用户名: 密码: 验证码:
棘孢木霉(Trichoderma asperellum)MAPK家族基因的克隆及生物防治功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
棘孢木霉(T.asperellum)是重要的生物防治菌,通过多种机制防治植物土传病菌的危害。这些机制已经被广泛研究,但是其生物防治的分子机制仍不清楚。为了掌握棘孢木霉(T.asperellum)生物防治的分子调控机制,本论文以棘孢木霉(T.asperellum)菌丝体时期的cDNA文库为基础,克隆了与生物防治相关的调控基因:丝裂原活化蛋白激酶基因task1和裂原活化蛋白激酶激酶激酶基因taskkk,并对其生物防治功能进行研究。
     首先克隆了task1基因和taskkk基因及两基因的侧翼序列,并对两基因进行序列分析。然后构建双元重组质粒,以潮霉素抗性基因作为筛选标记,采用根癌农杆菌介导法转化棘孢木霉(T.asperellum,)获得task1基因敲除突变体Δtask1和taskkk基因敲除突变体Δtaskkk。
     将突变体Δtask1和Δtaskkk分别与棘孢木霉野生菌体进行对比,研究task1和taskkk基因对棘孢木霉菌体形态和生长的影响。结果表明:task1基因影响棘孢木霉菌丝生长、分裂、孢子的形成和菌体的生长状态,对生长速度和生长量没有影响;taskkk基因影响孢子的形成,而与菌丝分裂、菌体生长状态、生长速度和生长量无关。
     然后,对task1和taskkk基因对棘孢木霉重寄生作用的影响进行了研究。结果表明:棘孢木霉突变体Δtask1能识别病原菌,但不能寄生病原菌,只是沿菌丝表面生长,产生细胞壁水解酶,水解病原菌,说明task1基因与棘孢木霉对病原菌的寄生有关;突变体Δtaskkk并不识别致病菌,与病原菌各自生长,说明taskkk基因与棘孢木霉重寄生过程中对致病菌的识别相关。对棘孢木霉、突变体Δtask1和Δtaskkk重寄生过程中的水解酶表达和代谢产生的水解酶活性分析表明:task1基因对纤维素酶基因,β-1,3葡聚糖酶基因,β-1,6葡聚糖酶基因,N-乙酰-氨基葡萄糖苷酶1,β-1,4葡聚糖酶基因和聚酮合酶基因的表达起负调控作用;taskkk基因对几丁质酶基因,N-乙酰-氨基葡萄糖苷酶2,β-1,3葡聚糖酶基因,β-1,6葡聚糖酶基因和聚酮合酶基因起正调控作用。对棘孢木霉、突变体Δtask1和Δtaskkk在不同碳源诱导条件下的水解酶活性分析表明:task1基因与N-乙酰氨基葡萄糖苷酶、β-1,3葡聚糖酶、纤维素酶和β-葡萄糖苷酶的产生有关,taskkk基因与几丁质酶、N-乙酰氨基葡萄糖苷酶和β-1,3葡聚糖酶的产生有关。
     最后,对task1和taskkk基因对棘孢木霉抗生作用的影响进行了研究。结果表明:task1基因负调控棘孢木霉聚酮合酶基因的表达,而taskkk基因对聚酮合酶基因起正调控作用,所以task1和taskkk基因在聚酮合酶基因的表达上不在同一条信号传导途径上;敲除task1基因后突变体抗真菌能力提高,而敲除taskkk基因后突变体抗真菌能力降低,说明两基因与抗真菌代谢物的合成都有关,但是两基因作用相反;然后,研究了task1和taskkk基因对棘孢木霉代谢产生的抗生素6-戊基-α-吡喃酮的影响,棘孢木霉野生型代谢产生的6-戊基-α-吡喃酮的量为1.32mg/g菌丝干重,突变体Δtask1为2.80mg/g菌丝干重,是野生型的2.12倍,突变体Δtaskkk代谢产生的6-戊基-α-吡喃酮的量为0.11mg/g菌丝干重,是野生型的0.08倍,说明task1基因对6-戊基-α-吡喃酮合成酶基因起负调控作用,taskkk基因是棘孢木霉代谢产物6-戊基-α-吡喃酮合成酶基因的正调控基因,task1和taskkk基因在6-戊基-α-吡喃酮的合成上不在同一条信号传导途径上。
Trichoderma asperellum is important biocontrol fungus and control plant soil-borne pathogens through a variety of mechanisms. Though those mechanisms have been researched extensively, its biocontrol molecular mechanisms remain unclear. In order to master the biocontrol molecular mechanism of T. asperellum, the regulating genes related to biological control:taskl and taskkk were cloned based on cDNA library from T. asperellum mycelium and their biocontrol related functions were studied.
     Firstly, gene taskl, taskkk and their flanking sequences were cloned; the sequences of two genes were analysed. Recombinant binary vectors were constructed using hygromycin resistance gene as a selection marker. Transformation of T. asperellum utilized the method of Agrobacterium tumefaciens-mediated homologous recombination, the gene knock out mutants Ataskl and Ataskkk were obtained
     Through comparing mutant Δtask1and Δtaskkk with T. asperellum wild type, the influences of gene taskl and taskkk on T. asperellum growth were studied. The result showed that gene taskl had an effect on mycelia growth, mitosis, spore formation and colony growth state, did not affect colony growth speed and quality; gene taskkk was influential to spore formation, did not influence mycelia growth, mitosis, colony growth state, colony growth speed and quality.
