用户名: 密码: 验证码:
物理非线性粘弹性杆动力分析研究及混沌动力系统仿真软件的开发
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非线性科学已成为各门学科的研究前沿,固体力学将呈现出以非线性力学为核心的发展趋势,其所代表的无穷维动力系统的研究也已经获得了很大的进展。目前,混沌科学虽然在基础理论方面取得了很大的进展,但还没有取得根本性的突破,还有许多问题没有解决,数值计算仍然是研究混沌现象的一项基本手段。鉴于上述情况,本文主要作了以下几方面的研究工作:
     1.对固体力学领域中混沌运动的研究现状和方法作了整体上的概述,并针对基本结构元件非线性直杆的动力学相关研究作了简要的回顾,指出了其中一些值得注意的问题。
     2.针对数值计算在非线性动力学研究中的重要性,利用VisualC++6.0面向对象编程语言,开发了微分动力系统的仿真分析软件,集成了对已知微分动力系统和实验数据的各种混沌表征分析功能,其中主要包括时程曲线,相平面轨迹(或重构),功率谱分析,Poincare映射以及混沌的定量特征参数李雅谱诺夫指数的计算等。实现了人机交互操作和动态直观显示,可望为动力系统的研究提供一个极为便利的分析工具。软件主要特点有:(1)软件内植入了求解微分方程初值问题的自适应伪弧长算法,有利于对刚性和奇异性方程的求解;(2)独特的符号解析功能实现了微分动力系统输入的任意性,使其不再是一个局限于内嵌固定方程的演示软件而成为一种工具,从而极大地拓宽了软件的应用范围;(3)软件部分模块(Lyapunov指数谱)的计算中,利用Matlab软件提供的接口协议调用了Matlab符号Jacobi矩阵运算功能,实现了软件与Matlab的后台通信。另外通过一些算例的比较,验证了软件计算的正确性和准确性。
     3.杆件作为力学与工程应用中最常用的基本构件,在一般的静
Nonlinear dynamics has become frontier topic almost in all branches of science. Unexceptionally, the development of solid mechanics also exhibits the same tendency. Although a great progress has been made in the Research of the infinite dimensional dynamic system which is frequently represented by continues mechanics, many theoretical problems remain unsettled. However, Numerical calculation, as a basic approach, is always a powerful tool to study the chaos. Major work in this dissertation include following aspects:1. An overview of the researching of chaos in solid mechanics field is made, and specially, a brief review of studies about the rod is also present, which is usually a fundamental structural member in mechanics and engineering. Some remarkable problems are addressed.2. Considering the important role played by numerical computation in the research of nonlinear dynamics, simulation software for chaotic dynamic system is developed by Visual C++ 6.0—a sort of excellent programming language. This program gathers almost all of the functions to character a chaotic response for a dynamic system or experiment data, such as time-history curve, phase portrait, power spectrum analysis, Poincare mapping or section, and Lyapunov exponents—a unique approach to descript the chaos quantificationally. This simulation software is a man-machine interactive system, where dynamic evolutionary process of the system can be demonstrated. It
    might provide an effective tool for the studying of the dynamic system. Some distinguishing features are deserved to be noted: (1) a selectable arch-length integration method which is a proved better method to integrate a stiff or singular differential equation with initial values is immigrated into the software; (2) symbol resolution function embedded in the system allows an arbitrary input of differential equation. That makes the software become a powerful tool more than a demonstrating one, and significantly enlarges the scope of the applicability of the software. (3) During the calculating of Lyapunov exponents' spectrum, the powerful calculating capacity of symbol matrix provided in Matlab is invoked through background communication between VC and Matlab according to the Matlab interface protocol. Finally, the effectivity and validity of the software are confirmed through comparing the calculating results of some classical model.As a widely used structural member, rods are studied extensively whose strength, rigidity and stability are always our focus. In this paper, the basic longitudinal wave equation is derived by virtual work principle for a quadratic and cubic physical nonlinear Keilven-Voigt visco-elastic rod under the consideration of transverse inertia. Then based on the ideas that the solitary wave and the shock wave existed in a nonlinear evolutionary equation are matched with the homo-clinic and hetero-clinic orbits existed in a ordinary differential equation derived from the former, the solitary wave, the shock wave and the elliptical periodic wave solutions for a nonlinear rod are found in different material cases, and the influence of the nonlinearity and the dispersion on the properties of the nonlinear wave above are presented, such as the velocity, the amplitude and the width. Furthermore, the exact solutions of MKdV-Burgers equation for nonlinear visco-elastic rod are also obtained by hyperbolic tanh-function method. Physical signification of the results is emphasized. Since the emergence of solitary wave is
