用户名: 密码: 验证码:
鲁北平原人口聚集区与非聚集区地下水污染特征识别及对策
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地下水在华北平原供水中占60%以上,已成为生活和工业用水的主要供水水源,包括鲁北平原1/3的县城城市供水量完全依靠地下水。但是,该地区地下水污染问题日趋严重,影响着用水供水安全,为此国务院于2013年颁布了《华北地下水污染防治工作方案》。正确认识不同类型区(例如人口聚集区、非聚集区)地下水污染特征,是治理和防治地下水污染加剧的重要科学基础。采用同样方法和防治对策,不加以区分地治理不同类型区地下水污染问题,不仅会影响防治效果,而且,还可能造成不必要的投入成本(经济浪费)。
     本研究中的“人口聚集区”是指有大量人口稳定居住或活动的场所,例如城镇、乡村农庄和工业园区等。“人口非聚集区”是指没有大量人口稳定居住或活动的场所,例如农业种植区、禽畜养殖场、石油采储区和垃圾填埋场等。在鲁北平原,随着城市化、乡镇和工业发展,以及农田大量施用化肥农药和污水灌溉、油田开发和畜牧场规模不断扩大,各类污染物对地下水质量影响日益严重,且呈现区位特征。因此,鲁北平原具有研究不同类型区(人口聚集区与非聚集区)地下水污染特征的典型性,“鲁北平原人口聚集区与非聚集区地下水污染特征识别及对策”研究对华北平原地下水污染防治具有重要指导意义。
     本文以鲁北平原作为重点研究区,选择6类人类活动不同的典型区(城镇人口聚集地、乡村农庄、农业种植区、石油采储区、禽畜养殖场和垃圾填埋场),以人口聚集区及非聚集区的地下水污染特征、主导因素和机制作为主要研究内容,采用调查与监测方法、系统理论和地学数理统计方法及水文地球化学过程分析方法,开展了地下水中有机、无机污染物的检出和超标状况调查与监测,建立了研究区地下水污染背景值,进行了不同类型区两两场地之间的地下水污染独立特征识别和非参数检验,以及主要影响因素分析和各典型区地下水中特征污染物识别。
     通过以上研究,取得如下主要认识和进展:
     ①查明人类活动的不同类型区地下水污染特征、主要影响因素和机制明显不同,防治的难点和重点也存在较大差异。这些差异,既与人类活动的类型有关,也与当地地质环境背景、水文地质条件和包气带岩性有关,同时还与各区的水动力条件、水环境中化学组分(背景值)和氧化还原环境等有关。但是,地下水污染的主导因素是人类活动,地下水污染程度与当地人类活动产生的污染源规模大小、存在时间长短和防治措施状况密切相关。
     ②发现不同类型区地下水污染各具标识特征:城镇、工业园人口聚集区地下水污染特征是以N03-污染物为主,乡村农庄人口聚集区地下水污染特征是以N02-污染物为主。在农业种植区,地下水污染特征是以NO3-、NO2-和NH4+污染物为主:在养殖场及周边地区,地下水污染特征是以As与NH4+污染物组合为主,同时,地下水中Fe2+浓度偏高。石油开采存储区的地下水污染特征是以卤代烃和单环芳烃有机污染物为主。垃圾填埋区的地下水污染特征是NO3-和耗氧量污染指标超标为主。
     ③阐明不同类型区地下水污染的成因各不相同。城镇、工业园等人口聚集区的地下水污染,主要源自人类生活或工业生产的污染物影响;农业种植区地下水污染主要源自施用农药和化肥等。养殖场影响地下水As污染的途径有两个方面:一是养殖场使用含砷添加剂的饲料,禽畜排泄物中砷随雨水淋滤进入地下水;二是养殖场禽畜粪便排泄物中包含有机质、NH4+-N作为电子供体和微生物,驱动铁(氢氧)氧化物还原性溶解,使土壤中砷从FeOOH上解吸,由非游离态转化为游离态,进而进入地下水中。石油开采存储区的地下水污染主要源自石油开采、输运和加工过程中泄露等污染。垃圾填埋区的地下水污染特征与垃圾来源密切相关。
     本成果的特色及创新点:以人口聚集程度和人类活动类型作为寻找地下水污染特征、成因和治理途径的突破点,通过对6个不同类型区地下水污染特征、主要影响因素和机制研究,发现了鲁北平原地下水污染的区位分布特征及其标识特征,为有的放矢地防治地下水污染提供了重要科学依据。
Groundwater has become the main source of life and industrial water supply in the North China Plain, where the proportion of groundwater accounts for more than60percents at present. One third of the county city depends entirely on groundwater in the Northern Shandong Plain. Meanwhile, the problem of groundwater pollution is getting worse in the region, and the water supply security was affected. Therefore, in2013, China's State Council issued the plan of groundwater pollution prevention and control work in the North China. To figure out the characteristics of groundwater pollution in different areas(e.g., densely-populated districts, non-densely-populated districts), was the scientific basis for management of groundwater pollution. The same methods and countermeasures to prevent and control groundwater pollution in different type areas, may not only affect the control effect, but also cause economic waste.