     Then, the influences of gene taskl and taskkk on T. asperellum mycoparasitic effects were studied. The experiment results indicated that mutant Ataskl could recognize and adhere to R. solani, produce cell wall hydrolytic enzyme and hydrolyze R. solani, but could not mycoparasite it, that means gene taskl has anything to do with mycoparasitic effects of T. asperellum; mutant Ataskkk could not recognize and mycoparasite R. solani and growth separately, which means gene taskkk has anything to do with recognition and mycoparasitic effects of T. asperellum. The hydrolases gene expression and activity analysis of T. asperellum, mutant Ataskl and Ataskkk showed that gene taskl down regulated expression of cellulase, β-1,3glucanase, β-1,6glucanase, N-acetyl glucosaminidasel and β-1,4glucanase gene; taskkk gene up regulated expression of gene chitinase, N-acetyl glucosaminidase2, β-1,3glucanase and β-1,6glucanase gene. The hydrolases activity analysis related to biocontrol of T. asperellum, mutant Ataskl and Ataskkk indicated that gene taskl related to production of N-acetyl-glucosaminidase, β-1,3glucanase, cellulose and β-glucosidase, gene taskkk related to production of chitinase, N-acetyl-glucosaminidase and β-1,3glucanase.
     Finally, the influences of gene taskl and taskkk on T. asperellum antibiosis were studied. The experiment results indicated that gene taskl down regulated expression of polyketide synthase, but gene taskkk up regulated expression of it, which means that gene taskl and taskkk is not on the same signaling pathways. Antifungal ability of mutant Ataskl was higher than T. asperellum and mutant Ataskkk was lower than T. asperellum, which indicated the two genes related to the production of antifungal metabolites, only with the opposite effect. The influences of gene taskl and taskkk on6-amyl-a-pyrone from T. asperellum were studied. The yield of6-amyl-a-pyrone from T. asperellum wild type was1.32mg/g mycelial dry weight, mutant Ataskl was2.80mg6-amyl-α-pyrone/g mycelial dry weight,2.12times of T. asperellum wild type, and mutant Ataskkk was0.11mg6-amyl-a-pyrone/g mycelial dry weight,0.08times of T. asperellum wild type. Those showed that gene tasklwas negative regulation gene of6-amyl-a-pyrone, gene taskkk was up regulation gene of it, gene taskl and taskkk was not on the same signaling pathways.
引文
[1]周睿霞,董开军.谈农药污染与环境保护[J].新疆环境保护,1999(1):31-33.
    [2]Anjaiah V, Thakur R P, Koedam N. Evaluation of Bacteria and Trichoderma for Biocontrol of Pre-harvest Seed Infection by Aspergillus flavus in Groundnut[J]. Biocontrol Science and Technology,2006,16(4):431-436.
    [3]Schubert M, Fink S, Schwarze F. Evaluation of Trichoderma spp. as a Biocontrol Agent against Wood Decay Fungi in Urban Trees[J]. Biological Control,2008,45(1):111-123.
    [4]Larralde-corona C P, Santiago-mena M R, Sifuentes-rincon A M, et al. Biocontrol Potential and Polyphasic Characterization of Novel Native Trichoderma Strains against Macrophominaphaseolina Isolated from Sorghum and Common Bean[J]. Applied Microbiology and Biotechnology,2008,80(1):167-177.
    [5]Guigon-lopeza C, Carvajal-millana E, Ponce de Nora Leon-Renovab, et al. Microcalorimetric Measurement of Trichoderma spp. Growth at Different Temperatures[J]. Thermochimica Acta,2010,509(1/2):40-45.
    [6]Fernandez-sandoval M T, Ortiz-garcia M, Galindo E, et al. Cellular Damage during Drying and Storage of Trichoderma harzianum Spores[J]. Process Biochemistry,2012,47(2):186-194.
    [7]Kirstin L M, Huntb J S, Stewarta A, et al. Compatibility of a Trichoderma atroviride Biocontrol Agent with Management Practices of Allium Crops[J]. Crop Protection,2012,33(3):94-100.
    [8]Viterbo A, Chet I. TasHydl, a New Hydrophobin Gene from the Biocontrol Agent Trichoderma asperellum, is Involved in Plant Root ColonizationfJ]. Molecular Plant Pathology,2006,7(4):249-258.
    [9]Suarez M B, Vizcaino J A, Llobell A, et al. Characterization of Genes Encoding Novel Peptidases in the Biocontrol Fungus Trichoderma harzianum CECT2413Using the Trichoest Functional Genomics Approach[J]. Current Genetics,2007,51(5):331-342.
    [10]Liu Y, Yang Q. Cloning and Heterologous Expression of Aspartic Protease SA76Related to Biocontrol in Trichoderma harzianum[J]. Ferns Microbiology Letters,2007,277(2):173-181.
    [11]Baranski R, Klocke E, Nothnagel T. Chitinase CHIT36from Trichoderma harzianum Enhances Resistance of Transgenic Carrot to Fungal Pathogens[J]. Journal of Phytopathology,2008,156(9):513-521.
    [12]Montero M, Sanz L, Rey M, et al. Cloning and Characterization of bgn16.3, Coding for a beta-1,6-glucanase Expressed during Trichoderma harzianum Mycoparasitism[J]. Journal of Applied Microbiology,2007,103(4):1291-1300.
    [13]Sun Wei-Cheng, Chung-hsien C, Wen-chien L. Protein Expression and Enzymatic Activity of Cellulases Produced by Trichoderma reesei RUT C-30on Rice Straw[J]. Process Biochemistry,2008,43(10):1083-1087.
    [14]Labuschagne N, Pretorius T, Idris A H. Plant Growth Promoting Rhizobacteria as Biocontrol Agents against Soil-Borne Plant Diseases[G]. Plant Growth and Health Promoting Bacteria. Berlin/Heidelberg:Springer,2011:211-230.