    always accompanied with the gathering of energy, so the results presented in this dissertation may provide a reference for dynamic design or dynamic failure.4. A physical nonlinear viscoelastic rod with one end fixed and another end subjected to an axial periodical excitation was studied under the consideration of transverse inertia. Galerkin method is applied to transform an infinite dimensional dynamic system into a single freedom equation; critical conditions of chaos occurrence were established by use of Melnikov method. Finally numerical results are carried out by using the simulation software mentioned above, a clear image of strange abstractor is presented in Poincare mapping, whose fractal dimension and Lyapunov exponents are also obtained. The periodic doubling routine to chaos is demonstrated vividly in a product space spaned by response value and the parameter of exciting amplitude and damping coefficient respectively, from which all of the bifurcation value and threshold to chaos can be get easily, while the curves of Lyapunov exponents spectrum varying with the parameters above are also given, which completely match with the bifurcation graph.5. Although the rationality of this simplification hasn't been proved, Galerkin method becomes an extensively adopted method for studies of structure dynamic problems. In this paper, Galerkin method is applied to a nonlinear viscoelastic rod system, controlling equations are derived in different truncation orders, each of which are analyzed and computed for its response behavior, the effect of the truncation orders on computation of bifurcation and chaos is discussed. It is thought that Galerkin method should been applied carefully. Especially in a nonlinear system with quadric terms, at least 2-orders truncation rather than only 1-order truncation should be taken into account so that a safety value can be given relatively in engineering application at the consideration of its first instable point.
    6. A two-freedom Hamilton system is obtained in terms of the free oscillation in double modes of a nonlinear rod system, Melnikov method used for near integrable Hamilton system is adopted to give a critical condition of chaos occurrence. Gradually breaking of KAM torus in different energy level is investigated through the numerical simulation. The evolutionary routine from periodic or quasi-periodic orbits to chaos is illustrated distinctly. It shows that stochastic motion might exist in free oscillation of a nonlinear rod. During the process of dynamic simulation, new phenomena are found that a big KAM torus break into many little torus in a kind of "hanging" mode when energy level is promoted, and these little torus are connective sequentially. The universality for such phenomena needs further research.7. When multiple truncation orders are adopted in Galerkin method, the obtained controlling equation will have a giant "volume" due to too many terms, which will be accumulated rapidly with the truncation orders in a geometrical series mode, so FEM is used to analyze the nonlinear viscoelastic rod system in this dissertation. Principal of virtual work is applied and nonlinear dynamic system represented by a group of coupling ordinary equation is obtained finally. Response of bifurcation and chaos is investigated for a rod subjected to periodic excitation, and the results in different discrete number and different time step is compared in order to verify the practicability of FEM for calculating bifurcation and chaos.8. Melnikov method is widely used as a criterion to check whether subharmonic and ultra-subharmonic or even chaos will occur. In this paper, It is proved that if there exists a periodic solution for a class of non-autonomous differential dynamic system, it can only be subharmonic, ultra-subharmonic periodic solution is impossible. Moreover, the existence of R-type ultra-subharmonic periodic solution defined for a specified planar system is also denied. As an application
    of above conclusions, through investigating some typical examples, it is pointed out that the existence of ultra-subharmonic periodic orbits in a planar perturbation system can't be determined by second-order Melnikov method. An explanation is also provided geometrically.
引文
[1] John Guckenheimer, Philip Holmes. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. New York: Springer-Verlag, 1983.
    [2] Rudiger Seydel, Practical Bifurcation and Stability analysis: From Equilibrium to Chaos, Springer-Verlag, New York, 1999.
