用户名: 密码: 验证码:
UV-C辐照对典型藻类生长抑制效果与机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文选取蓝藻藻种铜绿微囊藻、绿藻藻种椭圆小球藻、普通小球藻、斜生栅藻等作为典型藻类,研究了不同藻密度条件下UV-C辐照对藻细胞生长的抑制效果,采用流式细胞术、调制荧光技术、实时荧光定量PCR技术等方法,确定抑制生长且膜损伤影响小的UV-C辐照剂量范围,通过测定藻细胞生理活性及光合作用的影响以揭示抑藻的动态机制,比较了所实验藻种对UV-C辐照的敏感性,现场调查深圳荔枝湖治理工程中组合工艺的控藻效果及局限性,提出UV-C辐照抑藻的应用思路。
     UV-C辐照能显著抑制铜绿微囊藻的生长。对于初始藻密度为105~107个·mL-1的铜绿微囊藻,采用50~200 mJ·cm-2 UV-C辐照,能够抑制藻细胞增长,抑制期为5~15 d。UV-C辐照的抑制效果与辐照剂量有关,与初始藻密度无关。20~50 mJ·cm-2 UV-C辐照后,超过80%的藻细胞保持细胞膜完整。100~200 mJ·cm-2 UV-C辐照后70~90%的细胞破裂。
     深入研究了UV-C辐照的抑藻机理,光合蛋白的编码基因转录过程首先受到抑制;其次水溶性色素容易受到损伤,影响光能捕获和传递过程;D1蛋白受到损伤,降低电子产率和传递速率,影响能量转化和电子传递过程。藻细胞能够应急启动修复机制,但不足以弥补损伤程度。当水溶性色素位点损伤加剧,光能捕获和传递过程进一步降低;D1蛋白损伤加剧,电子产率和传递速率迅速降低,影响ATP合成及CO2固定,细胞生长所需的能量和有机物供给不足,使藻细胞生长受到抑制。藻细胞代谢活性受到辐照影响,但其程度较光合作用受影响的程度低。藻细胞内活性氧物质得到产生和积累,形成氧化压力,也是藻细胞受到损伤的机制之一。
     UV-C辐照使椭圆小球藻、普通小球藻、斜生栅藻等增速变缓,但无致死影响。3种绿藻对UV-C辐照的敏感性显著低于铜绿微囊藻。
     传统组合工艺的控藻效果比较差,提出采用移动式UV-C辐照技术抑制藻类生长,实现藻类生物量的原位控制。
This thesis explored the suppression effectiveness of typical algae growth under UV-C irradiation. Cyanobacteria Microcystis aeruginosa and three common freshwater green algae Chlorella ellipsoidea, Chlorella vulgaris, and Scenedesmus quadricanda were selected. The membrane integrity of UV-C irradiated algal cells were identified using flow cytometry to determine the UV-C irradiation dose range that can avoid extensive lysis as well as suppress algal growth. The physiological and photosynthetic activities in UV-C irradiated algal cells were investigated to probe into the mechanism of algal suppression effect. The sensitivities of the typical algae to UV-C irradiation were compared based on their responses on growth, membrane integrity, and pigment concentration. The effectiveness and limitation of the integrated engineering processes on algal control in the Lichee lake restoration project at Shenzhen were investigated and UV-C irradiation was proposed for in-situ algal control.
     The results indicated that UV-C irradiation at 50~200 mJ·cm-2 can effectively suppress M. aeruginosa growth for 5~15 d in a dose-dependent manner for different initial cell densities settings. Over 80% of the cells exposed to UV-C irradiation at 20 and 50 mJ·cm~(-2) remained intact. However, UV-C irradiation at 100 and 200 mJ·cm-2 induced severe cell disintegration in more than 70% of the irradiated cells.
     The results suggested that the mechanism of growth suppression includes sequenced damage/recovery procedures at cellular, biochemical, and genetical levels. UV-C irradiation suppressed the transcription process of the coding genes, disrupted the absorption and transportation of light energy by reducing aqueous pigments, affected energy transformation and electron transportation by attacking D1 protein and reducing electron transportation rate. The recovery processes of algal cell itself were immediately activated including accelerating D1 protein synthesis, shifting the genetic transcription levels, and increasing heat dissipation. However, these were insufficient to avoid further damage. Such damages on aqueous pigments and D1 protein may be magnified that resulted in further decrease on light absorption and electron transportation. Thus photosynthetic procedures including ATP synthesis and CO2 fixation were disrupted that inducing insufficient supply of both energy and organic materials. Therefore algal metabolic activities might be reduced and led to the growth suppression. The intracellular oxidative stress was enhanced as the increasingly production and accumulation of the reactive oxygen species. Related intracellular oxidative damage might be the sub-results of UV-C irradiation.
     It was found that neither significant suppression nor disintegration effects on green algae were obvious for UV-C irradiation at 20~200 mJ·cm-2 in this study. The non-toxic C. ellipsoidea, C. vulgaris, and S. quadricanda were less sensitive than M. aeruginosa to UV-C irradiation, which might suggest the potential application of UV-C irradiation on M. aeruginosa bloom control with a predictable low ecological risk.
     The conventional processes adopted at Lichee Lake were insufficient to control algal growth. The application of UV-C irradiation was proposed for in-situ suppression on algal blooming.
引文
[1] WHO. Toxic cyanobacteria in water: A guide to their public health consequences, monitoring and management. New York: E & FN Spon, 1999.
    [2] Oliver R L, Ganf G G. Freshwater blooms. // Whitton B A, eds. The Ecology of Cyanobacteria-Their Diversity in Time and Space. the Netherlands: Kluwer Academic Publishers, 2000:149~194.
    [3] Carmichael W. A world overview—One-hundred-twenty-seven years of research on toxic cyanobacteria—Where do we go from here? // Hudnell H K, eds. Cyanobacterial Harmful Algal Blooms: State of the Science and Research Needs. New York: Springer Science+Business Media, LLC, 2008:105~125.
    [4] Rinta-Kanto J M, Ouellette A J A, Boyer G L, et al. Quantification of toxic Microcystis spp. during the 2003 and 2004 blooms in Western Lake Erie using Quantitative Real-Time PCR. Environmental Science & Technology, 2005, 39(11):4198~4205.
    [5] Nakano K, Lee T J, Matsumura M. In situ algal bloom control by the integration of ultrasonic radiation and jet circulation to flushing. Environmental Science & Technology, 2001, 35(24):4941~4946.
    [6] Maatouk I, Bouaicha N, Fontan D, et al. Seasonal variation of microcystin concentrations in the Saint-Caprais reservoir (France) and their removal in a small full-scale treatment plant. Water Research, 2002, 36(11):2891~2897.
    [7] Steffensen D, Burch M, Nicholson B, et al. Management of toxic blue-green algae (cyanobacteria) in Australia. Environmental Toxicology, 1999, 14(1):183~195.