    [15]周晓梅,刘强,王瑛璐.拮抗菌生物防治农作物病害的研究进展[J].吉林师范大学学报(自然科学版),2010(4):36-39.
    [16]许煜泉,唐玮宁,郑有丽,等.筛选假单胞菌株M18防治大棚黄瓜枯萎病害[J].上海交通大学学报,1999(2):210-213.
    [17]李成云.冰核活性细菌的生物防治[J].云南农业科技,1997(3):45-46.
    [18]陈彤,廖祥儒,杜建芳,等.功能基因组研究进展[J].生物技术通报,2002(4):1-6.
    [19]Amein T, Zahra O, Welch C. Application and Evaluation of Pseudomonas Strains for Biocontrol of Wheat Seedling Blight[J]. Crop Protection,2008,27(1):532-536.
    [20]Williamson S M, Sutton D H, Marin T B. Evaluation of Pseudomonas Syringae Strain ESC-11for Biocontrol of Crown Rot and Anthracnose of Banana[J]. Biological Control,2008,46(3):279-286.
    [21]Huang Xin-Qi, Nan Zhang, Yong Xiao-Yu, et al. Biocontrol of Rhizoctonia solani Damping-off Disease in Cucumber with Bacilluspumilus SQR-N43[J]. Microbiological Research,2012,167(3):135-143.
    [22]Alvindiaa D G, Natsuaki K T. Biocontrol Activities of Bacillus amyloliquefaciens DGA14Isolated from Banana Fruit Surface against Banana Crown Rot-causing Pathogens[J]. Crop Protection,2009,28(3):236-242.
    [23]Li Shu-Bin, Mao Fang, Ren Chao-Zhou, et al. Characterization and Evaluation of the Endophyte Bacillus B014as a Potential Biocontrol Agent for the Control of Xanthomonas axonopodis Pv. Dieffenbachiae-Induced Blight of Anthurium[J].Biological Control,2012,63(1):9-16.
    [24]Ben Slimene-I, Tabbene O, Djebali N, et al. Putative Use of a Bacillus subtilis L194Strain for Biocontrol of Phoma Medicaginis in Medicago truncatula Seedlings[J]. Research in Microbiology,2012,163(5):388-397.
    [25]Samiyappana P R. Combining Pseudomonas, Bacillus and Trichoderma Strains with Organic Amendments and Micronutrient to Enhance Suppression of Collar and Root Rot Disease in Physic Nut[J]. Applied Soil Ecology,2011,49(9):215-223.
    [26]De oliveira M F, Da silva M G, Van der sand S T. Anti-phytopathogen Potential of Endophytic Actinobacteria Isolated from Tomato Plants (Lycopersicon esculentum) in Southern Brazil, and Characterization of Streptomyces sp. R18(6), a Potential Biocontrol Agent[J]. Research in Microbiology,2010,161(7):565-572.
    [27]Singh A K, Chhatpar H S. Combined Use of Streptomyces sp. A6and Chemical Fungicides against Fusarium Wilt of Cajanus Cajan May Reduce the Dosage of Fungicides Required in the Field[J]. Crop Protection,2011,30(7):770-775.
    [28]Anastasiadis I A, Giannakou I O, Prophetou-athanasiadou D A, et al. The Combined Effect of the Application of a Biocontrol Agent Paecilomyces lilacimis, with Various Practices for the Control of Root-knot Nematodes[J]. Crop Protection,2008,27(7):352-361.
    [29]Singh R K, Sanyal P K, Patel N K, et al. Fungus-benzimidazole Interactions:a Prerequisite to Deploying Egg-parasitic Fungi Paecilomyces lilacinus and Verticillium chlamydosporium as Biocontrol Agents against Fascioliasis and Amphistomiasis in Ruminant Livestock[J]. Journal of Helminthology,2010,84(2):123-131.
    [30]迟玉杰,杨谦.毛壳菌对植物病害的生物防治及存在的问题[J].农业系统科学与综合研究,2002,18(3):215-218.
    [31]乔宏萍,宗兆锋.用重寄生菌防治植物病害[J].中国生物防治,2002,18(4):176-179.
    [32]Rogerio E H, Pomella A W, Soberanis W, et al. Biocontrol Potential of Trichoderma martiale against the Black-pod Disease (Phytophthorapalmivord) of Cacao[J]. Biological Control,2009,50(2):143-149.
    [33]Schwarze F R, Jauss F, Spencer C, et al. Evaluation of an Antagonistic Trichoderma Strain for Reducing the Rate of Wood Decomposition by the White Rot Fungus Phellinus noxius[J].Biological Control,2012,61(2):160-168.
    [34]Antoine A, Danny L C, Cho H, et al. Biocontrol Potential of Native Trichoderma Isolates against Root-knot Nematodes in West African Vegetable Production Systems[J]. Soil Biology and Biochemistry,2011,43(3):600-608.
    [35]Rojan P J, Tyagi R D, Prevost D, et al. Mycoparasitic Trichoderma viride as a Biocontrol Agent against Fusarium oxysporum f. sp. adzuki and Pythium arrhenomanesand as a Growth Promoter of Soybean[J]. Crop Protection,2010,29(12):1452-1459.
    [36]Heather A O, Benson D M. Induced Systemic Resistance and the Role of Binucleate Rhizoctonia and Trichoderma hamatum382in Biocontrol of Botrytis Blight in Geranium[J]. Biological Control,2007,42(2):233-241.
    [37]Martinez-medina A, Roldan A, Albacete A, et al. The Interaction with Arbuscular Mycorrhizal Fungi or Trichoderma harziamim Alters the Shoot Hormonal Profile in Melon Plantsshoot Hormonal Profile in Melon Plants [J]. Phytochemistry,2011,72(2/3):223-229.