    [3] 郝柏林,分岔、混沌、奇怪吸引子、湍流及其它-关于确定论系统中的内在随机性,物理学进展,Vol.3,No.3,1983,329-415
    [4] 郝柏林,从抛物线谈起-混沌动力学引论,上海科技教育出版社,1993
    [5] Ruelle D.机遇与混沌,刘式达等译,上海:上海科技教育出版社,2001。
    [6] Diacu, F., Holmes, P.,天遇-混沌与稳定性的起源,王兰宇译,上海:上海科技教育出版社,2001。
    [7] 卢侃,孙建华,混沌学传奇,上海翻译出版公司,1991
    [8] 朱如曾,牛顿力学的内在随机性启示,力学进展,29(3)1999。434-436。
    [9] 苗东升,刘华杰,浑沌学纵横论,中国人民大学出版社,1993。
    [10] [美]P.W.爱特金,李思一译,从有序到混沌-混沌与热力学第二定律,科学技术文献出版社,1990。
    [11] G.Nicolis & I.Prigogione,非平衡系统的自组织,徐锡申,陈式刚,王光瑞,陈雅深译,科学出版社,1986。
    [12] H.舒斯特著,朱鋐雄,林圭年译,混沌学引论,四川教育出版社,1994。
    [13] 朱照宣,非线性动力学中的浑沌,力学进展,Vol.14,No.2,1984,129-146
    [14] 武际可,周鹍,非线性问题和分叉问题及其数值方法,力学与实践,Vol.16,No.1,1994,1-8
    [15] 季海波,武际可,分叉问题及其数值方法,力学进展,Vol.23,No.4,1993,493-502
    [16] 郑作昌,武际可,高维周期解支的数值延续算法,非线性动力学学报,Vol.3,No.4,1996,279-282
    [17] 郭柏灵,非线性演化方程,上海科技教育出版社,1995
    [18] 刘曾荣,Melnikov函数的物理意义,科学通报,1985,1760
    [19] 刘曾荣,混沌的微扰判据,上海科技教育出版社,1994
    [20] Holmes P.J.and Marsden J. E, A Partial Differential Equation With Infinitely Many Periodic Orbits: Chaotic Oscillations of a Forced Beam, Arch Ration Mech. Anal, Vol. 76, 1981, 135-166.
    [21] Kenneth Falconer,分形几何-数学基础及应用,曾文曲,刘世耀等译,东北大学出版社,1991。
    [22] W. Tucker, The Lorenz attractor exists, C. R. Acad. Sci. Paris, Part 328, Ser. I (1999) 1197-1202.
    [23] W. Tucker, A rigorous ODE solver and Smale's 14th problem, Found. Comput. Math. 2 (1) (2002) 53-117.
    [24] 李家春,非线性力学与计算,力学进展,Vol.23,No-3,1993,318-326
    [25] Moon F. C. and Holmes P. J, A Magnetoelastic Strange Attractor, Journal of Sound and Vibration, Vol. 65(2), 1979, 275-296.
    [26] Moon F.C. and Shaw S. W, Chaotic Vibrations of a Beam with Non-linear Boundary Conditions, Int. J. Non-Linear Mechanics, Vol. 18, No.6, 1983,465-477
    [27] Shaw S. W. and Holmes P. J, A Periodically Forced Impact Oscillator with Large Dissipation, ASME Journal of Applied Mechanics, Vol.50, 1983, 849-857.
    [28] Shaw S. W, Forced Vibrations of a beam with One-sided Amplitude Constraint: Theory and Experiment, Journal of Sound of Vibration, Vol.99(2), 1985,199-212
    [29] Poddar B, Moon F. C. and Mukherjee. S, Chaotic Motion of an Elastic Plastic Beam, ASME Journal of Applied Mechanics, Vol.55, 1988, 185-189.
    [30] Tang D. M. and Dowell E. H, On the threshold force for chaotic motions for a Forced buckled beam, ASME Journal of Applied Mechanics, Vol. 55, 1988, 190-195.
