用户名: 密码: 验证码:
净水厂预沉池利用鲢鱼控制微囊藻的机制与效能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高微囊藻原水影响饮用水常规处理工艺的正常运行和产水水质。为降低常规工艺和其他除藻工艺的藻类负荷,本文提出利用鲢鱼对微囊藻的选择性滤食特性,在净水厂预沉池中放养滤食性鲢鱼的生物预处理,并自2005年开始在天津某水厂进行生产性试验。
     为了深入认识藻类的变化和去除规律,在种类细分的基础上对试验过程中藻类变化进行了检测。试验期间,在引滦水中共检出藻类7门43属68种。春季引滦水中绿藻占优势,藻类总量平均189.4×104cells/L;夏季水温升高,蓝藻占优势,藻类总量平均2724.8×104cells/L(最高5933×104cells/L),其中水华微囊藻是绝对优势藻,含量占藻类总量的80.9%;秋季引滦原水中绿藻重新占优势。水温是影响原水藻类群落结构变化的关键因素。
     鲢鱼放养密度约65g/m3的预沉池对引滦原水中藻类的去除效能受原水藻类群落结构的影响。由于鲢鱼并不能抑制绿藻含量的增长,春季放养鲢鱼的预沉池出水藻类含量高于进水2.54倍。夏季,虽然绿藻含量仍有升高,但鲢鱼对水华微囊藻平均79.5%的高效去除使出水藻类总量降低了55.3%。秋季放养鲢鱼的预沉池出水藻类含量高于进水。空白对比试验表明,预沉池放养鲢鱼是微囊藻得到控制的原因。研究发现,放养鲢鱼对预沉池中浊度降低和pH值升高并无明显影响,鲢鱼对藻类的滤食可能有助于磷的去除。
     根据鲢鱼放养密度修正之后,除藻效能回归方程可较为准确地预测微囊藻的去除效能。根据鲢鱼除藻机理建构的动力学模型能够量化地描述含藻原水进入预沉池之后藻类含量的变化过程。基于动力学模型的深入分析表明,在满足了适宜鲢鱼放养密度、原水中微囊藻的优势地位以及适宜的水力停留时间等条件后,预沉池利用鲢鱼的生物预处理能够获得较好的控制藻类总量的效果。
     预沉池利用鲢鱼的生物预处理和常规工艺联用能够充分发挥各单元的除藻特色。生物预处理适于去除微囊藻,而常规工艺各单元对其他藻类的去除效果较好。预氯化单元除藻效果稳定可靠,而混凝沉淀单元对绿藻的去除效果优于蓝藻,过滤单元对藻类的高截留率则是保证滤后水藻类低含量的关键。
     综上所述,净水厂预沉池利用鲢鱼的生物预处理技术不仅有稳定而良好的去除微囊藻效能和清晰的运行机制,而且不消耗电能药剂、不排放温室气体,具有广阔的推广应用前景。
High concentration of Microcystis in raw water cause negative effect on the operation of conventional drinking water processes and drinking water quality. In order to reduce algae load of conventional drinking water treatment and other processes for algae removal, the biological pretreatment of algae-laden raw water by stocking filter-feeding silver carp was proposed in waterworks. Since 2005 the experiment was conducted in the presedimentation tank in a waterworks in Tianjin.
     Algae species in raw water were identified to comprehensively understand the algae changes and removal characteristics. 7 phyla, 43 classes, 68 species of algae was determined based on the analysis on the phytoplankton community structures in Yinluan raw water. In spring green algae was the predominant species in Yinluan raw water, and the mean value of algae concentration was 189.4×104cells/L, while in summer cyanobacteria was the predominant species, and the mean value of algae concentration was 2724.8×104cells/L (the highest value was 5933×104cells/L). In summer Microsystis flos-aquae had very high proportion of 80.9% in the raw water. In autumn green algae became the predominant species again. Water temperature is key factor that influences the phytoplankton community structure.
     After silver carp were stocked in the presedimentation tank at the density of 65g/m3, phytoplankton community structure had remarkable influence on removal efficacy of algae in Yinluan raw water. Because silver carp cannot inhibit the growth of green algae, the algae concentration were 2.54 times more in effluent than in influent. Although in summer the concentration of green algae rose, the algae removal reached to 55.3% due to the effective removal of Microsystis flos-aquae by silver carp. However in autumn the algae concentration were more in influent than in effluent. Contast test indicated that stocking silver carp led to the effective removal of Microsystis flos-aquae. It was also found that silver carp stocking had not remarkable influence on turbidity and pH in the presedimentation tank, and the silver carp filter-feeding on algae may contribute to the transfer and removal of phosphorus.