    [38]Victor C U, Monti M, Peiris D G, et al. The Mycelial Response of the White-rot Fungus, Schizophyllum Commune to the Biocontrol Agent, Trichoderma viride[J]. Fungal Biology,2012,116(2):332-341.
    [39]Rosa D R, Herrera C L. Evaluation of Trichoderma spp. as Biocontrol Agents against Avocado White Root Rot[J]. Biological Control,2009,51(1):66-71.
    [40]Francesco V, Sivasithamparam K, Ghisalberti E L, et al. Trichoderma-Plant-Pathogen Interactions[J]. Soil Biology and Biochemistry,2008,40(1):1-10.
    [41]Sivan A, Chet I. Degradation of Fungal Cell Walls by Lytic Enzymes of Trichoderma harzianum[J]. Journal of General Microbiology,1989,135:675-682.
    [42]Schneider R W. Effects of Nonpathogenic Strains of Fusarium oxysporum on Celery Root Infection by Fusarium oxysporum F. Sp. APII and a Novel Use of the Lineweaver-Burk Double Reciprocal Plot Technique[J]. Phytopathology,1984,74(6):646-653.
    [43]Papavizas G C. Trichoderma and Gliocladium:Biology, Ecology, and Potential for Biocontrol[J]. Annual Review of Phytopathology,1985,23:23-54.
    [44]Goldman G H, Hayes C, Harman G E. Molecular and Cellular Biology of Biocontrol by Trichoderma spp.[J]. Trends in Biotechnology,1994,12(12):478-482.
    [45]Lorito M, Harman G E, Hayes C K, et al. Chitynolytic Enzymes Produced by Trichoderma harzianum:Antifungal Activity of Purified Endochitinase and Chitobiase[J]. Phytopathology,1993,83:302-307.
    [46]Vinale F, Ghisalberti E L, Sivasithamparam K, et al. Factors Affecting the Production of Trichoderma harzianum Secondary Metabolites during the Interaction with Different Plant Pathogens[J]. Letters in Applied Microbiology, 2009,48(6):705-711.
    [47]Tijerino A, Cardoza R E, Moraga J, et al. Overexpression of the Trichodiene Synthase Gene tri5Increases Trichodermin Production and Antimicrobial Activity in Trichoderma brevicompactum[J]. Fungal Genetics and Biology,2011,48(3):285-296.
    [48]Harris A R, Lumsden R D. Interactions of Gliocladium virens with Rhizoctonia solani and Pythium ultimum in Non-sterile Potting Medium[J]. Biocontrol Science and Technology,2007,7(1):37-48.
    [49]Schirmbock M, Lorito M, Wang Y-L, et al. Parallel Formation and Synergism of Hydrolytic Enzymes and Peptaibol Antibiotics, Molecular Mechanisms Involved in the Antagonistic Action of Trichoderma harzianum against Phytopathogenic Fungi[J]. Applied Environmental Microbiology,1995,60(12):4364-4370.
    [50]Moran-diez E, Rubio B, Dominguez S, et al. Transcriptomic Response of Arabidopsis Thaliana after24h Incubation with the Biocontrol Fungus Trichoderma harzianum[J]. Journal of Plant Physiology,2012,169(6):614-620.
    [51]Fontenelle A B, Guzzo S D, Lucon C M, et al. Growth Promotion and Induction of Resistance in Tomato Plant against Xanthomonas euvesicatoria and Alternaria solaniby Trichoderma spp.[J]. Crop Protection,2011,30(11):1492-1500.
    [52]Bailey B A, Lumsden R D. Direct Effects of Trichoderma and Gliocladium on Plant Growth and Resistance to Pathogens[C]//Trichoderma and Gliocladium,2, London, UK:Taylor and Francis,1998:185-204.
    [53]Howell C R, Hamson L E, Stipanovic R D. Induction of Terpenoid Synthesis in Cotton Roots and Control of Rhizoctonia solani by Seed Treatment with Trichoderma virens[J].Phytopathology,2000,90:248-252.
    [54]Yc C, Baker R, Kleifeld O, et al. Increased Growth of Plants in the Presence of the Biological Control Agent Trichoderma harzianum[J]. Plant Disease,1986,70(2):145-148.
    [55]Windham M T, Elad Y, Baker R. A Mechanism for Increased Plant Growth Induced by Trichoderma spp.[J]. Phytopathology,1986,76(5):518-521.
    [56]Lifshitz R, Windham M T, Baker R. Mechanism of Biological Control of Preemergence Damping-off of Pea by Seed Treatment with Trichoderma spp.[J]. Phytopathology,1986,76(7):720-725.
    [57]梁巧兰,王芳,魏列新,等.深绿木霉T2菌株对百合疫霉拮抗作用及机制[J].植物保护,2011,37(6):164-167.
    [58]Jones R W, Hancock J G. Mechanism of Gliotoxin Action and Factors Mediating Gliotoxin Sensitivity [J]. Gen. Microbiol,1988,134:2067-2075.
    [59]Adams P B. The Potential of Mycoparasites for Biological Control of Plant Diseases [J]. Annual Review of Phytopathology,1990,28(1):59-72.
    [60]Elad Y, Barak R, Chet I. Possible Role of Lectins in Mycoparasitism[J]. Journal of Bacteriology,1983,154(3):1431-1435.
    [61]Inbar J, Chet I. Biomimics of Fungal Cell-cell Recognition by Use of Lectin-coated Nylon Fibers[J]. Journal of Bacteriology,1992,174(3):1055-1059.
    [62]Rocha-ram'irez V, Omero C, Chet I, et al. Trichoderma atroviride G-protein a-subunit Gene tgal is Involved in Mycoparasitic Coiling and Conidiation[J]. Eukaryotic Cell,2002,1(4):594-605.