     "Densely-populated districts " in this study is to point to the area where a large number of stable population live, such as urban and rural farms and industrial park." non-densely-populated districts" means the other areas, such as the area of agriculture and animal husbandry farms, oil field mining area storage and landfill, etc. In the Northern Shandong Plain, accompanying with the development of urbanization and industry, as well as a large number of chemical fertilizers pesticides and farmland sewage irrigation, even with the oil field development and livestock farm scale expands unceasingly, all kinds of pollutant effect on groundwater quality is increasingly serious, displaying geographical characteristics. Therefore, there is some typicality in the characteristics research of groundwater pollution in the different areas(e.g., densely-populated districts, non-densely-populated districts) in Northern Shandong Plain, so far as to, the characteristics identification of groundwater pollution and countermeasures in the densely-populated districts and non-densely-populated districts of the Northern Shandong Plain may be displayed, regarded as an important guide to the research on the prevention and control of groundwater pollution in the North China plain.
     In this passage, the Northern Shandong Plain has been the key research area, where include six typical kinds of area by human activities, for instance, town, village farm, agriculture area, oil field reservoir area, livestock farms and landfills. And the main study include the characteristics, dominant factors, and the mechanism in groundwater pollution in densely-populated districts, non-densely-populated districts. During the research, investigation and monitoring of the organic and inorganic pollutants overweight status have been carried out, the background value of groundwater pollution in the study area has been established, the difference between the two sites about groundwater pollution independent characteristics identification and nonparametric test have been figured out, the analysis of the main influence factors has been taken place, and characteristics of pollutants in the typical area of groundwater have been maken certain, which using the method of investigation, monitoring, the system theory,the mathematical statistics and hydrogeochemical process analysis.
     Through the study above, the main understanding and progress was achieved as follows:
     (1) There was obvious difference in characteristics of groundwater pollution, influencing factors and mechanism, and focus of groundwater pollution prevention strategy between different areas of human activity. The difference was related to the types of human activity, local geological environment background, hydrogeology and vadose zone lithology, and the district of hydrodynamic conditions, water chemical composition and REDOX environment and so on. However, the dominant factors of groundwater pollution is human activity, and the degree of pollution is closely related to the size and existence time of pollution source in local human activities,and the same with the prevention measures.
     (2) There are some characteristics of groundwater pollution in different type areas of human activity. Nitrate ion is the main groundwater pollutants in the densely-populated districts of urban and industrial park. Nitrite ion is given priority to the groundwater pollutants in the densely-populated districts of rural farm. In agricultural area, the groundwater pollution is been characterized by nitrate, nitrite and ammonium ion pollutants. However, groundwater pollution characteristics is the combination of arsenic and ammonium ion in livestock farms and the neighboring areas, where ferrous ion concentration in groundwater is on the high side. Additionally, halogenated hydrocarbon and monocylic aromatics organic are the main groundwater pollutant in oil region, also nitrate ion and excess oxygen consumption in the landfill area.