    [8] Cook C M, Vardaka E, Lanaras T. Toxic cyanobacteria in Greek freshwaters, 1987-2000: Occurrence, toxicity, and impacts in the Mediterranean region. Acta Hydrochimica Et Hydrobiologica, 2004, 32(2):107~124.
    [9] Azevedo S M F O, Carmichael W W, Jochimsen E M, et al. Human intoxication by microcystins during renal dialysis treatment in Caruaru-Brazil. Toxicology, 2002, 181-182:441~446.
    [10]虞功亮,宋立荣,李仁辉.中国淡水微囊藻属常见种类的分类学讨论—以滇池为例.植物分类学报, 2007, 45(05):727~741.
    [11]孔繁翔,马荣华,高俊峰,等.太湖蓝藻水华的预防、预测和预警的理论与实践.湖泊科学, 2009, 21(03):314~328.
    [12] Deng D, Xie P, Zhou Q, et al. Field and experimental studies on the combined impacts of cyanobacterial blooms and small algae on crustacean zooplankton in a large, eutrophic, subtropical, Chinese lake. Limnology, 2008, 9(1):1~11.
    [13]李哲,方芳,郭劲松,等.三峡小江回水区段2007年春季水华与营养盐特征.湖泊科学, 2009, 21(01): 36~44.
    [14]肖利娟,韩博平,林秋奇,等. HA1絮凝剂在供水水库水华应急处理中的应用研究.环境科学, 2007, 28(10):2192~2197.
    [15]余博识,吴忠兴,朱梦灵,等.水果湖湾蓝藻水华的形成及其对东湖影响的评价.水生生物学报, 2008, 32(02):286~289.
    [16]汪育文,李建宏,吴敏,等.南京玄武湖微囊藻水华种类组成的研究.环境科学, 2007, 28(10):2187~2191.
    [17]刘靖,杜桂森,武佃卫,等.北京城市河湖营养状态与蓝藻水华研究.安全与环境学报, 2006, 6(02): 5~8
    [18] van Apeldoorn M E, van Egmond H P, Speijers G J A, et al. Toxins of cyanobacteria. Molecular Nutrition & Food Research, 2007, 51(1):7~60.
    [19] Zhang H, Zhang J, Zhu Y. Identification of microcystins in waters used for daily life by people who live on Tai Lake during a serious cyanobacteria dominated bloom with risk analysis to human health. Environmental Toxicology, 2009, 24(1):82~86.
    [20]谢平.微囊藻毒素对人类健康影响相关研究的回顾.湖泊科学, 2009, 21(05):603~613.
    [21] Yoshizawa S, Matsushima R, Watanabe M F, et al. Inhibition of protein phosphatases by microcystis and nodularin associated with hepatotoxicity. Journal of Cancer Research and Clinical Oncology, 1990, 116(6):609~614.
    [22] Yu S Z. Primary prevention of Hepatocellular-carcinoma. Journal of Gastroenterology and Hepatology, 1995, 10(6):674~682.
    [23]中华人民共和国卫生部,国家标准化管理委员会. GB5749-2006.中华人民共和国国家标准-生活饮用水卫生标准.北京:中国标准出版社, 2006.
    [24]张声,刘洋,张晓健,等.活性炭石英砂双层深床滤料浮滤池处理高藻水源水的研究.环境科学, 2004, 25(05):52~56.
    [25]王占生,刘文君.微污染水源饮用水处理.北京:中国建筑工业出版社, 1999:174~196.
    [26] Smith J L, Boyer G L, Zimba P V. A review of cyanobacterial odorous and bioactive metabolites: Impacts and management alternatives in aquaculture. Aquaculture, 2008, 280(1-4):5~20.
    [27] Guo L. Doing battle with the green monster of Taihu Lake. Science, 2007, 317(5842):1166.
    [28] Mlouka A, Comte K, Castets A, et al. The gas vesicle gene cluster from Microcystis aeruginosa and DNA rearrangements that lead to loss of cell buoyancy. Journal of Bacteriology, 2004, 186(8):2355~2365.
    [29]秦伯强.太湖生态与环境若干问题的研究进展及其展望.湖泊科学, 2009, 21(4):445~455.
    [30] Duan H, Ma R, Xu X, et al. Two-decade reconstruction of algal blooms in China's Lake Taihu. Environmental Science & Technology, 2009, 43(10):3522~3528.
    [31] Vollenweider R, Kerekes J. Eutrophication of Waters, Monitoring, Assessment and Control. Paris: OECD, 1982.
    [32] Khan F A, Ansari A A. Eutrophication: An ecological vision. Botanical Review, 2005, 71(4):449~482.
    [33] Heisler J, Glibert P M, Burkholder J M, et al. Eutrophication and harmful algal blooms: A scientific consensus. Harmful Algae, 2008, 8(1):3~13.
    [34] Jin X C, Xu Q J, Huang C Z. Current status and future tendency of lake eutrophication in China. Science in China Series C-Life Sciences, 2005, 48(Special issue):948~954.
    [35]中华人民共和国环境保护部. 2008中国环境状况公报. http://www.zhb.gov.cn.
    [36]万蕾,朱伟,赵联芳.氮磷对微囊藻和栅藻生长及竞争的影响.环境科学, 2007, 28(06):1230~1235.
    [37]秦伯强,王小冬,汤祥明,等.太湖富营养化与蓝藻水华引起的饮用水危机-原因与对策.地球科学进展, 2007, 22(09):896~906.
    [38] Chen Y, Fan C, Teubner K, et al. Changes of nutrients and phytoplankton chlorophyll-alpha in a large shallow lake, Taihu, China: an 8-year investigation. Hydrobiologia, 2003, 506(1-3):273~279.
    [39] Perovich G, Dortch Q, Goodrich J, et al. Causes, prevention, and mitigation workgroup report. // Hudnell H K, eds. Cyanobacterial Harmful Algal Blooms: State of the Science and Research Needs. New York: Springer Science + Business Media, LLC, 2008:185~216.
    [40] Edmondson W T. Sixty years of Lake Washington: a curriculum vitae. Lake and Reservoir Management, 1994, 10(2):75~84.
    [41] Cooke G D, Welch E B, Peterson S A, et al. Restoration and Management of Lakes and Reservoirs (Third Edition). Boca Raton: CPC press, 2005.
    [42] Welch E B, Cooke G D. Effectiveness and longevity of phosphorus inactivation with alum. Lake and Reservoir Management, 1999, 15(1):5~27.
    [43] Hupfer M, Lewandowski J. Oxygen controls the phosphorus release from lake sediments-a long-lasting paradigm in limnology. International Review of Hydrobiology, 2008, 93(4-5):415~432.
    [44] Smith V H. Low nitrogen to phosphorus ratios favor dominance by blue-green algae in lake phytoplankton. Science, 1983, 221(4611):669~671.
    [45] Barica J, Kling H, Gibson J. Experimental manipulation of algal bloom composition by nitrogen addition. Canadian Journal of Fisheries and Aquatic Sciences, 1980, 37(7):1175~1183.
    [46]陈辉.卧螺离心机在水厂藻类气浮污泥脱水中的应用.过滤与分离, 2002, 12(01):24~26.