    [31] Yagasaki K, Chaotic Dynamics of a Quasi-Periodcally Forced Beam, ASME Journal of Applied Mechanics, Vol. 59, 1992, 161-167.
    [32] Dowell E. H, Flutter of a Buckled Plate as an Example of Chaotic Motion of a Deterministic Autonomous System, Journal of Sound of Vibration, Vol. 85(3), 1982, 333-344.
    [33] 韩强,几种结构的动力屈曲、分叉和混沌运动研究,太原工业大学工学博士学位论文,1996
    [34] 张年梅,弹塑性系统的混沌运动研究,太原工业大学工学博士学位论文,1997
    [35] 李银山,非线性圆板分叉与混沌运动的实验和理论研究,太原理工大学博士学位论文,1999。
    [36] Symonds P. S. and Yu TX, Counter-intuitive Behavior in a Problem of Elastic-Plastic Beam Dynamics, ASME Journal of Applied Mechanics, Vol.52, 1985, 517-522.
    [37] Symonds P. S, Borino G. and Perego U, Chaotic Motion of an Elastic-Plastic Beam, ASME Journal of Applied Mechanics, Vol.55, 1988, 745-746.
    [38] Symonds P. S, Genna F. and Ciullini A, Special Cases in Study of Anomalous Dynamic Elastic-Plastic Response of Beams by a Simple Model, Int J. Solids Structures, Vol.27, No.3, 1991, 299-314.
    [39] Genna F. and Symonds P. S, Dynamic Plastic Instabilities in response to short-pules excitation:effects of slenderness ratio and damping, Proc. R.Soc.Lond.A, 417, 1988, 31-44.
    [40] Symonds P. S. and Lee J. Y, Fractal Dimensions in Elastic-Plastic Beam Dynamics, ASME Journal of Applied Mechanics, Vol.62, 1995, 523-526.
    [41] Borino G, Perego U. and Symonds P.S, An Energy Approach to Anomalous Damped Elastic-Plastic Response to Short Pulse Loading, ASME Journal of Applied Mechanics, Vol.56, 1989, 430-438.
    [42] Yu T.X.and Xu Y, The Anomalous Response of an Elastic-Plastic Structural Model to Impulsive Loading, ASME Journal of Applied Mechanics, Vol.56, 1989, 868-873.
    [43] Lee J. Y. and Symonds P. S, Extended Energy Approach to Chaotic Elastic-Plastic Response to Impulsive Loading, Int.J.Mech.Sci, Vol.34, 1992, 139-157.
    [44] Moon F. C, Expereiments on chaotic motions of a forced nonlinear oscillator: strange attractors, ASME Journal of Applied Mechanics, Vol.47, 1980, 638-644.
    [45] Abhyankar N.S., Hall E.k., Hanagud S.V. Chaotic vibrations of beams: numerical solution of partial differential equations J. Appl.Mech., 1993.60:167.
    [46] 陈立群,程昌钧,基于Galerkin截断的粘弹性结构动力学行为研究综述[J],自然杂志,Vol.21,1999,No.1:1-4
    [47] 陈立群,程昌钧,非线性粘弹性梁的动力学行为,应用数学与力学,2000.9897-902
    [48] 高经武,蔡中民,一维非线性波动方程的Fourier方法,《固体力学的现代进展》世界图书出版公司万国学术出版社,2000 168-171
    [49] 张建文,太原理工大学工学博士学位论文,2000。
    [50] 刘秉正,非线性动力学与混沌基础,东北师范大学出版社,1994
    [51] Lorenz, E. N. Deterministic nonperiodic flow [J]. Atmos. Sci. 1963, 20 (2): 130-141
    [52] E. Olafsen, K. Scribner, K. D. White, et al. MFC Programming with Visual C++6 unleashed [M] New York: Sams publishing, 1999.
    [53] E. Riks, An incremental approach to the solution of snapping and buckling problems, Int. J. Solid Structures, 15(4), (1979), 529-551.
    [54] Crisfield M A. A fast incremental/iterative solution procedure that handles "snapthrough" [J]. Computers & Structures, 1981, 13:55-62.