     (3) There are some clear causes of groundwater pollution in each type areas. For example, groundwater pollution mainly derived from the industrial production and household garbage in the densely-populated districts of urban and industrial park, and the pesticide and fertilizer in agricultural area. In the livestock farms, arsenic enter the groundwater in two ways. The first one is using arsenic additive feed livestock, and the livestock feces and urine which contain arsenic will leach into groundwater with rainwater. The other one is that farm livestock manure waste always contain organic matter, while ammonium-nitrogen being the electron donor and microbes, driving (hydrogen) of iron oxide reducing dissolve, making the soil arsenic desorption from Iron hydroxide, and then into the groundwater. In the oil region,groundwater pollution is mainly derived from the leak during the process of production and transport. In landfill areas, the cause of groundwater pollution is closely related with the sources of waste.
     There are two innovations in this paper. Firstly, it is regarding the degree of densely-populated and human activity type as the breakthrough way of looking for the groundwater pollution characteristics and causes. Secondly, it is accurate to discover the geographical distribution characteristic of groundwater pollution and the dentify characteristics, by the research on groundwater pollution characteristics, the main influencing factors and mechanism in six different kinds of area in the Northern Shandong Plain, which will provide an important scientific basis for prevention and control of groundwater pollution.
引文
[1]郝爱兵.保护生命之泉——地下水[N].中国教育报.2005,07(04):7.
    [2]王小军等.我国地下水保护行动试点建设实践与思考[J].水资源管理,2010,(5):33-35.
    [3]张光辉等.地下水补给与开采量对降水变化响应特征-以京津以南河北平原为例[J].地球科学(中国地质大学学报),2006,31(6):879-884.
    [4]杨丽芝等.山东地下水污染调查评价(华北平原)[R].山东:山东省地质调查院,2011.
    [5]华北平原地下水污染防治工作方案(2010-2020)[R].北京:环境保护部,国土资源部,住房和城乡建设部,水利部,2013年3月.
    [6]张兆吉,费宇红,郭春艳,李亚松.华北平原区域地下水污染评价[J].吉林大学学报(地球科学版),2012,42(5),1456-1461.
    [7]Jean J.Fried. Groundwater Pollution[M]. The Netherlands:Elsevier scientific publishing company.1975:1-5.
    [8]地下水污染调查评价规范[S].北京:中国地质调查局,2008:3.
    [9]徐恒力等.环境地质学[M].北京:地质出版社.2009:163.
    [10]张耀.地下水污染物的传播方式与治理方法[D].西安:长安大学,2009:6-7.
    [11]王秉忱等.地下水污染与地下水水质模拟[M].北京:北京师范学院出版社,1985.
    [12]陈刚,徐恒力,陈植华.多孔介质渗透系数的空间尺度效应研究进展[J].地质科技情报,1998,17(增刊2):27-34.
    [13]郑春苗等.地下水污染物迁移模拟[M].北京:高等教育出版社,2009.
    [14]邱汉学,黄巧珍.地下水环境背景值及其确定方法[J].青岛海洋大学学报,1994年12专辑,16-20.
    [15]Madison, R.J., J.O. Brunett. Overview of the occurrence of nitrate in ground water of the United States[R]. In National Water Summary 1984:Hydrological Events, Selected Water-Quality Trends, and Ground-Water Resources, USGS Water Supply Paper 2275, Washington.D.C.:U.S. Government Printing Office.1985,93-105.
    [16]Levine, N.S., S.J. Roberts, J.L. Aring. Geological controls on the distribution and origin of selected inorganic ions in Ohio groundwater[J]. Environmental & Engineering Geoscience,2002,8(4): 319-328.
    [17]Nolan, B.T. Relating nitrogen sources and aquifer susceptibility to nitrate in shallow ground waters of the United States [J]. Ground Water,2001.39(2):290-299.