    [47]倪其军,眭爱国,周谦.去除滤网上蓝藻的装置:中国, 101274167. 2008-10-1.
    [48]沈银武,刘永定,吴国樵,等.富营养湖泊滇池水华蓝藻的机械清除.水生生物学报, 2004, 28(02): 131~136.
    [49] Morton S D, Derse P H. Use of gamma radiation to control algae. Environmental Science & Technology, 1968, 2(11):1041~1043.
    [50]郑正,张继彪,杨光俊,等.利用辐照降解水体中微囊藻毒素-LR的方法:中国, 1648057. 2005-8-3.
    [51]郑正,张继彪,杨光俊,等.利用辐照降解水体中微囊藻毒素-RR的方法:中国, 1648056. 2005-8-3.
    [52] Ahn C, Park M, Joung S, et al. Growth inhibition of cyanobacteria by ultrasonic radiation: Laboratory and enclosure studies. Environmental Science & Technology, 2003, 37(13):3031~3037.
    [53]陈雪初,孙扬才,曾晓文,等.低光照度对源水中铜绿微囊藻增殖的抑制作用.中国环境科学, 2007, 27(03):352~355.
    [54] Lindenschmidt K E, Hamblin P F. Hypolimnetic aeration in Lake Tegel, Berlin. Water Research, 1997, 31(7):1619~1628.
    [55]丛海兵.扬水曝气水源水质改善技术研究[博士学位论文].西安:西安建筑科技大学, 2007.
    [56]刘春光,金相灿,孙凌,等.水体pH和曝气方式对藻类生长的影响.环境污染与防治, 2006, 28(03):161~163.
    [57] Huang J J, Kolodny N H, Redfearn J T, et al. The acid stress response of the cyanobacterium Synechocystis sp strain PCC 6308. Archives of Microbiology, 2002, 177(6):486~493.
    [58]刘梅,胡征宇,谢作明.电子灭藻机除藻效果试验.中国给水排水, 1999, 15(03):60~61.
    [59] Mcknight D M, Chisholm S W, Harleman D R F. CuSO4 treatment of nuisance algal blooms in drinking water reservoirs. Environmental Management, 1983, 7:311~320.
    [60]尹澄清,兰智文,金维根.围隔中水华控制实验.环境科学学报, 1989, 9(01):95~99.
    [61]赵玲,洪爱华,齐雨藻,等.沸石载铜除藻剂的探讨.中国环境科学, 2002, 22(03):16~18.
    [62]金春华,陆开宏,王扬才.改性明矾浆和滤食性动物控制月湖的蓝藻水华.宁波大学学报(理工版), 2004, 17(02):147~151.
    [63]赵小丽.硫酸铜和金藻Poterioochromonas sp.控制蓝藻水华的研究[硕士学位论文].武汉:中国科学院研究生院(水生生物研究所), 2007.
    [64]李咏梅,张国明.鞍山地区地表水除藻方法的研究.鞍山师范学院学报, 2003, 5(02):67~71.
    [65] Xing W, Huang W M, Li D, et al. Effects of iron on growth, pigment content, photosystem II efficiency, and siderophore production of Microcystis aeruginosa and Microcystis wesenbergii. Current Microbiology, 2007, 55:94~98.
    [66]阎峰,储昭升,金相灿,等. Fe(Ⅲ)对太湖铜绿微囊藻和四尾栅藻竞争的影响.环境科学研究, 2007, 20(05):61~65.
    [67] Zhou W, Juneau P, Qiu B. Growth and photosynthetic responses of the bloom-forming cyanobacterium Microcystis aeruginosa to elevated levels of cadmium. Chemosphere, 2006, 65(10):1738~1746.
    [68] Shukla B, Rai L C. Potassium-induced inhibition of photosynthesis and associated electron transport chain of Microcystis: Implication for controlling cyanobacterial blooms. Harmful Algae, 2006, 5(2):184~191.
    [69] Parker D L, Kumar H D, Rai L C, et al. Potassium salts inhibit growth of the cyanobacteria Microcystis spp. in pond water and defined media: Implications for control of microcystin-producing aquatic blooms. Applied and Environmental Microbiology, 1997, 63(6):2324~2329.
    [70]刘洁,常学秀,黄丽娟,等. Ni元素对铜绿微囊藻的生长、光谱特性及藻胆蛋白含量的影响.云南大学学报(自然科学版), 2005, 27(04):365~368.
    [71]陈海柳,潘纲,闫海,等.六价铬抑制淡水蓝绿藻生长的毒性效应.环境科学, 2003, 24(02):13~18.
    [72]康瑞娟,秦静芬,汪晶,等.砷对蓝藻光合作用和细胞生长的影响.水生生物学报, 2005, 29(02):230~232.
    [73] Pan G, Zhang M, Chen H, et al. Removal of cyanobacterial blooms in Taihu Lake using local soils. I. Equilibrium and kinetic screening on the flocculation of Microcystis aeruginosa using commercially available clays and minerals. Environmental Pollution, 2006, 141(2):195~200.
    [74] Zou H, Pan G, Chen H, et al. Removal of cyanobacterial blooms in Taihu Lake using local soils. II. Effective removal of Microcystis aeruginosa using local soils and sediments modified by chitosan. Environmental Pollution, 2006, 141(2):201~205.
    [75]刘振儒,田重威.壳聚糖复合粘土矿凝聚铜绿微囊藻的研究.环境工程, 2004, 22(03):80~82.
    [76]陈灏,潘纲,张明明.藻细胞不同生长阶段的海泡石凝聚除藻性能.环境科学, 2004, 25(06):85~88.
    [77]邹华,潘纲,程子波.粘土原位除藻技术研究.环境科学, 2009, 30(2):407~410.
    [78]吴星五,唐秀华,朱爱莲,等.电化学杀藻水处理实验.工业水处理, 2002, 22(08):16~18.
    [79] Liang W Y, Qu J H, Chen L B, et al. Inactivation of Microcystis aeruginosa by continuous electrochemical cycling process in tube using Ti-RuO2 electrodes. Envirionmental Science & Technology, 2005, 39:4633~4639.
    [80]谌丽斌.电催化氧化杀藻和去除藻毒素的效果研究[硕士学位论文].北京:北京林业大学, 2005.
    [81] Xu Y, Yang J, Ou M, et al. Study of Microcystis aeruginosa inhibition by electrochemical method. Biochemical Engineering Journal, 2007, 36(3):215~220.
    [82]王翠华.脉冲放电等离子体杀菌灭藻及其藻毒素去除的研究[博士学位论文].大连:大连理工大学, 2008.
    [83]尹海川,林强,涂学炎,等.纳米二氧化钛复合半导体光催化抑制蓝藻生长.昆明理工大学学报(理工版), 2005, 30(01):52~56.
    [84] Hong J L, Otaki M. Association of photosynthesis and photocatalytic inhibition of algal growth by TiO2. Journal of Bioscience and Bioengineering, 2006, 101(2):185~189.