    [55] Crisfield M A. An arc-length method including line searches and accelerations [J]. International Journal for Numerical Methods in Engineering,1983,19(8):1269 -1289.
    [56] Ramm E. Strategies for Tracing the Non- Linear Response Near Limit Points. In: W underlich W, Stein E and Bathe KJ eds. Non- Linear Finite Element Analysis in Structural Mechanics, 1981, 63-89.
    [57] 武际可,许为厚,丁红丽,求解微分方程初值问题的一种弧长法,[J].应用数学与力学,1999,20(8):875-880.
    [58] Hairer E, et al. Solving Ordinary Dif'f'erential Euations Ⅱ, Stiff and Diff'erential -Algebraic Problems[M]. Berlin, Heidelberg, New York: Springer-Verlag, 1991.
    [59] 郑作昌,武际可,弧长参量下动力系统周期解的稳定性分析,北京大学学报(自然科学版),Vol.33,No.3,1997
    [60] Warwick Tucker Computing accurate Poincare maps [J]. Physica D, 2002, 177: 127-137.
    [61] M. Henon, on the numerical computation of Poincare maps, Physica D, 1982, 512-514.
    [62] G. Benettin, L. Gaigani, A. Giorgilli and J. M. Strelcyn. Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; A method for computing all of them, Meccanica, 1980, 15: 9.
    [63] A. Wolf, J. B. Swift, H. L. Swinney and J. A. Vastano. Determining Lyapunov exponents from a time series, Physica D, 1985, 16: 285-317.
    [64] G. Barana and I. Tsuda. A new method for computing Lyapunov exponents, Phys. Lett. A, 1998, 238: 134-140.
    [65] M. T. Rosenstein, J. J. Collins and C. J. De luca. A practical method for calculating largest Lyapunov exponents from small data sets, Physica D, 1993,65: 117-134.
    [66] 何强,何英,Matlab扩展编程,清华大学出版社,2002
    [67] S. S.Antman and G. Rosenfeld, Global behavior of buckled states of nonlinearly elastic rods, SIAM Rev, 20, PP. 513-566, 1978.
    [68] S. S. Antman and G. Rosenfeld, Corrections and additions SIAM Rev, 22, 186-187, 1980.
    [69] S. S. Antman, Non-uniqueness of equilibrium states for bars in tension, J. Math. Anal. Appl, 44, 333-349. 1973
    [70] S. S. Antman and E. R. Garbone, Shear and necking instabilities in nonlinear elasticity, J. Elasticity, 7, 125-151, 1977.
    [71] S. S. Antman, The theory of rods, Handbuck der Physik, Vol. Ⅳa/2, Springer-Verlag, Berlin-Heidelerg-New York, 641-703, 1972.
    [72] 程昌钧,朱正佑,结构的屈曲与分叉,兰州大学出版社,1991
    [73] Green, W A. Dispersion relations for elastic waves in bars, in Progress in Solid Mechanics, Vol 1, eds, I N Sneddon and R Hill, North Holland, Amsterdam, 1960
    [74] Green, A. E and Laws, N A general theory of rods Proceedings of the Royal Society of lwmdon, A293, 145-155 (1966)
    [75] Cohen, H'A non-linear theory of elastic directed curves International Journal of Engineering Science, 4, 511-524 (1966)
    [76] Green, A E, Laws, N, and Naghdi, P M A linear theory of straight elastic rods Archive for Rational Mechanics and Analysis, 25, 285-298 (1967)
    [77] Green, A E, Laws, N, and Naghdi, P M Rods, plates and shells Proceedings of the Cambridge Philosophical Society, 64, 895-913 (1968)
    [78] Green, A E, Naghdi, P M, and Wenner, M L On the theory of rods Ⅰ Derivations from the three-dimensional equations, Proceedings of the Royal Society of London, A337, 451-483 (1974)
    [79] Green, A E, Naghdi, P M, and Wenner, M L, On the theory of rods Ⅱ Developments by direct approach, Proceedings of the Royal Society of London, A337, 485-507 (1974)
