用户名: 密码: 验证码:
用于微捷联惯导系统的传递对准技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传递对准是微捷联惯导系统应用于精确制导武器的关键技术。本文结合国内外传递对准技术及微机械惯性器件的研究与发展,针对微捷联惯导系统空中传递对准中的关键问题,开展了理论和实验研究。
     根据实际情况,建立了捷联惯导传递对准模型。根据微机械陀螺和加速度计的特性,提出将陀螺和加速度计的随机常值零偏作为传递对准的滤波状态变量进行估计。对比研究了“速度+姿态”匹配、速度匹配和姿态匹配,结果表明“速度+姿态”匹配对准效果最理想。提出了一种改进的自适应Kalman滤波方法,有效减轻了传递对准中观测噪声变化对滤波的影响,使得滤波更加平稳,提高了滤波质量。
     根据对挂飞试验惯性测量数据的分析,研究了机翼弹性挠曲变形的Markov随机模型。因机翼挠曲变形的主要频率范围与滤波频率接近,无法将挠曲变形模型纳入传递对准滤波器得到有效估计。为解决此问题,研究了三种抑制机翼挠曲变形引起的传递对准精度下降的方法,包括次优滤波方法,前置低通滤波方法,以及所提出的“速度+角速度双积分”匹配方法。用Monte Carlo仿真对这三种方法进行了仿真验证。
     提出逆向PWCS可观测性分析方法,并提出一种基于PWCS模型的可观测度分析方法。对“速度+姿态”匹配和速度匹配传递对准进行分析,结果表明:“速度+姿态”匹配的可观测度高于速度匹配,对载机机动要求较低,滤波收敛性好,收敛的机动条件仅为改变载机姿态的机动。速度匹配则需载机做“S”形机动,滤波收敛较缓慢。
     通过航空制导炸弹弹道的仿真,分析了制导炸弹总位置误差与各误差源误差的关系,并提出用于微捷联惯导系统的传递对准的合理精度要求。提出采用非特定机动方式进行传递对准的方法。载机爬升、下降和转弯三种机动动作的传递对准的仿真结果验证了其可行性。提出全程传递对准方法和姿态匹配跟踪方法,在传递对准完成后保持传递对准的对准精度,并通过了仿真验证。
     用车载试验对本文提出的传递对准方法进行了验证。在实验车的机动条件下,传递对准结果满足采用微捷联惯导的航空制导炸弹的对准精度要求。
Transfer alignment is the key technology of micro strapdown inertial navigation system (MSINS) implemented in precision guided weapons. According to the key problems occurred in in-flight transfer alignment of MSINS, detailed theoretical analysis, simulation and tests were carried out based on the world-wide research achievements in related fields.
     This dissertation proposed a MINS transfer alignment model, which introduced the random constant bias of gyros and accelerometers as the filtering state parameter to estimate. The velocity & attitude matching, the velocity matching and the attitude matching methods were compared, while the first method showed the optimal estimation performances. An improved adaptive Kalman filter was also proposed to mitigate the impact of observation noise variation. The novel filter stabilized the filter process, and improved the filtering quality.
     The Markov stochastic models of aircraft wing flexure deformation were studied based on analysis of inertial measurement data from a flight test. The wing flexure’s main frequency range (5~10 Hz) was close to the filter frequency of the transfer alignment, thus the wing flexure could not be estimated effectively by the transfer alignment filter with a wing flexure Markov model. Three methods to mitigate the estimation precision reduction caused by wing flexure were put forward, including suboptimal Kalman filter method, prepositive lowpass filter method and velocity & double-integration of angular rate matching method, all of which had been validated through Monte Carlo simulation.
     A PWCS (Piece-Wise Constant System) observability reverse analysis method as well as an observability-degree analysis method based on PWCS models were developed. The observability and the observability-degree of velocity & attitude matching and the velocity matching were analyzed by the novel methods. The comparison showed that velocity & attitude matching had a higher degree of observability, lower aircraft maneuver requirement and faster filter convergence. Moreover, only the attitude modification was required to converge the filter during the velocity & attitude matching alignment.