     Revised regression equations of algae removal efficacy could accurately predict the Microsystis flos-aquae removal efficacy, and the kinetic model was able to clearly describe the mechanisms of the change of algae in the presedimentation tank stocked by silver carp. Kinetic model analysis showed that enough stocking density of silver carp, dominance of Microcystis in influent and suitable HRT makes the biological pretreatment of utilizing silver in presedimentation tank possible.
     Algae removal characteristics can be fully played when the biological pretreatment of stocking silver carp in presedimentation tank and conventional processes are combined. The biological pretreatment is suitable for Microsystis flos-aquae removal, and conventional processes can effectively remove other algae. Algae removal of prechlorination unit are stable and reliable, while the coagulation-sedimentation units have a better removal for green algae than cyanobacteria, and the high filter rate of algae is important to ensure low-level algae concentration in water.
     In summary, the biological pretreatment technology of stocking silver carp in presedimentation tank not only has a stable and good Microcystis removal performance and clear operation mechanism, also has the advantages of no energy and chemicals consumption, no greenhouse gas emissions, and has a bright future of practical application.
引文
1范成新,王春霞.长江中下游湖泊环境地球化学与富营养化.科学出版社. 2007:8~9
    2孔繁翔,高光.大型浅水富营养化湖泊中蓝藻水华形成机理的思考.生态学报. 2005, 25(03):203~209
    3 J. A. Needoba, R. A. Foster, C. Sakamoto, et al.Nitrogen fixation by unicellular diazotrophic cyanobacteria in the temperate oligotrophic Limnology and Oceanography.2007, 52(4):1317~1327
    4 A. S. Steunou, D. Bhaya, M. M. Bateson, et al.In situ analysis of nitrogen fixation and metabolic switching in unicellular thermophilic cyanobacteria inhabiting hot spring microbial mats.Proceedings of the National Academy of Sciences of the United States of America. 2006, 103(7):2398~2403
    5 R. L. Oliver, G, G, Ganf. Freshwater blooms. In: Whitton and Potts. The Ecology of Cyanobacteria, Their Diversity in Time and Space. Kluwer Academic Publishers. 2000:149~194
    6胡鸿钧,魏印心.中国淡水藻类.科学出版社. 2006:61~899
    7 D. P. Botes, P. L. Wessels, H.Kruger, et al. Structural studies on cyanoginosins-LR, -YR, -YA, and -YM, peptide toxins from Microcystis aeruginosa. Journal of the Chemical Society. Perkin transactions. 1985, (12):2747~2748
    8 D. P. Botes, A. A. Tuinman, P. L. Wessels, et al. The structure of cyanoginosin-LA, a cyclic heptapeptide toxin from the cyanobacterium Microcystis aeruginosa. Journal of the Chemical Society. Perkin transactions. 1984, (10):2311~2318
    9 C. Svrcek, D. W. Smith. Cyanobacteria toxins and the current state of knowledge on water treatment options: a review. Journal of Environmental Engineering. 2004, 3(3):155~185
    10 W. W. Carmichael. Cyanobacteria secondary metabolites—the cyanotoxins. Journal of Applied Microbiology. 1992, 72(6):445~459
    11 Q. X. Zhang, W. W. Carmichael, M. J. Yu, et al. Cyclic peptide hepatotoxins from freshwater cyanobacterial(blue-green algae) waterblooms collected in central China. Environmental Toxicology and Chemistry. 1991, 10(3):313~321