    [80] Ericksen, J L. and Truesdell C, Exact theory of stress and strain in rods and shells, Archive for Rational Mechanics and Analysis, 1, 295-323 (1958)
    [81] Naghdi, P M., Finite deformation of elastic rods and shells, in Proceedings IUTAM Symp Finite Elasticity, pp 47-103, eds, D E Carlson and R T Shield, Martinus Nijhoff, The Hague, the Netherlands, 1982
    [82] Amman, S S and Liu, T P Travelling waves in hyperelastic rods, Quarterly of Applied Mathematics, 36, 377-399 (1979)
    [83] Cohen, H and Whitman, A B, Waves in elastic rods, Journal of Sound and Vibration, 51, 283-302 (1977)
    [84] Shankar Krishnaswamy, R. C. Batra, On Extensional Oscillations and Waves in Elastic Rods. Mathematics and Mechanics of Solids 3: 277-295, 1998
    [85] Green, A E and Naghdi, P M, On thermal effects m the theory of rods International Journal of Solids and Structures, 15, 829-853, (1979)
    [86] Naghdi, P M and Rubin, M B. On the significance of normal cross-sectional extension in beam theory with application to contact problems International Journal of Solids and Structures, 25, 249-265 (1989)
    [87] Nordenholz, T R and O'Reilly, O M On steady motions of an elastic rod with application to contact problems, International Journal of Solids and Structures, 34, 1123-1143 (1997)
    [88] Kane, T R. and Mindlin, R D High-frequency extensional vibrations of plates Journal of Applied Mechanics, 23, 277—83 (1956)
    [89] 朱位秋,弹性杆中的非线性波,固体力学学报,2(1980).247-253
    [90] Naliboli, G. A. and A. Sedov, Burgers's-Korteweg-De Vries equation for viscoelastic rods and plates, J. Math Anal Appl, 32(1970)
    [91] Ostrovsky, L. A., Sutin, A. M., 1977. Non-linear elastic waves in rods. Prikl. Mat. Mech. (PMM, USSR) 41 (3), 531-537.
    [92] Zhuang Wei, Yang Guitong. The propagation of solitary wave in a nonlinear elastic rod, [J]. Appl Math Mech, 1986, 7: 615-626
    [93] 张善元,庄蔚.非线性弹性杆中的应变孤波[J].力学学报(海外版),1988,20(1):58~67.
    [94] 杨桂通,张善元,弹性动力学,中国铁道出版社,1988
    [95] 颜家壬,邹凤梧.粘弹性阻尼对弹性杆内纵向孤波运动的影响.物理学报,1989,38(8):1322-1328
    [96] Alexei Beliaev, Andrej Il'ichev, Conditional stability of solitary waves propagating in elastic rods, Physica D 90(1996) 107-118
    [97] Adrian Constantin, Walter A. Strauss, Stability of a class of solitary waves in compressible elastic rods, Physics Letters A 270 (2000). 140-148
    [98] A. M. Samsonov, Evolution of a soliton in a nonlinearly elastic rod of variable cross-section, Soc. Phys. Dokl. 29 (7) (1985) 586-587.
    [99] A. M. Samsonov, E. V. Sokurinskaya, Solitary longitudinal waves in an inhomogeneous nonlinear elastic rod, J. Appl. Math. Mech. 51 (3) (1988) 376-381.
    [100] A. M. Samsonov, Nonlinear strain waves in elastic waveguides, in: A. Jeffrey, J. Engelbreght (Eds.), Nonlinear Waves in Solids, Springer, New York, 1994, pp. 349-382.
    [101] A. M. Samsonov, G. V. Drcidcn, A. V. Proubov, I. V. Scmcnova, Longitudinal strain soliton focusing in a narrowing nonlinearly elastic rod, Phys. Rev. B 57 (10) (1998) 5778-5787.
    [102] M. P. Soerensen, P. L. Christiansen, P. S. Lomdahi, O. Skovgaard, Solitary waves on nonlinear rods Ⅱ, J. Acoust. Soc. Am. 81 (1987) 1718-1722.
    [103] Soerensen, M. P., Christiansen, P. L., Lomdahe, P. S., 1984. Solitary waves in non-linear elastic rods, I. J. Acoust. Soc. Amer. 76, 871-879.