    [18]Nolan, B.T., K.J. Hitt. Nutrients in shallow groundwaters beneath relatively undeveloped areas in the conterminous United States[R]. USGS Water-Resources Investigations Report, Washington, D.C.:U.S. Government Printing Office.2003,02-4289.
    [19]S.V. Panno, W.R. Kelly, A.T.Martinsek, K.C. Hackley. Estimating Background and threshold nitrate concentrations using probability graphs[J].Ground Water,2006,44(5):697-709.
    [20]Andres MarandiEnn Karro. Natural background levels and threshold values of monitored parameters in the Cambrian-Vendian groundwater body, Estonia[J]. Environ Geol,2008,54:1217-1225.
    [21]Aniekan Edet, Aniediobong Ukpong, Therese Nganje. Baseline Concentration and Sources of Trace Elements in Groundwater of Cross River State, Nigeria[J]. International Journal of Environmental Monitoring and Analysis,2014,2(1):1-13.
    [22]曹玉和.应用概率密度套合法编制区域地下水环境背景值图的探讨[J].吉林地质,1989,(3):82-84.
    [23]罗格平.奎屯市地下水环境背景值及环境质量评价[J].干旱区地理,1990,13(2):73-79.
    [24]宇庆华.地下水化学背景值研究中的异常值判定与处理[J].吉林地质,1991,(2):75-79.
    [25]李世峰.地下水环境背景值确定方法探讨[J].地下水,1991,(2):102-104.
    [26]樊丽芳,陈植华.地下水环境背景值的确定[J].地下水,2004,(98):90-92.
    [27]高迪,潘国营,钟福平,郭变青,孙纲.新乡市地下水化学背景值研究[J].露天采矿技术,2006,(4):51-55.
    [28]夏晨,李金柱,何中发.上海市浅层地下水环境地球化学背景值研究[J].上海地质,2006,(97):24-28.
    [29]郭高轩,辛宝东,刘文臣,王晓红.我国地下水环境背景值研究综述[J].水文地质工程地质,2010,37(2):95-98.
    [30]高彦伟.地下水污染评价中统计理论和应用研究[D].吉林:吉林大学,2010.
    [31]张英,孙继朝,黄冠星,荆继红,陈玺,刘景涛,张玉玺.珠江三角洲地区地下水环境背景值初步研究[J].中国地质,2011,38(1):190-196.
    [32]Li Xu-guang, He Hai-yang, Sun Qi-fa. The shallow groundwater pollution's assessment of west Liaohe plain (eastern)[J]. Journal of Chemical and Pharmaceutical Research,2013,5(11):290-295.
    [33]DAVID N.LERNER, YUESUO YANG, MIKE H.BARRET, JOHN H.TELLAM. Loadings of non-agricultural nitrogen in urban groundwater[S]. Impacts of Urban Growth on Surface Water and Groundwater Quality,1999, (259):117-124.
    [34]Margaret A.Townsend, Stephen A.Macko, David P. Young. Distribution and sources of nitrate-nitrogen in Kansas groundwater[S].The Scientific World,2001,1(S2):216-222.
    [35]Humphrey C.P., O'Driscoll M.A. Biogeochemistry of Groundwater beneath On-site Wastewater Systems in a Coastal Watershed[J]. Universal Journal of Environmental Research and Technology, 2011,1(30):320-328.
    [36]朱琳,苏小四.地下水硝酸盐中氮、氧同位素研究现状及展望[J].世界地质,2003,22(4):396-403.
    [37]张翠云,张胜,李政红,刘少玉.利用氮同位素技术识别石家庄市地下水硝酸盐污染源[J].地球科学紧张,2004,19(2):183-191.
    [38]黄志平,徐斌,涂德谷,张克强.规模化猪场废水灌溉农田土壤Pb, Cd和As空间变异及影响因子分析[J].农业工程学报,2008,24(2):77-83.