    [85]周丽娟,尹海川,陈小兰,等.载Pt纳米TiO2抑制滇池蓝藻生长的研究.云南大学学报(自然科学版), 2005, 27(04):361~364.
    [86] Linkous C A, Carter G J, Locuson D B, et al. Photocatalytic inhibition of algae growth using TiO2, WO3, and cocatalyst modifications. Envirionmental Science & Technology, 2000, 34:4754~4758.
    [87]陆长梅,张超英,吴国荣,等.纳米级TiO2抑制微囊藻生长的实验研究.城市环境与城市生态, 2002, 15(04): 13~15.
    [88]尹海川,林强,涂学炎,等.稀土改性Ag掺杂纳米TiO2对抑制蓝藻生长的研究.昆明理工大学学报(理工版), 2004, 29(06):1~4.
    [89]尹海川,柳清菊,林强,等.纳米TiO2负载贵金属Pd抑制蓝藻的生长.西北植物学报, 2005, 25(09):1884~1887.
    [90] Hong J L, Ma H, Otaki M. Controlling algal growth in photo-dependent decolorant sludge by photocatalysis. Journal of Bioscience and Bioengineering, 2005, 99(6):592~597.
    [91] Kim S C, Lee D K. Inactivation of algal blooms in eutrophic water of drinking water supplies with the photocatalysis of TiO2 thin film on hollow glass beads. Water Science & Technology, 2005, 52(9):145~152.
    [92] Drabkova M, Admiraal W, Marsalek B. Combined exposure to hydrogen peroxide and light—Selective effects on cyanobacteria, green algae, and diatoms. Environmental Science & Technology, 2007, 41(1):309~314.
    [93] Drabkova M, Matthijs H C P, Admiraal W, et al. Selective effects of H2O2 on cyanobacterial photosynthesis. Photosynthetica, 2007, 45(3):363~369.
    [94] Hehmann A, Kaya K, Watanabe M M. Selective control of Microcystis using an amino acid - a laboratory assay. Journal of Applied Phycology, 2002, 14(2):85~89.
    [95] Kaya K, Liu Y D, Shen Y W, et al. Selective control of toxic Microcystis water blooms using lysine and malonic acid: An enclosure experiment. Environmental Toxicology, 2005, 20(2):170~178.
    [96]林必桂,杨柳燕,肖琳,等.赖氨酸对铜绿微囊藻细胞的抑制机理.生态与农村环境学报, 2008, 24(04):68~72.
    [97]苏汉成.二溴海因对铜绿微囊藻水华的去除研究[硕士学位论文].广州:暨南大学, 2007.
    [98]邓永强.实验条件下TTPC对铜绿微囊藻的控制作用研究[硕士学位论文].成都:四川农业大学, 2005.
    [99]和丽萍.利用化学杀藻剂控制滇池蓝藻水华研究.云南环境科学, 2001, 20(02):43~44.
    [100]胡洪营,门玉洁,李锋民.植物化感作用抑制藻类生长的研究进展.生态环境, 2006, 15(01):153~157.
    [101] Everall N C, Lees D R. The identification and significance of chemicals released from decomposing barley straw during reservoir algal control. Water Research, 1997, 31(3):614~620.
    [102]吴为中,芮克俭,刘永.大麦秆控藻研究进展.生态环境, 2005, 14(06):972~975.
    [103]万宏,张昀.降解稻草对蓝藻生长的抑制作用.北京大学学报(自然科学版), 2000, 36(04):485~488.
    [104]吴小平,张平静.发酵稻草抑藻机理研究.生态环境, 2006, 15(01):20~22.
    [105]郭峰,张恒,陈旭.绿茶浸出液对衣藻的抑制作用.同济大学学报(医学版), 2001, 22(05):73~74.
    [106]王立新,张玲,张余霞,等.黑藻(Hydrilla verticillata)养殖水对铜绿微囊藻(Microcystic aeruginosa)的抑制效应及其机制.植物生理与分子生物学学报, 2006, 16(06):672~678.
    [107] Li F M, Hu H Y. Isolation and characterization of a novel antialgal allelochemical from Phragmites communis. Applied and Environmental Microbiology, 2005, 71(11):6545~6553.
    [108]张兵之.伊乐藻对铜绿微囊藻的化感作用研究[博士学位论文].武汉:中国科学院研究生院(水生生物研究所), 2007.
    [109]金朝晖,庄源益,赵凡,等.凤眼莲提取物的抑藻作用及其分离鉴定.高等职业教育-天津职业大学学报, 1999, 8(01):25~28.
    [110]陈坚,顾林娣,章宗涉,等.马来眼子菜抑制藻类增长及其抑制系数的计算.上海师范大学学报(自然科学版), 1994, 23(01):69~73.
    [111]王立新,吴国荣,王建安,等.黑藻(Hydrillaverticillata)对铜绿微囊藻(Microcystisaeruginosa)抑制作用.湖泊科学, 2004, 16(04):337~342.
    [112]王立新,张玲,张余霞,等.黑藻(Hydrilla verticillata)养殖水对铜绿微囊藻(Microcystic aeruginosa)的抑制效应及其机制.植物生理与分子生物学学报, 2006, 32(06):672~678.
    [113]李锋民,胡洪营,种云霄,等. 2-甲基乙酰乙酸乙酯对藻细胞膜和亚显微结构的影响.环境科学, 2007, 28(07):1534~1538.
    [114] Hong Y, Hu H, Li F. Physiological and biochemical effects of allelochemical ethyl 2-methyl acetoacetate (EMA) on cyanobacterium Microcystis aeruginosa. Ecotoxicology and Environmental Safety, 2008, 71(2):527~534.
    [115] Hong Y, Hu H, Xie X, et al. Responses of enzymatic antioxidants and non-enzymatic antioxidants in the cyanobacterium Microcystis aeruginosa to the allelochemical ethyl 2-methyl acetoacetate (EMA) isolated from reed (Phragmites communis). Journal of Plant Physiology, 2008, 165(12):1264~1273.
    [116] Hong Y, Hong-Ying H, Li F. Growth and physiological responses of freshwater green alga Selenastrum capricornutum to allelochemical ethyl 2-methyl acetoacetate (EMA) under different initial algal densities. Pesticide Biochemistry and Physiology, 2008, 90(3):203~212.
    [117] Safferman R S, Morris M. Algal virus: Isolation. Science, 1963, 140(3567):679~680.
    [118]崔光琦,温丽容,黄辉,等.富营养化水体微生物除藻试验.环境科学与技术, 2002, 25(S1):1~2.
    [119]李征,季民,庞金钊,等.优势除藻菌净化富营养化城市景观湖水初探.环境保护科学, 2002, 28(06):22~25.
    [120]史顺玉,沈银武,李敦海,等.溶藻细菌DC21的分离、鉴定及其溶藻特性.中国环境科学, 2006, 26(05):587~590.
    [121]刘建康,谢平.揭开武汉东湖蓝藻水华消失之谜.长江流域资源与环境, 1999, 8(03):85~92.