    [104] Hui-Hui Dai, Yi Huo. Solitary waves in an inhomogeneous rod composed of a general hyperelastic material. Wave Motion 35 (2002) 55-69
    [105] H. Cohen, H. -H. Dai, Nonlinear axisymmetric waves in compressible hyperelastic rods: long finite amplitude waves, Acta Mech. 100 (1993) 223-239.
    [106] H. -H. Dai, Model equations for nonlinear dispersive waves in a compressible Mooney-Rivlin rod, Acta Mech. 127 (1998) 193-207.
    [107] C. H. Su, R. M. Mirie, On head-on collisions between two solitary waves, J. Fluid Mech. 98 (1980) 509-525.
    [108] S. Q. Dai, The interaction of two pairs of solitary waves in a two-fluid system, Sientia Sinica 27 (1984) 507-520
    [109] Hui-Hui Dai, Shiqiang Dai, Yi Huo, Head-on collision between two solitary waves in a compressible Mooney-Rivlin elastic rod. Wave Motion 32 (2000) 93-111
    [110] Nayfeh, A. H. and Mook, D. T, Nonlinear Oscillations, John Wiley, New York, 1979
    [111] Kecs, W W, 1994, A generalized equation of longitudinal vibrations for elastic rods. The solution and uniqueness of a boundary-initial value problem, European Journal of Mechanics AlSolids 13, 135-145.
    [112] Hull, A. J., 1994, "A closed form solution of a longitudinal bar with a viscous boundary condition," Journal of Sound and K6ration 169(1), 19-28
    [113] Veits, V L., Beilin, I. Sh., and Merkin, V M., 1994, Longitudinal oscillations of a moving strip with constant resistence, International Journal of Applied Mechanics 30, 241-246.
    [114] Nayfeh, A. H., 1995, On direct methods for constructing nonlinear normal modes of continuous systems, Journal of vibration and Control 1, 389-430.
    [115] Nayfeh, A. H., Chin, C., and Nayfeh, S. A., 1995, Nonlinear normal modes of a cantilever beam, ASME, Journal of vibration and Acoustics 117, 477-481
    [116] Nayfeh, A. H. and Nayfeh, S. A., 1995, Nonlinear normal modes of a continuous system with quadratic nonlinearities, ASME, Journal of vibration and Acoustics 117, 199-205.
    [117] Shaw, S. W. An invariant manifold approach to nonlinear normal modes of oscillation, Journal of Nonlinear Science 1994, 4, 419-448.
    [118] Shaw, S. W and Pierre, C., Normal modes of vibration for nonlinear continuous systems, Journal of Sound and Vibration 1994, 169, 319-347
    [119] 高歌,湍流的耗散与弥散相互作用理论。中国科学A辑,1985(5):457~465.
    [120] 刘式达等.孤立波和同宿轨道.力学与实践,1991,13(4):9~15
    [121] M. L. Wang. Solitary wave solutions for variant Boussinesq equations [J]. Phys. Lett. A, 1995, 199: 169.
    [122] M. L. Wang. Exact solutions for a compound KdV-Burgers equation [J]. Phys. LettA, 1996, 213: 279.
    [123] Wang MingLiang, Wang YueMing, Zhang Jingliang. The Periodic Wave Solutions For two systems of Nonlinear wave equations [J]. Chinese Physics, 2003, 12(12): 1341-1348.
    [124] M. L. Malfliet. solitary wave solutions of nonlinear wave equations [J]. Phys. Lett. A, 1992, 60: 650.
    [125] E. J. Parkes, B. R. Duffy. Travelling solitary wave solutions to a compound KdV-Burgers equation [J]. Phys. Lett. A, 1997, 229: 217.
    [126] E. J. Parkes, B. R. Duffy. An automated tanh-function method for finding solitary wave solutions to non-linear evolution equations[J]. Comp Phys Commun, 1996, 98: 288.
    [127] E. G. Fan, H. Q. Zhang. A note on the homogeneous balance method[J]. Phys. Lett. A 246, 1998: 403.