    [63]Reithner B, Brunner K, Schuhmacher R, et al. The G Protein a-subunit Tgal of Trichoderma atroviride is Involved in Chitinase Formation and Differential Production of Antifungal Metabolites [J]. Fungal Genetics and Biology,2005,42(9):749-760.
    [64]Zeilinger S, Reithner B, Scala V, et al. Signal Transduction by Tga3a Novel G Protein Alpha Subunit of Trichoderma atroviride[J]. Applied and Environmental Microbiology,2005,71(3):1591-1597.
    [65]Do nascimento S R, Andrei S S, Cirano J U, et al. Involvement of G-alpha Protein GNA3in Production of Cell wall-degrading Enzymes by Trichoderma reesei(Hypocrea jecorind) during Mycoparasitism against Pythium ultimum[J]. Biotechnology Letters,2009,31(4):531-536.
    [66]Schaeffer H J, Weber M J. Mitogen-activated Protein Kinases:Specific Messages from Ubiquitous Messengers[J]. Molecular and Cellular Biology,1999,19(4):2435-2444.
    [67]Reithner B, Schuhmacher R, Stoppacher N, et al. Signaling Via the Trichoderma atroviride Mitogen-activated Protein Kinase Tmkl Differentially Affects Mycoparasitism and Plant Protection[J]. Fungal Genetics and Biology,2007,44(11):1123-1133.
    [68]Mendoza A, Pozo M J, Grzegorski D, et al. Enhanced Biocontrol Activity of Trichoderma through Inactivation of a Mitogen-activated Protein Kinase[C]//Proceedings of the National Academy of Sciences of. America,2003:11597-15965.
    [69]Mukherjee P K, Latha J, Hadar R, et al. Tmka, a Mitogen-activated Protein Kinase of Trichoderma virens, is Involved in Biocontrol Properties and Repression of Conidiation in the Dark[J]. Eukaryot Cell,2003,2(3):446-455.
    [70]Mendoza A, Rosales S T, Cortes C, et al. The Map Kinase TVK1Regulates Conidiation Hydrophobicity and the Expression of Genes Encoding Cell Wall Proteins in the Fungus Trichoderma virens[J]. Microbiology,2007,153(7):2137-2147.
    [71]Lopez-mondejar R, Ros M, Pascual J A. Mycoparasitism-related Genes Expression of Trichoderma harziamim Isolates to Evaluate Their Efficacy as Biological Control Agent[J]. Biological Control,2011,56(1):59-66.
    [72]杨丽荣,孙虎,雷振生,等.绿色木霉几丁质酶基因Tvchi cDNA的克隆、原核表达与活性分析[J].植物病理学报,2012,42(2):139-145.
    [73]杨春林,席亚东,谢华蓉,等.哈茨木霉Th-30几丁质酶的生产条件及对灰霉病菌的拮抗作用[J].植物保护学报,2009,36(4):295-300.
    [74]Lopez-mondejar R, Blaya J, Obiol M, et al. Evaluation of the Effect of Chitin-rich Residues on the Chitinolytic Activity of Trichoderma harziamim: in Vitro and Greenhouse Nursery Experiments [J]. Pesticide Biochemistry and Physiology,2012,103(1):1-8.
    [75]De la cruz J, Hidalgo-gallego A, Lora J M, et al. Isolation and Characterization of Three Chitinases from Trichoderma harziamim[J]. European Journal of Biochemistry,1992,206(3):850-859.
    [76]Carsolio C, Gutierrez A, Jimenez B, et al. Characterization of ech42, a Trichoderma harzianum Endochitinase Gene Expressed during Mycoparasitism[J]. Proceedings of the National Academy of Sciences of,1994,91(23):10903-11090.
    [77]陈振明,王政逸,郭泽建,等.绿色木霉内切几丁质酶基因的克隆及其毛壳菌转化[J].菌物学报,2002,21(3):375-382.
    [78]Ingunn A H, Klemsdal S S, Vaaje-kolstad G, et al. Overexpression and Characterization of a Novel Chitinase from Trichoderma atroviride Strain P1[J]. Biochimica ET Biophysica Acta (Bba)-Proteins&P,2005,1748(2):180-190.
    [79]Ike Masakazu, Nagamatsu K, Shioya A, et al. Purification, Characterization, and Gene Cloning of46kDa Chitinase (Chi46) from Trichoderma reesei PC-3-7and its Expression in Escherichia coli[J]. Applied Microbiology and Biotechnology,2006,71(3):294-303.
    [80]Szabo M, Csepregi K, Galber M, et al. Control Plant-parasitic Nematodes with Trichoderma Species and Nematode-trapping Fungi:the Role of chi18-5and chi18-12Genes in Nematode Egg-parasitism [J]. Biological Control(Online),2012.
    [81]Peterbauer C K, Matteo L, Christopher K H, et al. Molecular Cloning and Expression of the nag1Gene (N-acetyl-β-D-glucosaminidase-encoding Gene) from Trichoderma harzianum P1[J]. Current Genetics,1996,30(4):325-331.
    [82]Ramot O, Viterbo A, Friesem D, et al. Regulation of Two Homodimer Hexosaminidases in the Mycoparasitic Fungus Trichoderma asperellum by Glucosamine[J]. Current Genetics,2004,45:205-213.
    [83]Ike Masakazu, Isami K, Tanabe Y, et al. Cloning and Heterologous Expression of the Exo-β-D-glucosaminidase-encoding Gene(gls93) from a Filamentous Fungus, Trichoderma reesei PC-3-7[J]. Applied Microbiology and Biotechnology,2006,72(4):687-695.