    [122]张绍浩,邬红娟,崔博,等.利用三角帆蚌控制水华的初步研究.水生生物学报, 2007, 31(05):760~762.
    [123]刘新尧,石苗,廖永红,等.食藻原生动物及其在治理蓝藻水华中的应用前景.水生生物学报, 2005, 29(04):456~461.
    [124] Xie P, Liu J. Practical success of biomanipulation using filter-feeding fish to control cyanobacteria blooms: A synthesis of decades of research and application in a subtropical hypereutrophic lake. The Scientific World JOURNAL, 2001, 1:337~356.
    [125]陆开宏,王扬才,金春华.罗非鱼除藻对月湖水质的影响.宁波大学学报(理工版), 2005, 18(01):39~43.
    [126]郭匿春.浮游动物与藻类水华的控制[博士学位论文].武汉:中国科学院研究生院(水生生物研究所), 2007.
    [127] Yang Z, Kong F, Shi X, et al. Changes in the morphology and polysaccharide content of Microcystis aeruginosa (Cyanobacteria) during flagellate grazing. Journal of Phycology, 2008, 44(3):716~720.
    [128]吴振斌,邓平,吴晓辉,等.人工湿地小试系统藻类去除效果的变化研究.长江流域资源与环境, 2005, 14(02):229~232.
    [129]况琪军,吴振斌,夏宜琤.人工湿地生态系统的除藻研究.水生生物学报, 2000, 24(06):655~658.
    [130]严立,刘志明,陈建刚,等.潜流式人工湿地净化富营养化景观水体.中国给水排水, 2005, 21(02):11~13.
    [131]汪俊三,覃环.高水力负荷人工湿地处理富营养化湖水.中国给水排水, 2005, 21(01):1~4.
    [132]吴振斌,吴晓辉,付贵萍,等.不同生态工程及其组合系统除藻效率的比较研究.环境科学, 2006, 27(02):241~245.
    [133] Chow C W K, Drikas M, House J, et al. The impact of conventional water treatment processes on cells of the cyanobacterium Microcystis aeruginosa. Water Research, 1999, 33(15):3253~3262.
    [134]寻涛.高锰酸钾预氧化混凝去除水中颤藻的试验研究.安全与环境工程, 2009, 16(04):45~48.
    [135]赵春禄,寻涛,晗桢.高锰酸钾预氧化并复合高岭土与聚合氯化铝(PAC)絮凝去除水中颤藻.环境化学, 2009, 28(06):846~849.
    [136]孟红旗,雷国元,王光辉.聚合氯化铝铁的性质与羟铁比的关系及其混凝除藻性能的研究.武汉科技大学学报(自然科学版), 2003, 26(04):363~366.
    [137]崔福义,范振强,马华,等.混凝沉淀工艺对不同优势藻类的去除特性研究.给水排水, 2009, 35(06):9~13.
    [138]王光辉,魏晓金,雷国元.聚磷硫酸铁混凝去除微污染水中藻类生物研究.华中科技大学学报(城市科学版), 2005, 22(03):57~60.
    [139]张跃军,李潇潇,赵晓蕾,等. PAC/PDM复合混凝剂用于夏季太湖水混凝脱浊研究.环境科学, 2008, 29(08):2195~2200.
    [140]马放,李大鹏,郑丽娜,等.复合型生物絮凝剂与聚合氯化铝铁复配处理高藻水.中国给水排水, 2008, 24(03):39~41.
    [141]陈杰,王波,张光明,等.超声强化混凝去除蓝藻实验研究.环境工程学报, 2007, 1(03):66~69.
    [142]刘芳,马军,马维超.沉淀-气浮联用技术在高藻水处理中的工程应用.给水排水, 2009, 35(06):17~19.
    [143]樊雪红,王启山,刘善培,等.混凝气浮工艺去除铜绿微囊藻的影响因素研究.供水技术, 2007, 1(01):9~12.
    [144]吴玉宝,王启山,王玉恒,等.混凝-气浮除藻工艺中各参数的优化.中国给水排水, 2008, 24(03):95~99.
    [145]张声,郭振通,刘洋,等.高藻条件下溶气气浮工艺的强化混凝.净水技术, 2008, 27(05):33~36.
    [146]贾瑞宝,刘军,王珂,等.气浮/微絮凝/臭氧/活性炭工艺除藻效果.中国给水排水, 2003, 19(10):47~48.
    [147]李永红,汪立飞,李彦春,等.气浮处理含藻水库水的工艺设计.中国给水排水, 2006, 22(06):38~41.
    [148]柳姝,黄培坤,汪群慧,等.混凝-微气泡气浮法处理含藻废水的研究.环境工程学报, 2008, 2(12):1639~1643.
    [149]刘善培,王启山,何文杰,等.混凝/气浮与混凝/沉淀工艺处理微污染原水的对比.中国给水排水, 2007, 23(09):89~91.
    [150]王玉恒,王启山,吴玉宝,等.分段回流式逆流气浮工艺处理高藻水的研究.环境科学, 2008, 29(11):3071~3076.
    [151]王玉恒,王启山,吴玉宝,等.藻类絮凝体形态学特征及其与气浮的关系研究.环境科学, 2008, 29(03):688~695.
    [152]王玉恒,王启山,吴玉宝,等.絮凝方式对藻类絮体形态、强度及气浮的影响.中国环境科学, 2008, 28(04):355~359.
    [153]孙阳,周克,孙晓鹏,等.气浮除去蓝藻的方法:中国, 101264950. 2008-09-17.
    [154]杨文进,陈才高,刘海燕,等.气浮池藻渣成分及处置方法.给水排水, 2008, 34(12):19~21.
    [155]黄维,裴毅,陈飞勇.水体蓝藻清除的研究及其新型机械除藻初探.企业技术开发, 2008, 27(04):29~31.
    [156]王桂荣,唐友尧,张杰,等.过氧化氢预氧化除藻效能研究.武汉城市建设学院学报, 2001, 18(02):21~24.
    [157]刘海龙,杨栋,赵智勇,等.高藻原水预臭氧强化混凝除藻特性研究.环境科学, 2009, 30(07):1914~1919.
    [158] Zouboulis A, Samaras P, Ntampou X, et al. Potential ozone applications for water/wastewater treatment. Separation Science and Technology, 2007, 42(7):1433~1446.
    [159]冯岩. MPF-UV联用处理压载水中藻类实验研究[硕士学位论文].大连:大连海事大学, 2009.
    [160]赵虎.超滤膜去除水体藻类试验研究[硕士学位论文].北京:北京工业大学, 2008.
    [161] Daly R I, Ho L, Brookes J D. Effect of chlorination on Microcystis aeruginosa cell integrity and subsequent microcystin release and degradation. Environmental Science & Technology, 2007, 41(12):4447~4453.
    [162]刘卫华,季民,杨洁,等.高藻水中污染物氧化降解及卤代烃生成的控制.中国环境科学, 2004, 24(06):40~44.
    [163]梁好,韦朝海,盛选军,等.高铁酸盐预氧化、絮凝除藻的实验研究.工业水处理, 2003, 23(03):26~29.