    [128] 王振东,程友良,对一类强非线性系统的分析,力学学报,vol 22,No.3,1990,356-361
    [129] 凌复华,包光伟,宋映东,二维含参映射系统分叉曲线的数值计算,力学学报,Vol.21,No.5,1989,567-574
    [130] 凌复华,徐如进,保守双摆的不可积性和混沌,应用数学和力学,Vol.13,No.1,1992,45-52
    [131] 程崇庆,孙义燧,哈密顿系统中的有序与无序运动,上海科技教育出版社,1996
    [132] 陆启韶,分岔与奇异性,上海科技教育出版社,1995
    [133] 伊恩·斯图尔特,上帝掷骰子吗-混沌之数学,上海远东出版社,1995
    [134] 洛伦兹E N(美),混沌的本质。北京:气象出版社,1997
    [135] 张芷芬,丁同仁,黄文灶,董镇喜,微分方程定性理论,科学出版社,1985
    [136] 陈式刚,映象与混沌,国防工业出版社,1992
    [137] 利昂·格拉斯,迈克尔·C·麦基,从摆钟到混沌-生命的节律,上海远东出版社,1994
    [138] 刘式达,刘式适,孤波与湍流,上海科技教育出版社,1994
    [139] 武际可,苏先樾,弹性系统的稳定性,科学出版社,1994
    [140] [意]G.桑森,R.康蒂著,黄启昌,金成桴,史希福译,非线性微分方程.北京:科学出版社,1983
    [141] 李骊,强非线性振动系统的定性理论与定量方法,科学出版社,1997
    [142] Zengrong LIU, Guoqing GU. Second order Melnikov function and its application. Phys Lett A, 1990, 143: 213~216
    [143] 郭友中,刘曾荣,江霞妹,韩志斌.高阶Melnikov方法.应用数学与力学,1991,12(1):19~30
    [144] 钱敏,潘涛,刘曾荣,Josephson结的Ⅰ-Ⅴ曲线理论分析,物理学报Vol.36,No.2,1987,149-156
    [145] 刘曾荣,江霞妹,韩志斌,顾国庆,Josephson结的Ⅰ-Ⅴ曲线的子台阶,物理学报Vol.39.No.5,1990.823-829
    [146] Han Qiang, Zhang Nianmei, Yang Guiton. Chaotic motion of a nonlinear thermo-elastic elliptic plate. Applied Mathematics and Mechanics, 1999, 20 (9): 960~966
    [147] Zhang Nianmei, Yang Guiton. Subharmonic and ultra-subharmonic response of nonlinear elastic beams subjected to harmonic excitation. Applied Mathematics and Mechanics, 1999, 20 (12): 1319~1323
    [148] Zhang Nianmei, Han Qiang, Yang Guiton, Xu Bingye. Anomalous dynamics response of nonlinear elastic bar. Applied Mathematics and Mechanics, 2000, 21 (9): 1008~1015
    [149] 龙运佳,混沌振动研究方法与实践,清华大学出版社,1997
    [150] 杨桂通,熊祝华,塑性动力学,清华大学出版社,1984
    [151] Q. M. Li, L. M. Zhao and G. T. Yang, Experimental results on te counter intuitive behaviors of thin clamped beams subjected to projectile impact. Int. J. Impact Engng 11, 341-348(1991)
    [152] Yin Qian and P. S. Symons. Anomalous Dynamic elastic-plastic response of a Galerkin Beam model. Int. J. Mech. Sci, 1996, 38(7): 687-708
    [153] 吴桂英,弹塑性结构动力反直观行为研究,太原理工大学博士学位论文,2004
    [154] 蔡中民,朱元林,张长庆 冻土的粘弹塑性本构模型以及材料参数的确定.冰川冻土,1990;Vol.12,No.1,31-40
    [155] 蔡中民,李芙蓉 冻结粉砂的弹粘塑本构关系.太原工业大学学报,1990;Vol.21,No.2,21-25
    [156] 王显耀,李峰会,蔡中民 常速度拉伸实验惯性效应的实验研究.实验力学,1995,Vol.10,No.3

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700