     With the simulation of a guided bomb trajectory, the relationship between the guided bomb total position error and the error sources was analyzed, and the applicable transfer alignment requirements for micro-machined inertial navigation systems were proposed. It was suggested the specific maneuver for transfer alignment should be replaced by ordinary maneuvers, and the alignment precision should be maintained. The new maneuver schemes could enhance the combat efficiency and the survival capability of aircrafts. The transfer alignment simulation of climbing, sliding and turning maneuvers proved the feasibility. To keep the alignment precision after transfer alignment, the whole-track transfer alignment method and the attitude matching tracking method were developed. The two novel methods were both validated through simulation.
     Vehicle tests were carried out to evaluate the transfer alignment methods proposed in the dissertation. Under the test vehicle maneuver condition, the transfer alignment results satisfied the alignment requirements for guided bomb with micro inertial navigation system.
引文
[1]以光衢.惯导导航原理.北京:航空工业出版社, 1992.
    [2]袁信,俞济祥,陈哲.导航系统.北京:航空工业出版社, 1993.
    [3]邓正隆.惯性导航原理.哈尔滨:哈尔滨工业大学出版社, 1994.
    [4]秦永元.惯性导航.北京:科学出版社, 2006.
    [5] Federation of American Scientists. Joint Direct Attack Munition (JDAM) [EB/OL]. (2008-05-30) [2008-10-14]. http://www.fas.org/man/dod-101/sys/smart/jdam.htm.
    [6] Klotz H A, Derbak C B. GPS-Aided Navigation and Unaided Navigation on the Joint Direct Attack Munition//PLANS. Proceedings of IEEE Position Location and Navigation Symposium. NJ, USA: IEEE, 1998:412-419.
    [7] Boeing. Boeing Delivers First JDAM [EB/OL]. (1998-06-24) [2008-10-14]. http:// www.boeing.com/defense-space/missiles/jdam/news/1998/news_release_980624n.htm.
    [8]王毅增.低成本精确制导武器及其抗击分析.地面防空武器, 2006, (1):31-34.
    [9] Boeing. Boeing Awarded $72 Million JDAM Production Contract [EB/OL] (2009-11-09) [2010-02-03]. http://boeing.mediaroom.com/index.php?s=43&item=922.
    [10] Boeing. Joint Direct Attack Munition (JDAM) News Release [EB/OL]. (2010-03-10) [2010-03-20]. http://www.boeing.com/defense-space/missiles/jdam/news/index.html.
    [11] Federation of American Scientists. AGM-154A Joint Standoff Weapon [EB/OL] (2000-06-27) [2008-10-15]. http://www.fas.org/man/dod-101/sys/smart/agm-154.htm.
    [12] Federation of American Scientists. AGM-158 Joint Air to Surface Standoff Missile [EB/OL] (2008-05-30) [2008-10-16]. http://www.fas.org/man/dod-101/sys/smart/jassm. htm.
    [13] Boeing. Small Diameter Bomb [EB/OL] (2009-05-01) [2008-10-16]. http:// www .boeing.com/defense-space/missiles/jdam/index.htm.
    [14] StrategyPage. Turning A Bomb Into A Missile [EB/OL] (2010-01-18) [2010-02-06]. http://www. strategypage .com /htmw/htairw/articles/20100118.aspx.
    [15] AIM-120 AMRAAM Slammer [EB/OL] (2000-04-14) [2008-10-17]. http://www.fas.org /man/dod-101 /sys/missile/aim-120.htm.
    [16] Federation of American Scientists. AGM-84 Harpoon SLAM [EB/OL] (2008-05-30) [2008-10-18]. http://www.fas.org/man/dod-101/sys/smart/agm-84.htm.
    [17]百度百科.雷石-6 [EB/OL] (2007-3-19) [2008-10-18]. http://baike.baidu.com/view /849384.htm.