    [164]苑宝玲,曲久辉.高铁酸盐氧化絮凝去除藻类的机制.中国环境科学, 2002, 22(05):14~16.
    [165]马军,石颖,刘伟,等.高铁酸盐复合药剂预氧化除藻效能研究.中国给水排水, 1998, 14(05):11~13.
    [166]石颖,马军,李圭白. pH值对高铁酸盐复合药剂强化除藻的影响.中国给水排水, 2000, 16(01):18~20.
    [167]田宝珍,曲久辉,雷鹏举.饮用水水源的化学灭藻.环境化学, 2001, 20(01):65~69.
    [168]李玲,何争光,王太平,等.高铁酸盐除藻的实验研究.安全与环境工程, 2008, 15(04):51~54.
    [169]石颖,马军,蔡伟民,等.湖泊、水库水的强化混凝除藻的试验研究.环境科学学报, 2001, 21(02):251~253.
    [170]任芝军,马军.高锰酸盐复合药剂强化常规水处理工艺.水处理技术, 2005, 31(08):74~75.
    [171]陈卫,李圭白,邹浩春.高锰酸钾复合药剂去除太湖水中蓝藻的室内试验研究.哈尔滨建筑大学学报, 2001, 34(03):72~74.
    [172]张锦,陈忠林,范洁,等.高锰酸钾及其复合药剂强化混凝除藻除嗅对比.哈尔滨工业大学学报, 2004, 36(06):736~738.
    [173]樊雪红,王启山,刘善培,等.预氧化对混凝-气浮工艺去除铜绿微囊藻效果的影响.给水排水, 2007, 33(07):23~26.
    [174]何文杰,李玉仙,黄廷林. O3和PPC强化常规处理高藻原水的效果对比研究.中国给水排水, 2006, 22(17):5~8.
    [175]马钟瑛.微絮凝—纤维过滤去除微污染水中藻类的研究[硕士学位论文].上海:东华大学, 2009.
    [176]张声,谢曙光,刘洋,等.活性炭过滤组合工艺处理高藻水.中国给水排水, 2004, 20(09):40~42.
    [177]王永磊,贾瑞宝,张克峰.新型浮滤池净水装置处理引黄水库水试验研究.水处理技术, 2009, 35(06):67~70.
    [178]马军,盛力,王立宁.改性石英砂滤料强化过滤处理含藻水.中国给水排水, 2002, 18(10):9~11.
    [179]李永成.强化混凝—过滤去除微污染水中藻类生物的研究[硕士学位论文].武汉:武汉科技大学, 2004.
    [180]薛罡,马钟瑛,孟幼平,等.微絮凝/涤纶高弹丝纤维球过滤工艺除藻试验研究.中国给水排水, 2009, 25(07):52~54.
    [181]李镜明,栗心国,徐和平.辐射流滤池直接过滤处理含藻湖水的试验研究.给水排水, 1992, 18(01): 5~8.
    [182]张朝升,宋金璞,李德强.大梯度磁滤处理微污染麓湖水的研究.中国给水排水, 2000, 16(08):59~60.
    [183]张朝升,宋金璞,李德强,等.大梯度磁滤器去除水中藻类研究.给水排水, 2001, 27(08):22~24.
    [184]张朝升,张可方,李德强.大梯度磁滤法处理微污染水的试验研究.工业用水与废水, 2003, 34(06):26~28.
    [185]余国忠,李灵芝,赵明云,等.纤维直接过滤去除原水藻类.环境污染治理技术与设备, 2003, 4(01):14~18.
    [186] Bitton G, Fox J L, Strickland H G. Removal of algae from Florida Lakes by magnetic filtration. Applied and Environmental Microbiology, 1975, 30(6):905~908.
    [187] Yadidia R, Abeliovich A, Belfort G. Algae removal by high gradient magnetic filtration. Environmental Science & Technology, 1977, 11(9):913~916.
    [188]柳丹,蔡冬清,王相勤,等.磁聚去除淡水藻华的研究.中国环境科学, 2006, 26(06):677~679.
    [189]雷国元,金黎,余雄奎,等.高通量陶瓷膜研制及其除藻性能的初步研究.净水技术, 2009, 28(01):63~66.
    [190]于莉君,李圭白,赵虎,等. PPC强化混凝与超滤联用处理含藻水的研究.水处理技术, 2009, 35(03):53~56.
    [191]蔡传义,陈杰,芦澍,等.超滤工艺处理引黄水库高藻原水的中试研究.供水技术, 2009, 3(02):23~25.
    [192]于莉君,赵虎,李圭白,等.粉末活性炭-混凝-超滤联用处理含藻水的研究.中国给水排水, 2008, 24(19):51~54.
    [193]段蕾,李伟光,吕炳南,等.高温、高藻期臭氧/生物活性炭工艺的处理效果研究.中国给水排水, 2007, 23(09):37~39.
    [194]杜红,董文艺,李继,等.臭氧活性炭深度处理工艺除藻效能研究.给水排水, 2005, 31(11):1~5.
    [195]季民,吴昌敏,贾霞珍,等.生物接触氧化法对引滦水中藻类的去除.中国给水排水, 2003, 19(08):56~58.
    [196]吴为中,王占生.不同生物接触氧化方法对藻类的去除效果比较及其途径分析.环境科学学报, 2001, 21(03):277~281.
    [197]罗晓鸿,王占生,王衡,等.富营养化湖泊水生物预处理研究.给水排水, 1996, 22(07):12~14.
    [198]吴为中,王占生.水库水源水生物陶粒滤池预处理中试研究.环境科学研究, 1999, 12(01):13~17.
    [199]余冉,吕锡武,稻森悠平.生物接触氧化预处理水中藻类及其毒素.中国给水排水, 2002, 18(12):9~12.
    [200]周真明,黄廷林,丛海兵.扬水曝气/生物接触氧化工艺的除藻效果研究.中国给水排水, 2007, 23(15):13~16.
    [201]赵志伟,崔福义,刘广奇,等.高藻期滦河水处理工艺流程对比试验研究.河海大学学报(自然科学版), 2007, 35(02):145~148.
    [202]孔繁翔,高光.大型浅水富营养化湖泊中蓝藻水华形成机理的思考.生态学报, 2005, 25(3):589~595.
    [203] Masschelein W J, Rice R G. Ultraviolet Light in Water and Wastewater Sanitation. New York: CRC Press LLC, 2002.
    [204] USEPA. Ultraviolet Disinfection Guidance Manual for the Final Long Term 2 Enhanced Surface Water Treatment Rule. http://www.epa.gov/safewater/disinfection/lt2/compliance. html.
    [205] Iseri Y, Kawabata Z, Sasaki M. Development of a boat equipped with UV lamps for suppression of freshwater red tide in a reservoir. Japanese Journal of Water Treatment Biology, 1993, 29(2):61~70.
    [206] Iseri Y, Tano J, Kawabata Z, et al. Suppression of dinoflagellate Peridinium bipes bloom in a reservoir by ultraviolet radiation. 1995. Proceedings of the International Conference on Hydropower, San Francisco, California, July 25-28, 1265~1273.