    [39]马荣,石建省.模糊因子分析在地下水污染评估中的应用——以河南省洛阳市为例[J].地球学报,2011,32(5):611-622.
    [40]Young R A. AGNPS:A non-point source pollution model for evaluating agricultural watershed[J] Journal of Soiland Water Conservation,1989,44(2):168-173.
    [41]Daniel E,Niehaus. Modeling Fecal Coliform Bacteria[J]. Water Res.(G.B.),1993,693(27):124-129.
    [42]王姗娜,梁涛.区域尺度农田氮磷非点源污染与模型应用分析[J].地球信息科学,2005,7(4):107-112.
    [43]杨蓉.重庆市农业面源污染分析[D].重庆:西南大学,2005.
    [44]Stephen Foster. Groundwater pollution risk assessment-a methodology using available data[R].Peru, Lima:Pan Ameracan Centre for Sanitary Engineering and Environmental Sciences,1995.
    [45]Aller I,Bennet T,Lehr J H,et al.DRASTIC:a standardized system for evaluating groundwater pollution potential using hydrogeologic settings[R].U.S.EPA Report 1987,445.
    [46]杨庆,栾茂田,祟金著,王国利,周慧成,周集体,王栋.DRASTIC指标体系法在大连市地下水易污性评价中的应用[J].大连理工大学学报,1999,39(5):684-688.
    [47]董亮,小仓纪雄.应用DRASTIC模型评价西湖流域地下水污染风险[J].应用生态学报,2002,13(2):217-220.
    [48]雷静,张思聪.唐山市平原区地下水脆弱性评价研究[J].环境科学学报,2003,23(1):94-99.
    [49]雷静.地下水环境脆弱性的研究[D].北京:清华大学,2002.
    [50]付素蓉,王焰新,蔡鹤生等.城市地下水污染敏感性分析[J].地球科学—中国地质大学学报,2000,25(5):482-486.
    [51]王焰新,郭华明,阎世龙等.浅层孔隙地下水系统环境演化及污染敏感性研究——以山西大同盆地为例[M].北京:科学出版社,2004.
    [52]钟佐桑.地下水防污性能评价方法探讨[J].地学前缘,2005,12(特刊):3-11.
    [53]严明疆,申建梅,张光辉,王金哲,聂振龙.人类活动影响下的地下水脆弱性演变特征及其演变机理[J].干旱区资源与环境,2009,23(2):1-5.
    [54]孟素花,费宇红,张兆吉,钱勇,李亚松.华北平原地下水脆弱性评价[J].中国地质,2011,38(6):1607-1613.
    [55]金爱芳,李广贺,张旭.地下水污染风险源识别与分级方法[J].地球科学——中国地质大学学报,2012,37(2):247-252.
    [56]John A.Rice,田金芳(译).数理统计与数据分析[M].北京:机械工业出版社,2013:299-306.
    [57]牟保磊等.元素地球化学[M].北京:北京大学出版社,1999:79-80.
    [58]邓亚敏.河套盆地西部高砷地下水系统中的地球化学过程研究[D],武汉:中国地质大学,2008:2-16.
    [59]戎秋涛,翁焕新等.环境地球化学[M].北京:地质出版社,1998:217-230.
    [60]苗喜,张天祯等.山东省区域地球化学在农业和生命科学上的应用研究[R].山东:山东省地质科学实验研究院,1996.
    [61]王政权.地统计学[M].科学出版社,1999:16-149.
    [62]杨秀虹,李适宇.地统计学方法在环境污染研究中的应用[J].中山大学学报(自然科学版),2005, 44(3):97-101.
    [63]张乃明,李保国,胡克林.污水灌区耕层土壤中铅_镉的空间变异特征[J].土壤学报,2003,40(1):151-154.
    [64]陈翠华,倪师军,何彬彬,张成江.江西德兴矿集区水系沉积物重金属污染的时空对比[J].地球学报,2008,29(5):639-646.