    [18]高钟毓,董景新,张嵘.微机电传感器发展及应用的现状与趋势.机械工程学报, 2003, 39(11):7-16.
    [19] Barbour N, Schmidt G. Inertial sensor technology trends. IEEE sensors journal, 2001, 1(4): 332-339.
    [20]李荣冰,刘建业,曾庆化,等.基于MEMS技术的微型惯性导航系统的发展现状.中国惯性技术学报, 2004, 12(6):88-94.
    [21]董景新.微惯性仪表:微机械加速度计.北京:清华大学出版社, 2003.
    [22] DRAPER Laboratory. Draper's Work with MEMS [EB/OL] [2010-02-09]. http://www.draper.com/mems/mems.html.
    [23]李童杰,董景新,刘云峰.梳齿式微机械加速度计的研制.传感技术学报, 2009, 22(3):320-324.
    [24]董煜茜,高钟毓,张嵘.一种振动轮式微机械陀螺仪的特性研究.中国惯性技术学报, 1999, 7(2):38-44.
    [25] Yang Jun, Gao Zhongyu, Zhang Rong, et al. Mechanism analysis and system identification of the quadrature error in MEMS gyroscope//MANCEF. Proceedings of the International Conference on Integration and Commercialization of Micro and Nanosystems 2007. Sanya, Hainan: ASME, 2007:437-443.
    [26] Toda R, Takeda N. Electrostatically levitated spherical 3-axial accelerometer.The Fifteenth IEEE International Conference on Micro Electro Mechanical Systems, 2002: 710-713.
    [27] Murakoshi T, Endo Y. Electrostatically levitated ring-shaped rotational-gyro/accelerometer. Japanese journal of applied physics, 2003, 42(4B):2468-2472.
    [28]吴黎明,董景新,韩丰田,等.静电悬浮微陀螺系统模型的研究.仪器仪表学报, 2008, 29(9):1804-1809.
    [29]吴黎明,董景新,韩丰田,等.静电悬浮加速度计检测线路设计及实验研究.仪器仪表学报, 2006, 27(12):1569-1572.
    [30]吴黎明.静电悬浮微机械陀螺/加速度计的关键技术研究[博士学位论文].北京:清华大学. 2008.
    [31] Honeywell Inc. Comprehensive solution for inertial position information [EB/OL] (2007) [2008-10-20].http://www51.honeywell.com/aero/common/documents/myaerospacecatalog-documents /Missiles-Munitions/Honeywell_Tactical_Inertial_Measurement_Units.pdf.
    [32]董绪荣,张守信,华仲春. GPS/INS组合导航定位及其应用.长沙:国防科技大学出版社, 1998.
    [33]韩玲,朱文耀. Galileo系统及其在中国的应用.天文学进展, 2005, 23(1):8-26.
    [34]陈秀万,方裕,尹军,等.伽利略卫星导航系统.北京:北京大学出版社, 2005.
    [35]刘春保.俄罗斯GLONASS系统政策、管理与发展.中国航天, 2007(4): 15-22.
    [36] Rockwell Collins. Honeywell and Rockwell Collins to offer integrated guided weapons technologies [EB/OL] (2005-11-3 ) [2008-10-20]. http://www.rockwellcollins.com/news /page6567.html.
    [37] Honeywell, Rockwell Collins. IGS Brochure [EB/OL] (2007) [2008-10-20]. http:// www.igsllc.com/docs/IGS%20brochure.pdf.
    [38] Honeywell, Rockwell Collins. IGS-2xx series, deeply integrated guidance family for projectiles and small unmanned platforms [EB/OL]. (2007) [2008-10-20]. http:// www.igsllc.com/productofferings.html.
    [39] Honeywell, Rockwell Collins. IGS-35x series, deeply integrated guidance family for missiles, munitions and long range strike weapons [EB/OL]. (2007) [2008-10-20]. http://www.igsllc.com/productofferings.html.
    [40]尚捷. MIMU及其与GPS组合系统设计与实验研究[博士学位论文].北京:清华大学, 2005.