    [207] Iseri Y, Nakamichi M, Miyagawa S, et al. Development of a red tide control ship equipped with a UV irradiation system-preliminary and field experiments on harmful marine algae. Oceans '04 Mts/Ieee Techno-Ocean '04, Vols 1-2, Conference Proceedings, Vols. 1-4, 2004, 1787~1792, 2365.
    [208]周明,董金荣,赵开弘.浸没式UV-C技术对铜绿微囊藻生长的抑制效应.华中师范大学学报(自然科学版), 2003, 37(04):549~552.
    [209]赵开弘,董金荣,周明.浸没式UV-C技术对念珠藻"水华"的抑制效应.武汉理工大学学报, 2003, 25(10):16~18.
    [210]周明,董金荣,包广旬,等.浸没式UV-C技术用于自来水厂除藻的研究.华中科技大学学报(自然科学版), 2004, 32(06):111~113.
    [211]廖兴盛,汪星,赵开弘,等.光催化纳米TiO2治理蓝藻工艺的研究.武汉理工大学学报, 2007, 29(06):16~19.
    [212]景江,周明,汪星,等. H2O2与UV-C灭藻的协同效果研究及工程实验.环境科学研究, 2006, 19(6):59~63.
    [213] Alam M D Z B, Otaki M, Furumai H, et al. Direct and indirect inactivation of Microcystis aeruginosa by UV-radiation. Water Research, 2001, 35(4):1008~1014.
    [214] Sakai H, Oguma K, Katayama H, et al. Effects of low- or medium-pressure ultraviolet lamp irradiation on Microcystis aeruginosa and Anabaena variabilis. Water Research, 2007, 41(1):11~18.
    [215] Sakai H, Oguma K, Katayama H, et al. Effects of low or medium-pressure UV irradiation on the release of intracellular microcystin. Water Research, 2007, 41(15):3458~3464.
    [216] Sakai H, Katayama H, Oguma K, et al. Kinetics of Microcystis aeruginosa Growth and Intracellular Microcystins Release after UV Irradiation. Environmental Science & Technology, 2009, 43(3):896~901.
    [217] Kawabata Z, Sasaki K, Iseri Y, et al. Effect of ultraviolet radiation on the survival of the dinoflagellate Peridinium bipes causing freshwater red tide in reservoirs. Japanese Journal of Water Treatment Biology, 1990, 26(2):17~22.
    [218]廖兴盛,汪星,赵开弘,等. UV-C光催化纳米TiO2对蓝藻生长影响的研究.武汉植物学研究, 2007, 25(5):457~461.
    [219] Kawabata Z, Iseri Y, Sasaki M. Suppression of dinoflagellate Peridinium bipes bloom in a mesocosm by ultraviolet radiation. Japanese Journal of Water Treatment Biology, 1991, 27(2):7~10.
    [220] Alam M Z B, Ohgaki S. Role of hydrogen peroxide and hydroxyl radical in producing the residual effect of ultraviolet radiation. Water Environment Research, 2002, 74(3):248~255.
    [221] WHO. Guidelines for Safe Recreational Waters, Volume 1: Coastal and fresh waters. WHO, 2003.
    [222] OECD. Sixteenth addendum to the OECD Guidelines for the Testing of Chemicals. Guideline 201: Alga, Growth Inhibition Test.: Paris: OECD, 2006.
    [223] Gregori G, Citterio S, Ghiani A, et al. Resolution of viable and membrane-compromised bacteria in freshwater and marine waters based on analytical flow cytometry and nucleic acid double staining. Applied and Environmental Microbiology, 2001, 67(10):4662~4670.
    [224] Haugland R P. Handbook of Fluorescence Probes and Research Chemicals. Eugene, OR: Molecular Probes, 1998.
    [225] Jones K H, Senf J A. An improved method to determine cell viability by simultaneous staining with fluorescein diacetate-propidum iodide. Journal of Histochemistry & Cytochemistry, 1985, 33:77~79.
    [226] Falcioni T, Papa S, Gasol J A. Evaluating the flow-cytometric nucleic acid double-staining protocol in realistic situations of planktonic bacterial death. Applied and Environmental Microbiology, 2008, 74(6):1767~1779.
    [227] Liu H, Yu Y, Kong F, et al. Effects of tetrabromobisphenol A on the green alga Chlorella pyrenoidosa. Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances and Environmental Engineering, 2008, 43(11):1271~1278.
    [228] Wei Y, Weng D, Li F, et al. Involvement of JNK regulation in oxidative stress-mediated murine liver injury by microcystin-LR. Apoptosis, 2008, 13(8):1031~1042.
    [229] Smith J L, Haney J F. Foodweb transfer, accumulation, and depuration of microcystins, a cyanobacterial toxin, in pumpkinseed sunfish (Lepomis gibbosus). Toxicon, 2006, 48(5):580~589.
    [230] Yu Y, Kong F, Wang M, et al. Determination of short-term copper toxicity in a multispecies microalgal population using flow cytometry. Ecotoxicology and Environmental Safety, 2007, 66(1):49~56.
    [231] Sheng G, Yu H. Characterization of extracellular polymeric substances of aerobic and anaerobic sludge using three-dimensional excitation and emission matrix fluorescence spectroscopy. Water Research, 2006, 40(6):1233~1239.
    [232] Ni B, Fang F, Xie W, et al. Characterization of extracellular polymeric substances produced by mixed microorganisms in activated sludge with gel-permeating chromatography, excitation-emission matrix fluorescence spectroscopy measurement and kinetic modeling. Water Research, 2009, 43(5):1350~1358.
    [233]吕洪刚,张锡辉,龚纯英,等.藻类的三维荧光光谱辨别及算法研究.中国环境科学, 2005, 25(05):581~584.
    [234] Ahn C, Joung S, Yoon S, et al. Alternative alert system for cyanobacterial bloom, using phycocyanin as a level determinant. The Journal of Microbiology, 2007, 45(2):98~104.
    [235] Seppala J, Balode M. The use of spectral fluorescence methods to detect changes in the phytoplankton community. Hydrobiologia, 1997, 363(1):207~217.
    [236] Babichenko S, Kaitalab S, Leebena A, et al. Phytoplankton pigments and dissolved organic matter distribution in the Gulf of Riga. Journal of Marine Systems, 1999, 23(1-3):69~82.
    [237] Chen W, Westerhoff P, Leenheer J A, et al. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter. Environmental Science & Technology, 2003, 37(24):5701~5710.
    [238] He Y Y, Hader D P. UV-B-induced formation of reactive oxygen species and oxidative damage of the cyanobacterium Anabaena sp.: protective effects of ascorbic acid and N-acetyl-L-cysteine. Journal of Photochemistry and Photobiology B-Biology, 2002, 66(2):115~124.
    [239] Apel K, Hirt H. Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology, 2004, 55(1):373~399.