    [65]李志萍,刘翠,Pieter J, STUYFZAND, D.Van HALEM.荷兰地下水中的砷对饮用水供给的影响[J].水资源保护,2010,26(1):75-83.
    [66]Mok WM, Wai CM. Mobilization of arsenic in contaminated river waters.Nriagu JO Aisenie in the Environment, Part I:Cycling and Characterization, John Wiley & Sons, New York Ed.Book. 1994:99-117.
    [67]Savage KS, Tingle TN, ODay PA, et al. Arsenic speciation in pyrite and secondary weathering phases, Mother Lode Gold District, Tuolumne County, California. Applied Geochemistry,2000,15:1219-1244.
    [68]Anawar HM, Akai J, Komaki K,et al. Geochemical occurrence of arsenic in groundwater of Bangladesh:source and mobilization Processes. J Geochem Explorer,2003,77:109-131.
    [69]Alan H.Welch, D.B.Westjohn, Dennis R.Helsel, Richard B.Wanty. Arsenic in ground water of the United States--occurrence and geochemistry[J]. Ground Water,2000,38 (4):589-604.
    [70]Tao Y, Zhang S, Jian W, Yuan C, Shan XQ. Effects of oxalate and phosphate on the release of arsenic from contaminated soils and arsenic accumulation in wheat [J]. Chemosphere,2006,65(8):1281-1287.
    [71]Matisoff G C, Khourey C J, Hall J F, et al. The nature and source of arsenic in northeastern ohio groundwater. Ground Water,1982,20:446-456.
    [72]Nickson R T, McArthur J M, Burgess W G, et al. Aisenic Poisoning of Bangladesh groundwater. Nature,1998:395-33
    [73]Nickson R T, McArthur J M, Ravenseroft P, et al. Mechanism of arsenic release to groundwater, Bangladesh and West Bengal. APPlied Geochemistry,2000,15:403-413
    [74]McArthur J M, Ravensecoft P, Safiullah S, et al. Arsenic in groundwater:testing Pollution mechanisms for sedimentary aquifers in Bangladesh.Water Resour Researeh,2001,37:109-117.
    [75]McArthur J M, Banerjee DM, Hudson-Edwards KA, et al. Natural organic matter in sedimentary basins and its relation to arsenic in anoxic groundwater:the example of West Bengal and its worldwide implications. Applied Geochemistry,2004,19:1255-1293.
    [76]Bhattaeharya P, Welch AH, Stollenwerk KG, et al. Arsenic in the environment:Biology and Chemistry. Science of the Total Environment,2007,379:109-120.
    [77]Harvey CF, Swartz CH, Badruzzaman ABM, et al. Arsenic mobility and groundwater extraction in Bangledesh. Science,2002,298:1602-1606.
    [78]Akai J, Izumi K, Fukuhara H, et al. Mineralogical and geomicrobiological investigations on groundwater arsenic enrichment in Bangladesh. Applied Geochemistry,2004,19:215-230.
    [79]Islam FS, Gault AG, Boothman C, et al. Role of metal-reducing bacteria in arsenic release from Bengal delta sediments. Nature,2004,430:68-71.
    [80]Rowland HAL, Polya DA, Gault AG, et al. Microcosm studies of microbially mediated arsenic release from contrasting Cambodian sediments. Geochimica et Cosmochimica Acta,2004,68:A390.
    [81]Gault AG, Islam FS, Polya DA, et al. Microcosm depth profiles of arsenic release in a shallow aquifer, West Bengal. Mineralogical Magazine,2005,69:855-863.
    [82]Dowling CB, Poreda RJ, Basu AR. The groundwater geochemistry of the Bengal Basin:weathering, chemisorption, and trace metal flux to the oceans. Geochimica et Cosmochimica Acta,2003,67: 2117-2136.
    [83]Aggarwal PK, Basu AR, Kulkarni KM. Comment on "Arsenic mobility and groundwater extraction in Bangladesh.Science,2003:300-584.
    [84]Ogden PR. Arsenic behavior in soil and groundwater at a Superfund site. In Superfund 90. Silver spring, MD:Hazardous Materials Control Research Institute,1990:123-127.
