closed-loop control framework. Phys Med Biol,2007,52(14):4137-4153.
    [74] M. Chao, Y. Xie, and L. Xing, Auto-propagation of contours for adaptive prostate radiationtherapy. Phys Med Biol,2008,53(17):4533-4542.
    [75] C. Men, X. Gu, D. Choi, et al., GPU-based ultrafast IMRT plan optimization. Phys Med Biol,2009,54(21):6565-6573.
    [76] K. K. Brock, L. A. Dawson, M. B. Sharpe, et al., Feasibility of a novel deformable imageregistration technique to facilitate classification, targeting, and monitoring of tumor and normaltissue. Int J Radiat Oncol Biol Phys,2006,64(4):1245-1254.
    [77] K. K. Brock, M. B. Sharpe, L. A. Dawson, et al., Accuracy of finite element model-basedmulti-organ deformable image registration. Med Phys,2005,32(6):1647-1659.
    [78] M. Guckenberger, K. Baier, A. Richter, et al., Evolution of surface-based deformable imageregistration for adaptive radiotherapy of non-small cell lung cancer (NSCLC). Radiat Oncol,2009,4:68.
    [79] X. Gu, H. Pan, Y. Liang, et al., Implementation and evaluation of various demons deformableimage registration algorithms on a GPU. Phys Med Biol,2010,55(1):207-219.
    [80] G. C. Sharp, N. Kandasamy, H. Singh, et al., GPU-based streaming architectures for fastcone-beam CT image reconstruction and demons deformable registration. Phys Med Biol,2007,52(19):5771-5783.
    [81] H. Wang, L. Dong, J. O'Daniel, et al., Validation of an accelerated 'demons' algorithm fordeformable image registration in radiation therapy. Phys Med Biol,2005,50(12):2887-2905.
    [82] B. Li, G. E. Christensen, E. A. Hoffman, et al., Pulmonary CT image registration and warpingfor tracking tissue deformation during the respiratory cycle through3D consistent imageregistration. Med Phys,2008,35(12):5575-5583.
    [83] Bro. M. Nielsen and C. Gramkow, Fast fluid registration of medical images, in Visualization inBiomedical Computing (VBC'96) Springer Lecture Notes in Computer Science.1996:Hamburg. p.267-276.
    [84] K. Ostergaard Noe, B. D. De Senneville, U. V. Elstrom, et al., Acceleration and validation ofoptical flow based deformable registration for image-guided radiotherapy. Acta Oncol,2008,47(7):1286-1293.
    [85] T. Chen, S. Kim, S. Goyal, et al., Object-constrained meshless deformable algorithm for highspeed3D nonrigid registration between CT and CBCT. Med Phys,2010,37(1):197-210.
    [86] R. Shams, P. Sadeghi, R. Kennedy, et al., Parallel computation of mutual information on theGPU with application to real-time registration of3D medical images. Comput MethodsPrograms Biomed,2010,99(2):133-146.
    [87] J. P. Thirion, Non-rigid matching using demons, in Proc. Int. Conf. Computer Vision andPattern Recognition.1996.
    [88] J. P. Thirion, Image matching as a diffusion process: an analogy with Maxwell's demons. MedImage Anal,1998,2(3):243-260.
    [89] J. P. Keener, Principles of Applied Mathematics: Transformation and Approximation.1988:Addison-Wesley.
    [90] W. H. Press, S. A. Teukolsky, W. T. Vetterling, et al., Numerical Recipes in C.1992, Cambridge:Cambridge University Press.
    [91] T. Tucking, S. Nill, and U. Oelfke, Dose calculation on linac integrated KV-cone beam CT.Radiother Oncol,2006,81(Supplement1):26.
    [92] S. Yoo and F. F. Yin, Dosimetric feasibility of cone-beam CT-based treatment planningcompared to CT-based treatment planning. Int J Radiat Oncol Biol Phys,2006,66(5):1553-1561.
    [93] T. E. Marchant, C. J. Moore, C. G. Rowbottom, et al., Shading correction algorithm forimprovement of cone-beam CT images in radiotherapy. Phys Med Biol,2008,53(20):5719-5733.
    [94] M. van Zijtveld, M. Dirkx, and B. Heijmen, Correction of conebeam CT values using aplanning CT for derivation of the "dose of the day". Radiother Oncol,2007,85(2):195-200.
    [95] G. E. Christensen and H. J. Johnson, Consistent image registration. IEEE Trans. Med. Imaging,2001,20:568-582.
    [96] W. R. Crum, O. Camara, and D. J. Hawkes, Methods for inverting dense displacement fields:evaluation in brain image registration. Med Image Comput Comput Assist Interv,2007,10(Pt1):900-907.
    [97] M. de Greef, J. Crezee, J. C. van Eijk, et al., Accelerated ray tracing for radiotherapy dosecalculations on a GPU. Med Phys,2009,36(9):4095-4102.
    [98] X. Gu, D. Choi, C. Men, et al., GPU-based ultra-fast dose calculation using a finite size pencilbeam model. Phys Med Biol,2009,54(20):6287-6297.
    [99] B. Guo, X. G. Xu, and C. Shi, Real time4D IMRT treatment planning based on a dynamicvirtual patient model: proof of concept. Med Phys,2011,38(5):2639-2650.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700