    12 V. M. Vasconcelos, K. Sivonen, W. R. Evans, et al. Hepatotoxic microcystin diversity in cyanobacterial blooms collected in Portuguese freshwaters. Water Research. 1996, 30(10):2377~2384
    13 T. W. Lambert, C. F. B. Holmes, S. E. Hrudey. Microcystin class of toxins: health effects and safety of drinking water supplies. Environmental Reviews.. 1994, 2(2) :167~186
    14 K. Mez, K. A. Beattie, G. A. Codd, et al. Identification of a microcystin in benthic cyanobacteria linked to cattle deaths on alpine pastures in Switzerland. European Journal of Phycology. 1997, 32(2):111~117
    15 E. C. Lippy, J. Erb. Gastrointestinal Illness at Sewickley, Pennsylvania. Journal of the American Water Works Association. 1976, 68:606~610
    16 E. M. Jochimsen, W. W. Carmichael, J. S. An, et al. Liver failure and death after exposure to microcystins at a hemodialysis center in Brazil. The New England Journal of Medicine. 1998, 338(13):873~878
    17 R. Nishiwaki-Matsushima, T. Ohta, S. Nishiwaki, et al. Liver tumor promotion by the cyanobacterial cyclic peptide toxin microcystin-LR. Journal of cancer research and clinical oncology. 1992, 118(6):420~424
    18 A. K. Y. Lam, P. M. Fedorak, E. E. Prepas. Biotransformation of the Cyanobacterial Hepatotoxin Microcystin-Lr, as Determined by Hplc and Protein Phosphatase Bioassay. Environmental Science and Technology. 1995, 29(1):242~246
    19 S. Z. YU. Primary prevention of hepatocellular carcinoma. Journal of Gastroenterology and Hepatology. 1995, 10(6):674~682
    20 Y. Ueno, S. Nagata, T. Tsutsumi, et al. Detection of microcystins, a blue-green algal hepatotoxin, in drinking water sampled in Haimen and Fusui, endemic areas of primary liver cancer in China, by highly sensitive immunoassay. Carcinogenesis. 1996, 17(6):1317~1321
    21 I. R. Falconer, A. M. Beresford, M. T. Runnegar. Evidence of liver damage by toxin from a bloom of the blue-green alga, Microcystis aeruginosa. The Medical Journal of Australia. 1983, 1(11):511~514
    22 L. A. Lawton, G. A. Codd. Cyanobacterial (Blue-Green Algal) Toxins and their Significance in UK and European Waters. Water and Environment Journal. 1991, 5(4):460~465
    23 A. R. Dzialowski, V. H. Smith, D. G. Huggins, et al. Development of predictivemodels for geosmin-related taste and odor in Kansas, USA, drinking water reservoirs. Water Research. 2009, 43(11):2829~2840
    24 A. J. Whelton, A. M. Dietrich. Relationship between intensity, concentration, and temperature for drinking water odorants. Water Research. 2004, 38(6):1604-1614
    25 M. Nakajima, T. Ogura, Y. Kusama, et al. Inhibitory effects of odor substances, geosmin and 2-methylisoborneol, on early development of sea urchins. Water Research. 1996, 30(10):2508~2511
    26 I. H. Suffet, D. Khiari, A. Bruchet. The drinking water taste and odor wheel for the millennium: Beyond geosmin and 2-methylisoborneol. Water Science and Technol. 1999, 40(6):1~13
    27黄雷,陈卫,马中文等.苏南河网地区湖泊水源水厂除藻试验研究.净水技术. 2009, (02):16~18,23