    [85]Pal T, Mukherjee PK, Sengupta S. Nature of arsenic pollutants in groundwater of Bengal basin, a case study from baruipur area, West Bengal, India Curr Sci,2002,82:554-561.
    [86]洪斌.微生物对砷的地球化学行为的影响[J].地球科学进展,2006,2(1):77-82.
    [87]王焰新,苏春利,谢先军,谢作明.大同盆地地下水砷异常及其成因研究[J].中国地质,2010,37(3):771-780.
    [88]Rutherford, DW, Garbarino JR.etal. The sorption and extraction of arsenic in soils that have been amended with chicken manure. In the proceedings of Arsenic in the Environment Workshop (R), February 21-22,2001. U.S. Geological Survey, Denver, Colorado,2002.
    [89]李吉进.畜禽粪便高温堆肥机理与应用研究[D].北京:中国农业大学,2004:1-4.
    [90]彭少兵,黄见良,钟旭华,杨建昌,王光火,邹应斌,张福锁,朱庆森,Roland Bureshl, Christian Witt.提高中国稻田氮肥利用率的研究策略[J].中国农业科学,2002,35(9):1095-1103.
    [91]李庆逵.中国农业持续发展中的肥料问题[M].江西:江西科学技术出版社,1997.
    [92]李荣刚.高产农田氮素肥效与调控途径[D].北京:中国农业大学,2000.
    [93]周顺利,张福锁,王兴仁.土壤硝态氮时空变异与土壤氮素表现盈亏研究[J].生态学报,2002,2(1):1782-1789.
    [94]李建民,周殿玺,王璞等.冬小麦水肥高效利用栽培技术原理[M[.中国农业大学出版社.2000.
    [95]巨晓棠,张福锁.关于氮肥利用率的思考[J].生态环境,2003,12(2):192-197.
    [96]李新慧.京郊粮田土壤氮肥损失机制与提高氮肥利用率技术研究[J].北京土壤学会简讯,1999:2-5.
    [97]李世娟.冬小麦节水栽培的氮素施用技术研究[D].北京:中国农业大学.2001.
    [98]黄冠星,孙继朝等.2008年.珠江三角洲平原典型区地下水中铅的污染特征.环境化学,27(4):533-534.
    [99]张春燕,韩宝平,王晓,杨航,刘建华.典型城市工业区TSP中重金属污染研究[J].中国环境监测, 2007,23(2):71-75.
    [100]杨军,郑袁明,陈同斌,黄泽春,罗金发,刘洪禄,吴文勇.中水灌溉下重金属在土壤中的垂直迁移及其对地下水的污染风险[J].地理研究,2006,25(3):449-455.
    [101]张伟.天津市浅层地下水铅污染及含水介质铅吸附特征研究[D].北京:中国矿业大学,2002.
    [102]李景喜,李俊飞,高丽洁,郑立,王小如.原油中铅同位素的ICP-MS测定及其在油源鉴别中的应用[J].岩矿测试,2013,(4):107-112.
    [103]李富君,孙贵范,梁刚我国各型砷中毒临床表现特点及高砷环境成因[J].中国公共卫生,1998,14(11):65 1-652.
    [104]余孝颖,吕锋洲,郑宝山等.内蒙古砷中毒和台湾乌脚病病区井水中腐殖酸性质的比较[J].中国地方病学杂志,2002,21(1):73-93.
    [105]李银生,曾振灵等.2003.洛克沙砷的作用、毒性及环境行为.上海畜牧兽医通讯,2003(1):10-12.
    [106]SUPER M, HEESE H, MACKENZIR. D, et al. An epidemiologic study of well-water nitrates in a group of South West African Namibian infants[J].Water Research,1981,15:1265-1270.
    [107]张光辉,刘中培等.河北平原地下水质变及农药化肥施用量变化影响[J].南水北调与水利科技,2009,7(2):50-54.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700