    [41]方靖. SINS/GPS组合导航系统及其关键技术研究[博士学位论文].北京:清华大学, 2008.
    [42]马云峰. MSINS/GPS组合导航系统及其数据融合技术研究[博士学位论文].南京:东南大学, 2006.
    [43]方靖,顾启泰,刘学斌,等. MINS/GPS组合导航系统设计与实验.清华大学学报:自然科学版, 2007, 47(8):1316-1319.
    [44]马媛,杨树兴,张成. SINS/GPS组合导航系统仿真研究.弹箭与制导学报, 2009, 29(6):35-37.
    [45]刘伟,徐海刚,张京娟.高精度、微小型惯性/GPS组合导航系统研究.武汉大学学报:信息科学版, 2010, 35(2):160-163.
    [46]王新龙,于洁.基于矢量跟踪的SINS/GPS深组合导航方法.中国惯性技术学报, 2009,17(6):710-717.
    [47]祝燕华,蔡体菁,杨卓鹏. MEMS-IMU/GPS组合导航系统的实现.中国惯性技术学报, 2009, 17(5):552-556.
    [48]刘明雍,王小峰,赵涛,等.联邦滤波器在INS/GPS/DVS组合导航系统中的新应用.火力与指挥控制, 2009, 34(10):86-88.
    [49] Sutherland A A. The Kalman Filter in Transfer Alignment of Inertial Guidance Systems[R]. AIAA-29445-785.
    [50] Baziw J, Leondes C T. In-Flight Alignment and Calibration of Inertial Measurement Units Part I: General Formulation. IEEE Transaction on Aerospace and Electronic Systems, 1972, 8(4):439-449.
    [51] Baziw J, Leondes C T. In-Flight Alignment and Calibration of Inertial Measurement Units Part II: Experimental Results. IEEE Transaction on Aerospace and Electronic Systems, 1972, 8(4):450-465.
    [52] Schneider A M. Kalman Filter Formulation for Transfer Alignment of Strapdown Inertial Units. Navigation:Journal of the Institute of Navigation, 1983, 30(1):72-89.
    [53] Harris R A, Wakefield C D. Coordinate Alignment for Elastic Bodies. IEEE Proceedings of the National Aerospace and Electronics Conference, 1977:665-670.
    [54] Farrell, James L. Transfer Alignment for Precision Point Application//NAECON. Proceedings of IEEE Proc Natl Aerosp Electron Conference. Dayton, Ohio: IEEE, 1979:132-137.
    [55] Yamamoto G H, J I Brown. Design, Simulation and Evaluation of the Kalman Filter Used to Align the SRAM Missile[R]. AIAA71-948:453-461.
    [56] Ross C C, Elbert T F. A transfer alignment algorithm study based on actual flight test data from a tactical air-to-ground weapon launch. IEEE Position Location and Navigation Symposium, 1994:431-438.
    [57] Kain J E, Cloutier J R. Rapid transfer alignment for tactical weapon applications[R]. AIAA-89-3581.
    [58] Rogers R M. Velocity-plus-rate matching for improved tactical weapon rapid transfer alignment. AIAA Guidance, Navigation and Control Conference, 1991:1580-1588.
    [59] Tarrant D, Roberts C, Jones D, et al. Rapid and robust transfer alignment. IEEE Proceedings of Aerospace Control Systems, 1993:758-762.
    [60] Shortelle K J, Graham W R, Raboum C. F-16 flight tests of a rapid transfer alignment procedure. IEEE Position Location and Navigation Symposium, 1998:379-386.
    [61] Spalding K, Missouri S L. An efficient rapid transfer alignment filter[R]. AIAA-92-4598.
    [62] Lim Y C, Lyou J. An error compensation method for transfer alignment. Proceedings of IEEE Conference on Electrical and Electronic Technology, 2001(2): 850-855.
    [63] Chun Yang, Ching-Fang Lin, Tarrant D. Transfer alignment design and evaluation[R]. AIAA-93-3892.