    [240] Liu W, Au D W T, Anderson D M, et al. Effects of nutrients, salinity, pH and light: dark cycle on the production of reactive oxygen species in the alga Chattonella marina. Journal of Experimental Marine Biology and Ecology, 2007, 346(1-2):76~86.
    [241]韩博平,韩志国,付翔.藻类光合作用机理与模型.北京:科学出版社, 2003.
    [242] Schreiber U. Pulse-Amplitude-Modulation (PAM) fluorometry and saturation pulse method // Papageorgiou G C, Govindjee, eds. An Overview: Chlorophyll a Fluorescence. Dordrecht: Springer, 2004.
    [243] Cen Y, Bornman J F. The response of bean plants to UV-B radiation under different irradiances of background visible light. Journal of Experimental Botany, 1990, 41(11):1489~1495.
    [244] Krause G H, Weis E. Chlorophyll fluorescence and photosynthesis: The basics. Annual Review of Plant Physiology and Plant Molecular Biology, 1991, 42(1):313~349.
    [245] Paltt T, Gallegos C L, Harrison W G. Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton. Journal of Marine Research, 1980, 38:687~701.
    [246] Cruz S, Serodio J. Relationship of rapid light curves of variable fluorescence to photoacclimation and non-photochemical quenching in a benthic diatom. Aquatic Botany, 2008, 88(3):256~264.
    [247] Arnon D I. Copper enzymes in isolated chloroplasts. polyphenoloxidase in beta vulgaris. Plant Physiology, 1949, 24(1):1~15.
    [248] Grobe C W, Murphy T M. Solar ultraviolet-B radiation effects on growth and pigment composition of the intertidal alga Ulva expansa (Setch.) S. & G. (Chlorophyta). Journal of Experimental Marine Biology and Ecology, 1998, 225(1):39~51.
    [249] Abelson N J, Simon I M. Phycobiliproteins in cyanobacteria. // Lester P, Alexander G N, eds. Method in enzymology. Dordrecht: Kluwer Academic Publishers, 1988.
    [250] Padgett M P, Krogmann D W. Large scale preparation of pure phycobiliproteins. Photosynthesis Research, 1987, 11(3):225~235.
    [251] Macdonald T M, Dubois L, Smith L C, et al. Sensitivity of cyanobacterial antenna, reaction center and CO2 assimilation transcripts and proteins to moderate UVB: Light acclimation potentiates resistance to UVB. Photochemistry and Photobiology, 2003, 77(4):405~412.
    [252] Hader D. Photoinhibition and UV Response in the Aquatic Environment. // Demmig-Adams B, Adams Iii W W, Mattoo A K, eds. Photoprotection, Photoinhibition, Gene Regulation, and Environment. Dordrecht: Springer, 2006.
    [253] Livak K J, Schmittgen T D. Analysis of relative gene expression data using Real-Time Quantitative PCR and the 2–ΔΔCT method. Methods, 2001, 25:402~408.
    [254] Six C, Joubin L, Partensky F, et al. UV-induced phycobilisome dismantling in the marine picocyanobacterium Synechococcus sp. WH8102. Photosynthetic Research, 2007, 92:75~86.
    [255] Wu Z, Gan N, Huang Q, et al. Response of Microcystis to copper stress - Do phenotypes of Microcystis make a difference in stress tolerance?. Environmental Pollution, 2007, 147(2):324~330.
    [256] Maxwell K, Johnson G N. Chlorophyll fluorescence-a practical guide. Journal of Experimental Botany, 2000, 51(345):659~668.
    [257] Campbell D, Hurry V, Clarke A K, et al. Chlorophyll fluorescence analysis of cyanobacterial photosynthesis and acclimation. Microbiology and Molecular Biology Reviews, 1998, 62(3): 667~683.
    [258] Nonnengiesser K, Schuster A, Koenig F. Carotenoids and reaction center II-D1 protein in light regulation of the photosynthetic apparatus in Aphanocapsa. Botanica Acta, 1996, 109(2):115~124.
    [259] Lao K Q, Glazer A N. Ultraviolet-B photodestruction of a light-harvesting complex. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(11):5258~5263.
    [260] Maccoll R. Cyanobacterial phycobilisomes. Journal of Structural Biology, 1998, 124:311~334.
    [261] Sinha R P, H?der D P. Biochemistry of phycobilisome disassembly by ultraviolet-B radiation in cyanobacteria. Recent Research Development on Biochemistry, 2003, 4:1~11.
    [262] Edelman M, Mattoo A K. The D1 Protein: Past and Future Perspectives. // Demmig-Adams B, Adams Iii W W, Mattoo A K, eds. Photoprotection, Photoinhibition, Gene Regulation, and Environment. Dordrecht: Springer, 2006.
    [263] Campbell D, Eriksson M, Oquist G, et al. The cyanobacterium Synechococcus resists UV-B by exchanging photosystem II reaction-center D1 proteins. Proceeding of the National Academy of Sciences, 1998, 95:364~369.
    [264] Chauhan S, Pandey R, Singhal G S. Ultraviolet-B induced changes in ultrastructure and D1/D2 proteins in cyanobacteria Synechococcus sp. PCC 7942. Photosynthetica, 1998, 35(2):161~167.
    [265] Sinha R P, Singh N, Kumar A, et al. Impacts of ultraviolet-B irradiation on nitrogen-fixing cyanobacteria of rice paddy fields. Journal of Plant Physiology, 1997, 150(1-2):188~193.
    [266]张锡辉.水环境修复工程学原理及应用.北京:化学工业出版社, 2002.
    [267]朱敏,王国祥,王建,等.南京玄武湖清淤前后底泥主要污染指标的变化.南京师范大学学报(工程技术版), 2004, 4(02):66~69.
    [268]吴芝瑛,吴洁,虞左明.杭州西湖水生高等植物的恢复与水生生态修复.环境污染与防治, 2005, 27(01):38~40.
    [269]俞林伟,谭镇,钟萍,等.广州市流花湖表层底泥磷的形态与生物可利用性.城市环境与城市生态, 2006, 19(02):14~16.
    [270]王昊阳,管运涛,水野忠,等.深圳老城区局部雨污管网水质水量检测.清华大学学报(自然科学版), 2008, 48(6):987~990.
    [271]陶益,毛献忠,段余杰,等.深圳荔枝湖富营养化综合治理工程效果研究.环境科学, 2008, 29(4):879~883.
    [272]深圳市环境科学研究所,中国市政工程东北设计研究院.深圳市荔枝湖水污染综合治理工程初步设计.深圳:深圳市水污染治理指挥部办公室, 2005.
    [273]国家环境保护总局,水和废水监测分析方法编委会.水和废水监测分析方法(第四版).北京:中国环境科学出版社, 2002.
    [274]黄祥飞,陈伟民,蔡启铭.湖泊生态调查观测与分析.北京:中国标准出版社, 1999.
    [275] Yun Y S, Lim S R, Cho K K, et al. Variations of photosynthetic activity and growth of freshwater algae according to ozone contact time in ozone treatment. Biotechnology Letters, 1997, 19(9):831~833.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700