    28于建伟,李宗来,曹楠等.无锡市饮用水嗅味突发事件致嗅原因及潜在问题分析.环境科学学报. 2007, 27(11):1771~1777
    29 F. Ludwig, A. Medger, H. Bornick, et al. Identification and expression analyses of putative sesquiterpene synthase genes in phormidium sp and prevalence of geoA-Like genes in a drinking water reservoir. Applied and Environmental Microbiology. 2007, 73(21):6988~6993
    30赵艳梅.国内水源水典型嗅味物质调查及控制技术研究.中国地质大学硕士学位论文. 2008:49~59
    31朱春伟,张锡辉,王凌云.水源藻类和底泥对典型嗅味物质的耦合影响.中国给水排水. 2008, 24(05):14~17
    32严煦世,范瑾初.给水工程(第四版).中国建筑工业出版社. 1999:254~255
    33 R. Henderson, S. A. Parsons, B. Jefferson. The impact of algal properties and pre-oxidation on solid-liquid separation of algae. Water Research. 2008, 42(8-9):1827~1845
    34 D. S. Briley, D. R. U. Knappe. Optimizing ferric sulfate coagulation of algae with streaming current measurements. Journal of the American Water Works Association. 2002, 94(2):80~90
    35 M. P. Bonnet, M. Poulin. Numerical modelling of the planktonic succession in a nutrient-rich reservoir: environmental and physiological factors leading to Microcystis aeruginosa dominance. Ecological Modelling. 2002, 156(2-3):93~112
    36 N. J. D. Graham, V. E. Wardlaw, R. Perry, et al. The significance of algae as trihalomethane precursors. Water Science and Technology. 1998, 37(2):83~89
    37 J. D. Plummer, J. K. Edzwald. Effect of ozone on algae as precursors for trihalomethane and haloacetic acid production. Environmental Science and Technology. 2001, 35(18):3661~3668
    38 B. G. Oliver, D. B. Shindler. Trihalomethanes from the chlorination of aquatic algae. Environmental Science and Technology. 1980, 14(12):1502~1505
    39 C. Amblard, G. Bourdier, J. F. Carrias, et al. Seasonal evolution of microbial community structure in a drinking water reservoir. Water Research. 1996, 30(3):613~624
    40 L. Heng, Y. L. Yanling, G. J. Weijia, et al. Effect of pretreatment by permanganate/chlorine on algae fouling control for ultrafiltration (UF) membrane system. Desalination. 2008, 222(1-3):74~80
    41刘成,陈卫,盛誉等. pH对氯氧化微囊藻毒素能力的影响.西安建筑科技大学学报(自然科学版) . 2009, 41(03):133~137
    42 D. E. Lerda, C. H. Prosperi. Water mutagenicity and toxicology in Rio Tercero (Cordoba, Argentina) . Water Research. 1996, 30(4):819~824
    43吴清平,孟凡亚,张菊梅等.臭氧消毒中溴酸盐的形成、检测与控制.中国给水排水. 2006, 22(16):17~20
    44裴义山,杨敏,郭召海等.含溴水源水臭氧处理时溴酸盐的产生与控制.环境科学学报. 2007, 27(11):9~12
    45韩帮军,马军,张涛等.臭氧催化氧化抑制溴酸盐生成效能的研究.环境科学. 2008, 29(03):123~128
    46何茹,鲁金凤,马军等.臭氧催化氧化控制溴酸盐生成效能与机理.环境科学. 2008. 29(01):101~105
    47刘海龙,杨栋,赵智勇等.高藻原水预臭氧强化混凝除藻特性研究.环境科学. 2009, 30(07):44~49
    48李玉仙,樊康平,顾军农等.河北应急水源的预臭氧化工艺研究.给水排水. 2009, 35(09):20~23
    49方晶云,马军,王立宁等.臭氧预氧化对藻细胞及胞外分泌物消毒副产物生成势的影响.环境科学. 2006, 27(06):89~94
    50马军,李圭白,李晓东.高锰酸钾除微污染效能-GC/MS分析.中国给水排水. 1999, 15(05):14~16,11
    51张永吉,周玲玲,李伟英等.高锰酸盐复合剂强化混凝对水中天然有机物的去除机制研究.环境科学. 2009, 30(03):139~142
    52何铁林.水处理化学品手册.化学工业出版社. 2000:253~255
    53 S. F. Lan. Emergy evaluation of the environment and economy of Hong Kong. Journal of Environmental Sciences. 1994, 6(4):432~439
    54张大丽,余国忠.次氯酸钠/过氧化氢法处理含铜绿微囊藻原水.河南大学学报(自然科学版) . 2007, 37(03):29~32
    55樊雪红,王启山,刘善培等.预氧化对混凝—气浮工艺去除铜绿微囊藻效果的影响.给水排水. 2007, 33(07):24~27