    [64] Goshen-Meskin D, Bar-Itzhack I Y. Observability analysis of piece-wise constant system, Part I: Theory. IEEE Transactions on Aerospace and Electronic Systems, 1992, 28(4):1056-1067.
    [65] Goshen-Meskin D, Bar-Itzhack I Y Observability analysis of piece-wise constant system, Part II: Application to inertial navigation in-flight alignment. IEEE Transactions on Aerospace and Electronic Systems, 1992, 28(4):1068-1075.
    [66] Boaz P, Bar-Itzhack I Y. Azimuth observability enhancement during INS in-flight alignment. AIAA Journal of Guidance, Control and Dynamics, 1980, 3(4):337-344.
    [67] Boaz P, Bar-Itzhack I Y. Effect of acceleration switching during INS in-flight algorithm. AIAA Journal of Guidance, Control and Dynamics, 1981, 4(4):385-389.
    [68] Rogers R M. Low dynamic IMU alignment. IEEE Position Location and Navigation Symposium, 1998:272-279.
    [69] Schlee F H, Toda N F, Islam M A, et al. Use of an external cascade Kalman filter to improve the performance of a Global Positioning System (GPS) inertial navigator. IEEE Aerospace and Electronics Conference, 1988(1):345-350.
    [70] Lim Y C, Lyou J. Transfer alignment error compensator design using H∞filter. American Control Conference, 2002:1460-1465.
    [71] Tekinalp O, Ozemre M. Artificial Neural Networks for Transfer Aligment and Calibration of Inertial Navigation Systems[R]. AIAA-2001-4406.
    [72] Park C G, Kim K. UKF based In-Flight Alignment using Low Cost IMU[R]. AIAA- 2006-6353.
    [73] Rogers R M. Weapon IMU transfer alignment using aircraft position from actual flight tests. IEEE Position Location and Navigation Symposium, 1996:328-335.
    [74] Kaiser J, Beck G, Berning S. Vital advanced inertial network. IEEE Position Location and Navigation Symposium, 1998:61-68.
    [75] Bouchard C P, Broussard J L, Gemmill C P, et al. Capability for Analysis of Cruise Missile System Components Using Realtime Simulations[R]. AIAA-1997-3518:90-99.
    [76] Ohlmeyer E J, Pepitone T R. In-Flight Alignment Techniques for Navy Theater Wide Missiles[R]. AIAA-2001-4401.
    [77]俞济洋.惯性导航系统各种传递对准方法讨论.航空学报, 1988, 9(5):A211-A217.
    [78]张文龙,汪叔华.捷联/捷联惯导传递对准在战术导弹上的应用.航空兵器, 1999(5):6-10.
    [79]杨艳娟,捷联惯性导航系统关键技术研究[博士学位论文].哈尔滨:哈尔滨工程大学, 2001.
    [80]朱绍箕.姿态角传递对准原理研究.航天控制, 2000(1):9-14.
    [81]周叶,杨莉,汪叔华.空空导弹动基座低成本传递对准技术研究.南京航空航天大学学报, 1999, 31(1):116-120.
    [82]陈璞,冯培德.一种快速传递对准改进方案的设计仿真.中国惯性技术学报, 2001, 9(1):16-19.
    [83]林敏敏,房建成,高国江.一种有效的空-空导弹捷联惯导系统快速精确传递对准方法.中国惯性技术学报, 2001, 9(3):24-29.
    [84]王金林,陈明,郭创.基于“姿态矩阵”量测的机载导弹传递对准技术.火力与指挥控制, 2005, 30(4):55-58.
    [85]陈凯,鲁浩,闫杰.快速传递对准方程与传统传递对准方程的一致性研究.西北工业大学学报, 2008, 26(3):326-329.
    [86] Kai Chen, Gang Zhao, Zhongjie Meng, et al. Equivalent Approaches to Equations of Traditional Transfer Alignment and Rapid Transfer Alignment//WCIAC. Proceedings of the 7th World Congress on Intelligent Control and Automation. Chongqing: IEEE, 2008: 892-895.