    [84]Thrane C, Arne T, Jensen D F. Endo-1,3-beta-glucanase and Cellulase from Trichoderma harzianum:Purification and Partial Characterization, Induction of and Biological Activity against Plant Pathogenic pythium spp.[J]. European Journal of Plant Pathology,1997,103(4):331-344.
    [85]Delacruz J, Pintortoro J A, Benitez T, et al. A Novel Endo-b-1,3-glucanase, BGN13.1, Involved in the Mycoparasitism of Trichoderma harziamim[J]. Journal of Bacteriology,1995,177(23):6937-6945.
    [86]Donzelli B G, Lorito M, Scala F, et al. Cloning, Sequence and Structure of a Gene Encoding an Antifungal Glucan1,3-β-glucosidase from Trichoderma atroviride(T. Harzianum)[J].Gene,2001,277(5):199-208.
    [87]Marcello C M, Andrei S S, Silvana Petrofeza da Silva, et al. Expression Analysis of the Exo-β-1,3-glucanase from the Mycoparasitic Fungus Trichoderma asperellum[J].Microbiological Research,2010,165(1):75-81.
    [88]Raquel da Silva Aires, Andrei S S, Henrique Soller Ramada Marcelo, et al. Biochemical Characterization of a27kDa1,3-β-D-glucanase from Trichoderma asperellum Induced by Cell Wall of Rhizoctonia solani[J]. Carbohydrate Polymers,2012,87(2):1219-1223.
    [89]陈蕾蕾,王未名,祝清俊,等.木霉胞外蛋白酶的研究进展[J].中国生物防治,2010,26(3):359-364.
    [90]Roberto A G, Gustavo H G, Jacobs D, et al. Molecular Characterization of the Proteinase-encoding Gene, prb1, Related to Mycoparasitism by Trichoderma harzianum[J].Molecular Microbiology,1993,8(3):603-613.
    [91]Olmedo-monfil V, Mendoza-mendoza A, Gomez I, et al. Multiple Environmental Signals Determine the Transcriptional Activation of the Mycoparasitism Related Gene prbl in Trichoderma atroviride[J]. Molecular Genetics and Genomics,2002,267(6):703-712.
    [92]Elad Y, Kapat A. The Role of Trichoderma harzianum Protease in the Biocontrol of Botrytis cinerea[J]. European Journal of Plant Pathology,1999, 105(2):177-189.
    [93]Suarez M B, Sanz L, Chamorro M I, et al. Proteomic Analysis of Secreted Proteins from Trichoderma harzianum:Identification of a Fungal Cell Wall-induced Aspartic Protease[J]. Fungal Genetics and Biology,2005,42(11):924-934.
    [94]Yan Liu, Qian Yang. Cloning and Heterologous Expression of SS10, a Subtilisin-like Protease Displaying Antifungal Activity from Trichoderma harzianum[J].Ferns Microbiology Letters,2009,209(1):54-61.
    [95]Zheng Cheng-Jian, Sun Pei-Xin, Jin Gui-Lin, et al. Sesquiterpenoids from Trichoderma atroviride, an Endophytic Fungus in Cephalotaxus fortunei[J]. Fitoterapia,2011,82(7):1035-1038.
    [96]Li Guo-Hong, Yang Zhong-Shan, Zhao Pei-Ji, et al. Three New Acorane Sesquiterpenes from Trichoderma Sp. YMF1.02647[J]. Phytochemistry Letters,2011,4(2):86-88.
    [97]蔚慧,杨林华,李志民.绿色木霉代谢产物对黑曲霉和荔枝炭疽抑菌机理的研究[J].安徽农业科学,2009,37(31):11514-15142.
    [98]Slater G P, Haskins R H, Hogge L R, et al. Metabolic Products from a Trichoderma viride[J]. Canadian Journal of Chemistry-revue Canadienne Dechimie,1967,45:92-96.
    [99]De stefano S, Nicoletti R. Pachybasin and Chrysophanol, Two Anthraquinones Produced by the Fungus Trichoderma aureoviride[J]. IL Tabacco,1999,7:21-24.
    [100]Liu Shu-Ying, Chaur-tsuen L, Chen C, et al. Efficient Isolation of Anthraquinone-derivatives from Trichoderma harzianum ETS323[J]. Journal of Biochemical and Biophysical Methods,2007,70(3):391-395.
    [101]Collins R P, Halim A F. Characterization of the Major Aroma Constituent of the Fungus Trichoderma viride[J]. Journal of Agricultural and Food Chemistry,1972,20(2):437-438.
    [102]Clay don N, Allan M. Antifungal Alkyl Pyrones of Trichoderma harzianum[J]. Transactions of the British Mycological Society,1987,88(4):503-513.
    [103]Simon A, Dunlop R W, Ghisalberti E L, et al. Trichoderma koningii Produces a Pyrone Compound with Antibiotic Properties [J]. Soil Biology&Biochemistry,1988,20(2):263-264.
    [104]Oda S, Isshiki K, Ohashi S. Production of6-pentyl-a-pyrone with Trichoderma atroviride and its Mutant in a Novel Extractive Liquid-surface Immobilization (Ext-LSI) System[J]. Process Biochemistry,2009,44(6):625-630.
    [105]Mourad D, Pinedo-rivilla C, Rubio M B, et al. Hemisynthesis and Absolute Configuration of Novel6-pentyl-2H-pyran-2-one Derivatives from Trichoderma spp.[J]. Tetrahedron,2009,65(25):4834-4840.
    [106]Xu Xing-Xiang, Yao Hua-Zhu. Total Synthesis of Koninginin a and its Diastereoisomer[J]. Tetrahedron Letters,1995,36(50):9173-9176.