    56 M. Drabkova, W. Admiraal, B. Marsalek. Combined exposure to hydrogen peroxide and light - Selective effects on cyanobacteria, green algae, and diatoms. Environmental Science and Technology. 2007, 41(1):309~314
    57彭海清,谭章荣,高乃云等.给水处理中藻类的去除.中国给水排水. 2002, 18(02):29~31
    58王东升,刘海龙,晏明全等.强化混凝与优化混凝:必要性、研究进展和发展方向.环境科学学报. 2006, 26(04):544~551
    59 J. K. Edzwald, J. E. Tobiason. Enhanced coagulation:us requirements and a broader view. Water Sci Technol. 1999, 40(9):63~70
    60于莉君,李圭白,赵虎等. PPC强化混凝与超滤联用处理含藻水的研究.水处理技术. 2009, 35(03):59~62
    61朱云,肖锦,周勤.一体化水力强化混凝设备及其微污染原水处理工况最优化研究.环境工程学报. 2007, (05):45~50
    62 J. K. Fawell, J. Hart, H. A. James, et al. Blue-green algae and their toxins-analysis, toxicity, treatment and environment and environmental control. Water Supply. 1993, 11(3-4):109~121
    63陈卫,李圭白,邹浩春. PPC强化混凝除蓝藻除色度效果及致因研究.河海大学学报(自然科学版) . 2006, 24(02):26~29
    64孙士权,王旭东,马军等.高锰酸盐-聚丙烯酰胺联用强化混凝处理太湖支流原水研究.给水排水. 2008, 34(05):26~29
    65 M. R. Teixeira, M. J. Rosa. Comparing dissolved air flotation and conventional sedimentation to remove cyanobacterial cells of Microcystis aeruginosa Part II. The effect of water background organics. Separation and Purification Technology. 2007, 53(1):126~134
    66 M. R. Teixeira, M. J. Rosa. Comparing dissolved air flotation and conventional sedimentation to remove cyanobacterial cells of Microcystis aeruginosa Part 1:The key operating conditions. Separation and Purification Technology. 2006, 52(1):84~94
    67李镜明,栗心国,徐和平.辐射流滤池直接过滤处理含藻湖水的试验研究.给水排水. 1992, 18(01):5~8
    68何文杰,李玥,康华等.浸入式连续微滤工艺处理微污染水源水的中试研究.供水技术. 2007, 1(03):1~4
    69 T. Toncheva-Panova, I. Pouneva, Y. Mizinska-Boevska. Lysis of the green alga Choricystis minor by bacterial pathogen. Comptes Rendus de Academie Bulgare des Sciences. 2008, 61(8):1013~1020
    70 J. D. Kim, C. G. Lee. Purification and characterization of extracellular beta-glucosidase from Sinorhiziobium kostiense AFK-13 and its algal lytic effect on Anabaena flos-aquae (Retracted article. See vol 17, pg 1908, 2007). Journal of Microbiology and Biotechnology. 2007, 17(5):745~752
    71肖慈琼,姜红,程凯等.溶藻放线菌AN02的筛选及其培养条件的优化.微生物学杂志. 2007, 27(04):11~14
    72 R. M. Mu, Z. Q. Fan, H. Y. Pei, et al. Isolation and algae-lysing characteristics of the algicidal bacterium B5. Journal of environmental science– China. 2007, 19(11):1336~1340
    73于光,李云晖,姚琛等.聚己内酯纳米纤维膜固定化溶藻菌对藻类和藻毒素的生物降解作用.东南大学学报(自然科学版) . 2008, 38(03):483~487
    74 S. Y. Shi, D. S. Tang, Y. D. Liu. Effects of an Algicidal Bacterium Pseudomonas mendocina on the Growth and Antioxidant System of Aphanizomenon flos-aquae. Current Microbiology. 2009, 59(2):107~112
    75 Y. K. Kang, S. Y. Cho, Y. H. Kang, et al. Isolation, identification and characterization of algicidal bacteria against Stephanodiscus hantzschii and Peridinium bipes for the control of freshwater winter algal blooms. Journal of Applied Phycology. 2008, 20(4):375~386
    76李燕,潘伟斌,杨丽丽.三株溶藻细菌胞外溶藻活性物质若干分离特性的研究.微生物学通报. 2008, 35(02):171~177
    77季民,吴昌敏,贾霞珍等.生物接触氧化法对引滦水中藻类的去除.中国给水排水. 2003, 19(08):56~58
    78岳舜琳.组合水处理工艺除藻效率探讨.净水技术. 2006, 25(02):1~5
    79周真明,黄廷林,丛海兵.扬水曝气/生物接触氧化工艺的除藻效果研究.中国给水排水. 2007, 23(15):13~16