    [87]陈凯,鲁浩,赵刚等.传递对准姿态匹配算法的统一性.中国惯性技术学报, 2008, 16(2):127-131.
    [88]朱志瑛.空空导弹捷联惯导系统传递对准精度评估方案设计.航空兵器, 2002(5):1-4.
    [89]顾冬晴.机载战术武器的传递对准及其精度评估技术研究[硕士学位论文].西安:西北工业大学, 2006.
    [90]肖艳霞,张洪钺.考虑机翼弹性变形时的传递对准方法研究.航天控制, 2001(2):27-35.
    [91]胡健,周百令,程向红.考虑载体弹性变形的两种传递对准方法的对比研究.中国惯性技术学报, 2005, 13(4):14-17.
    [92]李璞.舰载武器惯导系统传递对准技术研究[硕士学位论文].哈尔滨:哈尔滨工程大学, 2006.
    [93]郭隆华,王新龙.机载武器传递对准精确建模方法研究.弹箭与制导学报, 2007, 27(2):45-49.
    [94]江红,张炎华,赵忠华.捷联惯性导航系统传递对准的杆臂效应分析.中国造船, 2006, 47(4):71-75.
    [95]严恭敏,严卫生,徐德民.捷联惯性测量组件中内杆臂效应分析与补偿.中国惯性技术学报, 2008, 16(4):148-153.
    [96]扈光锋,王艳东,范跃祖.传递对准中测量延迟的补偿方法.中国惯性技术学报, 2005, 13(1): 10-14, 20.
    [97]房建成,周锐,祝世平.捷联惯导系统动基座对准的可观测性分析.北京航空航天大学学报, 1999, 25(6):714-719.
    [98]程向红,万德钧,仲巡.捷联惯导系统的可观测性和可观测度研究.东南大学学报, 1997, 27(6):6-11.
    [99]吴俊伟,孙国伟,张如,等.基于SVD方法的INS传递对准的可观测性能分析.中国惯性技术学报, 2005, 13(6):26-30.
    [100]孙国伟.惯导系统传递对准模型的可观测性分析[硕士学位论文].哈尔滨:哈尔滨工程大学, 2006.
    [101] Chen Zhe. Local observability and its application to multiple measurement estimation. IEEE Transactions On Industrial Electronics, 1991, 38(6):491-496.
    [102]刘准,陈哲.局部可观测理论在INS/GPS机动对准中的应用.北京航空航天大学学报, 2001, 27(6):702-705.
    [103]熊芝兰,郝燕玲,孙枫.惯导快速传递对准的可观测性和对准误差分析.系统工程与电子技术, 2007, 29(12):2111-2116.
    [104] Wei Gao, Zhilan Xiong, Yanling Hao, et al. Comparison of INS Transfer Alignments through Observability Analysis//ISSCAA. Proceedings of ISSCAA 2006: 1st International Symposium on Position, Location, And Navigation Symposium. Harbin: AIAA, IEEE, 2006:823-829.
    [105] Zhilan Xiong, Feng Sun, Qi Nie. Observability Analysis of INS Rapid Transfer Alignment//ISSCAA. Proceedings of ISSCAA 2006: 1st International Symposium on Position, Location, And Navigation Symposium. Harbin: AIAA, IEEE, 2006:1664-1668.
    [106] Yanling Hao, Zhilan Xiong, Baiya Xiong. Estimation error of INS transfer alignment through observability analysis//ISSCAA. Proceedings of ISSCAA 2006: 1st International Symposium on Position, Location, And Navigation Symposium. Harbin: AIAA, IEEE, 2006:553-558.
    [107]郭隆华,王新龙.不同机动方式对机载武器系统传递对准性能影响研究,弹箭与制学学报, 2005, 26(1):1-4.