    [107]Parker S R, Cutler H G, Schreiner P R. Koninginin C:a Biologically Active Natural Product from Trichodermakoningii[J].Bioscience, Biotechnology, and Biochemistry,1995,59(6):1126-1127.
    [108]Simon A, Sivasithamparam K, Ghisalberti E L. An Antibiotic from Trichoderma koningii Active against Soilborne Plant Pathogens[J]. Journal of Natural Products,1989,52(1):67-74.
    [109]Brian P W, Mcgowan J G. A Highly Fungistatic Substance Produced by Trichoderma viride[J].Nature,1945,156(3953):144-145.
    [110]Walter S G, Thomas R W. Lanosterol Derivatives as Precursors in the Biosynthesis of Viridin. Part1[J]. Journal of the Chemical Society-perkin Transactions,1980,1(2):422-425.
    [111]Singh S, Dureja P, Tanwar R S, et al. Production and Antifungal Activity of Secondary Metabolites of Trichoderma virens[J]. Pesticide Research Journal,2005,17(2):26-29.
    [112]Vinale F, Marra R, Scala F, et al. Major Secondary Metabolites Produced by Two Commercial Trichoderma Strains Active against Different Phytopathogens[J]. Letters in Applied Microbiology,2006,43(2):143-148.
    [113]Almassi F, Ghisalberti E L, Melissa J N, et al. New Antibiotics from Strains of Trichoderma harzianum[J]. Journal of Natural Products,1991,54(2):396-402.
    [114]Brian, W P. Production of Gliotoxin by Trichoderma viride[J]. Nature,1944,154(3917):667-668.
    [115]Carberry S S, Molloy E E, Stephen S H, et al. Gliotoxin Effects on Fungal Growth:Mechanisms and Exploitation[J]. Fungal Genet BIOL,2012,49(4):302-312.
    [116]Stipanovic R D, Howell C R. The Structure of Gliovirin, a New Antibiotic from Gliocladium virens[J]. The Journal of Antibiotics,1982,35(10):1326-1330.
    [117]Brewer D, Mason F G, Taylor A. The Production of Alamethicins by Trichoderma spp.[J]. Canadian Journal of Microbiology,1987,33(7):619-625.
    [118]Guette C A, Rebuffat S, Prigent Y, et al. Chemlnform Abstract:Trichogin AIV, an11-Residue Lipopeptaibol from Trichoderma longibrachiatum[J]. Journal of the American Chemical Society,1992,23(27):2170-2174.
    [119]Ruiz N, Wielgosz-collin G, Poirier L, et al. New Trichobrachins,11-residue Peptaibols from a Marine Strain of Trichoderma longibrachiatum[J]. Peptides,2007,28(7):1351-1358.
    [120]Calvet C, Pera J, Barea J M. Growth Response of Marigold(Tagetes Erecta L.) to Inoculation with Glomus Mosseae, Trichoderma aureoviride and Pythium ultimum in a Peat-perlite Mixture[J]. Plant and Soil,1993,148(1):1-6.
    [121]孙冬梅,杨谦,张军政.黄绿木霉诱变菌株对大豆根腐病镰刀菌的拮抗[J].大豆科学,2005,24(3):171-175.
    [122]孙冬梅,杨谦,宋金柱.黄绿木霉菌代谢产物对大豆菌核病核盘菌的抑菌能力研究[J].天然产物研究与开发,2005,17(6):691-695.
    [123]孙冬梅,杨谦,宋金柱.黄绿木霉菌代谢产物对杨树烂皮病菌抑菌能力的研究[J].北京林业大学学报,2006(1):76-79.
    [124]Wijesinghe C J, Wijeratnam R W, Samarasekara J R, et al. Development of a Formulation of Trichoderma asperellum to Control Black Rot Disease on Pineapple Caused by(Thielaviopsis Paradoxd)[J]. Crop Protection,2011,30(3):300-306.
    [125]Mbarga J B, Hoopen G T, Adiobo J A, et al. Trichoderma asperellum:a Potential Biocontrol Agent for Pythium myriotylum, Causal Agent of Cocoyam (Xanthosoma Sagittifolium) Root Rot Disease in Cameroon[J]. Crop Protection,2012,36:18-22.
    [126]夏伟,张红,颜艳伟,等.棘孢木霉L4对立枯丝核菌的拮抗机制[J].植物保护学报,2010,37(5):477-478.
    [127]Wijesinghe C J, Wijeratnam R W, Samarasekara J R, et al. Biological Control of Thielaviopsis paradoxa on Pineapple by an Isolate of Trichoderma asperellum[J]. Biological Control,2010,53(3):285-290.
    [128]Tchameni S N, Ngonkeu M L, Begoude B D, et al. Effect of Trichoderma asperellum and Arbuscular Mycorrhizal Fungi on Cacao Growth and Resistance against Black Pod Disease[J]. Crop Protection,2011,30(10):1321-1327.
    [129]Song Jin-Zhu, Yang Qian, Liu Bei-Dong, et al. Expression of the Chitinase Gene from Trichoderma aureoviride in Saccharomyces cerevisiae[J]. Applied Microbiology and Biotechnology,2005,69:39-43.
    [130]Nguyen N V, Young-ju K, Kyung-taek O, et al. Antifungal Activity of Chitinases from Trichoderma asperellum DY-59and Rhizopus microsporus VS-9[J]. CURR Microbiol,2008,56:28-32.
    [131]Kumar D P, Rajesh K S, Anupama P D, et al. Studies on Exo-Chitinase Production from Trichoderma asperellum UTP-16and its Characterization[J]. Indian Journal of Microbiology(Online),2011.
    [132]Mizoguchi T, Ichimura K, Shinozaki K. Environmental Stress Response in Plants:the Role of Mitogen-activated Protein Kinases[J]. Trends in Biotechnology,1997,15(1):15-19.