    80林涛,崔福义,陈卫等.鱼类控制水蚤类浮游动物孳生的下行效应试验.南京理工大学学报(自然科学版) . 2008, 32(05):646~650
    81林涛,崔福义,刘冬梅.水蚤类浮游动物孳生的生物控制试验研究.河海大学学报(自然科学版) . 2006, 24(05):481~484
    82 R. J. Duvall, L. W. J. Anderson, C. R. Goldman. Pond enclosure evaluations of microbial products and chemical algicides used in lake management. Journal of Aquatic Plant Management. 2001, 39:99~106
    83吴芝瑛,虞左明,盛海燕等.杭州西湖底泥疏浚工程的生态效应.湖泊科学. 2008, 20(03):277~284
    84钟继承,范成新.底泥疏浚效果及环境效应研究进展.湖泊科学. 2007, 19(01):1~10
    85 J. L. Brooks, S. I. Dodson. Predation, body size, and composition of plankton. Science. 1965, 150:28~35
    86 J. Shapiro, V. Lamarra, M. Lynch. Biomanipulation: an ecosystem approach to lake restoration. In: P. L. Brezonik and J. L. Fox Editors. Water Quality Management Through Biological Control. University of Florida, 1975:85~96
    91 D. Gerdeaux. Phosphorus and eutrophication of fresh waters. Mechanisms and consequences in large lakes. Oceanis. 2009, 33(1-2):75~86
    87 S. R. Carpenter, J. F. Kitchell, J. R. Hodgson. Cascading trophic interactions and lake productivity. Bioscience. 1985, 35(10):634~639
    88 D. J. McQueen, J. R. Post, E. L. Mills. Trophic relationships in freshwater pelagic ecosystems. Canadian Journal of Fisheries and Aquatic Sciences. 1986, 43(8):1571~1581
    89刘建康,谢平.揭开武汉东湖蓝藻水华消失之谜.长江流域资源与环境. 1999, 8(03):312~319
    90谢平.鲢、鳙与藻类水华控制.科学出版社. 2003:66~67
    92 E. Bergman, S. F. Hamrin, P. Romare. The effects of cyprinid reduction on the fish community. Hydrobiologia. 1999, 404:65~75
    93 W. Scharf. Development of the fish stock and its manageability in the deep, stratifying Wupper Reservoir. Limnologica. 2008, 38(3-4):248~257
    94 M. Beklioglu, C. O. Tan. Restoration of a shallow Mediterranean Lake by biomanipulation complicated by drought. Fundamental and applied limnology. 2008, 171(2):105~118
    95 G. M. El-Shabrawy, H. J. Dumont. Spatial and seasonal variation of the - 168 -zooplankton in the coastal zone and main khors of Lake Nasser (Egypt). Hydrobiologia. 2003, 491(1-3):119~132
    96 M. Matthes. Low genotypic diversity in a Daphnia pulex population in a biomanipulated lake: the lack of vertical and seasonal variability. Hydrobiologia. 2004, 526(1):33~42
    97 P. Xie. Experimental studies on the role of planktivorous fishes in the elimination of Microcystis bloom from Donghu Lake using enclosure method . Chinese Journal of Oceanology and Limnolgy. 1996, 14(3):193~204
    98 Z. X. Ke, P. Xie, L. G. Guo, et al. In situ study on the control of toxic Microcystis blooms using phytoplanktivorous fish in the subtropical Lake Taihu of China: A large fish pen experiment. Aquaculture. 2007, 265(1-4):127~138
    99 J. Chen, P. Xie, D. W. Zhang, et al. In situ studies on the bioaccumulation of microcystins in the phytoplanktivorous silver carp (Hypophthalmichthys molitrix) stocked in Lake Taihu with dense toxic Microcystis blooms. Aquaculture. 2006, 261(3):1026~1038
    100 X. Zhang, P. Xie, L. Hao, et al. Effects of the phytoplanktivorous silver carp (Hypophthalmichthys molitrixon) on plankton and the hepatotoxic microcystins in an enclosure experiment in a eutrophic lake, Lake Shichahal in Beijing. Aquaculture. 2006, 257(1-4):173~186