    [108]郭创,张宗麟,郭明威.精确制导炸弹传递对准技术研究.电光与控制, 2007, 14(1):102-105
    [109]张涛,徐晓苏.基于自适应联邦滤波的传递对准算法.中国惯性技术学报. 2007, 15(5):512-516.
    [110]胡再刚.基于H∞的传递对准方法研究[硕士学位论文].哈尔滨:哈尔滨工程大学, 2007.
    [111]王司,邓正隆.基于H∞与Kalman联合滤波的二次快速传递对准方法研究.宇航学报, 2006, 27(6):1266-1270.
    [112]张共愿.粒子滤波算法及其在惯性导航系统中的应用[硕士学位论文].西安:西北工业大学, 2007.
    [113] Yanling Hao, Zhilan Xiong, Zaigang Hu. Particle Filter for INS In-Motion Alignment// ICIEA. Proceedings of 2006 1st IEEE Conference on Industrial Electronics and Applications. Singapore: IEEE, 2006.
    [114]傅群忠,薛晓中.基于新型滤波器-HABF的SINS传递对准仿真.中国惯性技术学报, 2007, 15(3):273-277.
    [115]聂琦,赵琳,高伟.无迹粒子滤波在捷联惯导初始对准中的应用研究.宇航学报, 2008, 29(1):126-132.
    [116]李玉峰,张宗麟,张冬冬.基于Hopfield网络的空一空导弹传递对准研究.弹箭与制导学报, 2002, 22(4):105-108.
    [117]谢莉莉,李立新.基于速度+姿态匹配动基座传递对准技术研究.中国惯性技术学会第五届学术年会论文集, 2003:29-35.
    [118]陈璞,雷宏杰.弹载捷联惯性制导系统传递对准技术试飞验证.中国惯性技术学报, 2007, 15(2):9-11.
    [119] Jiang Y F, Lin Y P. Error estimation of INS ground alignment through observability analysis. IEEE Transactions on Aerospace and Electronic Systems, 1992, 28(1): 92-96.
    [120]陈永冰,钟斌.惯性导航原理.北京:国防工业出版社, 2007.
    [121]马建军,李文强,郑志强. MIMU随机误差分析与建模.压电与声光, 2007, 29(4):483-486.
    [122] Sage A P, Husa G W. Adaptive filtering with unknown prior statistics//JACC. Proceedings of Joint Automatic Control Conference. Boulder Colorado, 1969:760-769.
    [123]邓自立.自校正滤波理论及其应用:现代时间序列分析方法.哈尔滨:哈尔滨工业大学出版社, 2003.
    [124]张金槐.关于自适应滤波技术的一些思考.国防科技大学学报, 1994, 16(3):68-79.
    [125]高钟毓.工程系统中的随机过程:随机系统分析与最优滤波.北京:清华大学出版社, 1989.
    [126] Gu Dongqing, Qin Yongyuan, Peng rong, et al. Rapid transfer alignment using federated Kalman filter. Transactions of Nanjing University of Aeronautics and Astronautics, 2005, 22(2):139-143.
    [127]高青伟,赵国荣,王希彬,等.传递对准中载舰挠曲变形和杆臂效应一体化建模与仿真.航空学报, 2009, 30(11):2172-2177.
    [128] Ham F M, Brown R G. Observability, eigenvalues, and Kalman filtering. IEEE Transactions on Aerospace and Electronic systems, 1992, 28(4):1057-1067.
    [129] Cheng Xianghong, Wan Dejun. Singular value decomposition approach to in-flight alignment of strapdown inertial navigation system//ICEMI, Proceeding of ICEMI’97. Beijing: Journal of EMI, 1997.
    [130]万德钧,房建成.惯性导航初始对准.南京:东南大学出版社, 1998:96-100.
    [131]马艳红,胡军.基于SVD理论的可观测度分析方法的几个反例.中国惯性技术学报, 2008, 16(4):448-452.
    [132] Titterton D H, Weston J L.捷联惯性导航技术.张天光,王秀萍,王丽霞,等,译. 2版.北京:国防工业出版社, 2007:244-251.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700