    [133]Jonak C, Ligterink W, Hirt H. Map Kinases in Plant Signal Transduction[J]. Cellular and Molecular Life Sciences,1999,55(2):204-213.
    [134]Ichimura K, Mizoguchi T, Yoshida R, et al. Protein Phosphorylation and Dephosphorylation in Environmental Stress Responses in Plants[G]. Advances in Botanical Research. America:Academic Press,2000:355-377.
    [135]Ichimura K, Mizoguki T, Yoshida R, et al. Various Abiotic Stresses Rapidly Activate Arabidopsis Map Kinases ATMPK4and ATMPK6[J].Plant Journal,2000,24(5):655-665.
    [136]Zhang S, Klessig D F. Salicylic Acid Activated a48kD Map Kinase in Tobacco[J]. Plant Cell,1997,9(5):809-824.
    [137]Madhani H D, Fink G R. The Riddle of Map Kinase Signaling Specificity[J]. Trends Genet,1998,14(4):151-155.
    [138]Mishra N C, Tatum E L. Non-mendelian Inheritance of DNA-mediated Inositol Independence in Neurospom[J]. Proc. Natl. Acad. Sci. USA,1973,72(12):3875-3879.
    [139]周礼红,李国琴,王正祥,等.红曲霉原生质体的制备、再生及其遗传转化系统[J].遗传,2005,27(3):423-428.
    [140]李娟,杨金奎,梁连铭,等.丝状真菌遗传转化系统研究进展[J].江西农业大学学报,2006,28(4):516-520.
    [141]李刚,王强,刘秋云,等.利用PEG法建立药用真菌灵芝的转化系统[J]菌物学报,2004,23(2):255-261.
    [142]Hilber U W, Bodmer M, Smith F D, et al. Biolistic Transformation of Conidia of Botryotinia Fuckeliana[J]. Current Genetics,1994,25(2):124-127.
    [143]张文荟,周益军,范永坚.稻瘟病菌限制酶介导整合(REMI)转化的致病性诱变[J].南京师大学报:自然科学版,2002,25(2):17-21.
    [144]Sweigard J A, Carroll A M, Farrall L, et al. Magnaporthe Grisea Pathogenicity Genes Obtained through Insertional Mutagenesis[J]. Molecular Plant-Microbe Interactions,1998,11(5):404-412.
    [145]Bundoek P, Den dulk-ras A, Beijerbsergen A, et al. Trans-kindom T-DNA Transfer from Agrobacterium tumefaciens to Saccharomyces cerevisiae[J]. The Embo Journal,1995,14(13):3206-3214.
    [146]Mullins E D, Chen X, Romaine P, et al. Agrobacterium-mediated Transformation of Fusarium oxysporum:An Efficient Tool for Insertional Mutagenesis and Gene Transfer[J]. Phytopathology,2001,91(2):173-180.
    [147]Covert S F, Kapoor P, Lee M H, et al. Agrobacterium tumefaciens-mediated Transformation of Fusarium circinatum[J]. Mycological Research,2001,105(3):259-264.
    [148]李维,张义正.根癌农杆菌介导的白腐丝状真菌——黄孢原毛平革菌的转化[J].微生物学报,2005,45(5):784-786.
    [149]高兴喜,杨谦.根癌农杆菌介导的CryIA(b)基因在哈茨木霉菌中的转化[J].科学通报,2004,49(21):2193-2197.
    [150]高兴喜,杨谦,宋金柱,等.根癌农杆菌介导的木霉菌遗传转化方法[J].高技术通讯,2004,14(5):32-35.
    [151]高兴喜,杨谦.农杆菌介导的CryIA(b)基因在毛壳菌中的转化[J].农业环境科学学报,2005,24(1):22-25.
    [152]Figueiredo J G, Goulin E H, Tanaka F, et al. Agrobacterium tumefaciens-mediated Transformation of Guignardia citricarpa[J]. Journal of Microbiological Methods,2010,80(2):143-147.
    [153]Zhang Pi-Yan, Bin Xu, Wang Yue-Zhu, et al. Agrobacterium tumefaciens-mediated Transformation as a Tool for Insertional Mutagenesis in the Fungus Fenicillium marneffei[J]. Mycological Research,2008,112(8):943-949.
    [154]Gouka R J, Gerk C, Hooykaas P J, et al. Transformation of Aspergillus awamori by Agrobacterium tumefaciens-mediated Homologous Recombination[J]. NAT Biotechnol,1999,17:598-601.
    [155]Bundock P, Hooykaas P J. Integration of Agrobacterium tumefaciens T-DNA in the Saccharomyces cerevisiae Genome by Illegitimate Recombination[J]. Proceedings of the National Academy of Sciences of the United States of America,1996,93:11527-15272.
    [156]韩勇军.哈茨木霉对禾谷镰孢病原菌的抑菌活性研究[J].湖北农业科学,2010,49(2):356-358.
    [157]付小军,盛鑫,马进,等.植物病害生物防治概述[J].陕西农业科学,2011,57(4):138-139.
    [158]张丽,孙书娥.利用微生物防治植物病害研究进展[J].农药研究与应用,2010,14(6):10-13.
    [159]陶刚,刘杏忠,王革,等.产几丁质酶木霉生防菌株的生化测定[J].西南农业学报,2005,18(4):453-454.
    [160]杨力明.哈茨木霉几丁质酶V基因等克隆及其特性研究[D].哈尔滨:哈尔滨工业大学,2008:54
    [161]Gardiner D M, Howlett B J. Negative selection using thymidine kinase increases the efficiency of recovery of transformants with targeted genes in the filamentous fungus Leptosphaeria maculans[J]. Current Genetics,2004,45:249-255.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700