    101 Thomas L, Crisman, John R. Beaver. Applicability of planktonic biomanipulation for managing eutrophication in the subtropics. Hydrobiologia. 1990, 200-201(1):177~185
    102 P. I. Pogozhev, T. N. Gerasimova. The Effect of Zooplankton on Microalgae Blooming and Water Eutrophication. Water Resource. 2001, 28(4):420~427
    103 Il. T?nno, H. Künnap, T. N?ges. The role of zooplankton grazing in the formation of `clear water phase' in a shallow charophyte-dominated lake. Hydrobiologia. 2003, 506-509(1-3):353~358
    104 J. Sarvala, H. Helminen, V. Saarikari, et al. Relations between planktivorous fish abundance, zooplankton and phytoplankton in three lakes of differing productivity. Hydrobiologia. 1998, 363:81~95
    105王所安,王志敏,李国良等.河北动物志(鱼类).河北科学技术出版社. 2001:114~115
    106李德尚,董双林.鲢、鳙滤食器官结构与功能的研究.动物学报. 1996, 42(01):10~15
    107 D. W. Smith. The Feeding Selectivity of Silver Carp, Hypophthalmichthys molitrix Val. Journal of Fish Biology. 1989, 34(6):819~828
    115王得玉,冯学智,周立国等.太湖蓝藻爆发与水温的关系的MODIS遥感.湖泊科学. 2008, 20(02):173~178
    108 S. L. Dong, D. L. Li, X. W. Bing, et al. Suction volume and filtering efficiency of silver carp (Hypophthalmichthys molitrix Val.) and bighead carp (Aristichthys nobilis Rich.). Journal of Fish Biology. 1992, 41(5):833~840
    109国家环境保护总局.水和废水检测分析方法(第四版).中国环境科学出版社. 2002:88~671
    110赵志伟,崔福义,任刚等.预氧化对滦河天津段高藻期藻类的控制效果.沈阳建筑大学学报(自然科学版) . 2006, 22(04):617~621
    111张锦,陈忠林,范洁等.高锰酸钾及其复合药剂强化混凝除藻除嗅对比.哈尔滨工业大学学报. 2004, 36(06):736~738
    112王玉恒,王启山,吴玉宝等.分段回流式逆流气浮工艺处理高藻水的研究.环境科学. 2008, 29(11):3071~3076
    113方晶云,马军,王立宁等.臭氧预氧化对藻细胞及胞外分泌物消毒副产物生成势的影响.环境科学. 2006, 27(06):1127~1132
    114 C. Mervin Palmer. A composite rating of algae tolerating organic pollution. Journal of Phycology. 1969, 5(1):5
    116陈桥,韩红娟,翟水晶等.太湖地区太阳辐射与水温的变化特征及其对叶绿素a的影响.环境科学学报. 2009, 29(01):199~206
    117刘玉生,韩梅,梁占彬等.光照、温度和营养盐对滇池微囊藻生长的影响.环境科学研. 1995, 8(06):7~11
    118 C. W. Y. Lam, Warwick B. Silvester. Growth interactions among blue-green (Anabaena Oscillarioides, Microcystis aeruginosa) and green (Chlorella sp.) algae. Hydrobiologia. 1979, 63(2):135~143
    119 S. Q. Qian, F. X. Kong, X. L. Shi, et al. Interspecific Interaction between Microcystis aeruginosa and Chlorella pyrenoidosa in Different Phosphate Media. Journal of Freshwater Ecology. 2008, 23(4):635~642
    120谭啸,孔繁翔,曹焕生等.利用流式细胞仪研究温度对两种藻竞争的影响.湖泊科学. 2006, (04):103~108
    121 Z. X. Wu, L. R. Song, R. H. Li. Different tolerances and responses to low temperature and darkness between waterbloom forming cyanobacterium Microcystis and a green alga Scenedesmus. Hydrobiologia. 2008, 596:47~55
    122谢平.论蓝藻水华的发生机制:从生物进化、生物地球化学和生态学视点.科学出版社. 2007:30~51
    123王新华,纪炳纯,李明德等.引滦工程上游浮游植物及其水质评价.环境科学研究. 2004, 17(04):18~24
    124金艳,刘建国,王丽艳.于桥水库水源地富营养化调查及分析评价.中国水利学会第四届青年科技论坛论文集,北京, 2008:129~133
    125刘志泉.水处理流程中四角角星鼓藻异常增殖研究.哈尔滨工业大学硕士学位论文. 2008:24~33
    126钱善勤,孔繁翔,史小丽等.不同形态磷酸盐对铜绿微囊藻和蛋白核小球藻生长的影响.湖泊科学. 2008, (06):112~117
    127刘焕亮,李梦河,李立萍等.鲢滤食器官胚后发育生物学的研究.大连水产学院学报. 1993, 8(2-3):1~17
    128唐汇娟,谢平,刘丽等.武汉东湖浮游植物群落结构的时空变化与环境因子的关系.中山大学学报(自然科学版) . 2008, 47(03):100~104

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700