用户名: 密码: 验证码:
空中虫群飞行行为机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
许多昆虫利用远距离迁飞使自身从时间和空间上躲避不良环境并选择新的生境进行定殖。迁飞性昆虫选择空中乘风飞行,飞行高度通常距离地面几百米以上,昆虫可以借助高空的高风速实现更远的迁飞距离。许多迁飞性昆虫是非常重要的农业害虫种类,一些天敌昆虫也具有迁飞的习性。因此,深入研究昆虫迁飞行为对于调整和完善害虫的防治策略具有重要的意义。昆虫雷达技术的发展使直接监测空中虫群活动成为可能,雷达揭示了许多耐人寻味的空中虫群飞行行为现象,其中最为引人注目的便是聚集成层和共同定向现象。聚集成层和共同定向都可能导致害虫在相对狭小的区域内降落,进而导致严重的农业损失。本研究的目的就是要揭示空中迁飞虫群的飞行行为机制,以便为迁飞性害虫的异地预测提供科学依据。
     本研究通过室内模拟行为学试验、雷达观测、空中网捕、气象要素及轨迹分析等方法进行空中虫群飞行行为进行研究。在揭示空中虫群的飞行行为机制方面取得了进展。本文第一部分主要介绍借助自行设计的试验装置在室内模拟条件下对空中虫群的聚集成层、共同定向机制及昆虫飞行振翅行为进行的相关研究。第二部分重点介绍利用昆虫雷达监测和空中网捕等技术对昆虫迁飞进行野外观测和取样调查,进而分析空中虫群的飞行行为机制和迁飞动态。主要研究结果如下:
     1.为了揭示空中虫群的聚集成层行为机制,在模拟温度场和风场条件下对鳞翅目蛾类棉铃虫的飞行行为进行研究。在模拟温度场中,试虫群体表现为对温度的主动选择行为,其选择的两个敏感温度分别是最优飞行温度(20-22℃)和持续飞行低温阈值温度(13℃)。在模拟风场试验中,高速气流对试虫具有明显的吸附效应,其原因是在高速气流周围产生的负压引起向内的垂直气流运动迫使试虫加速进入并束缚在高速水平气流控制范围内。因此提出空中迁飞昆虫对最优飞行温度的主动选择使其趋向于逆温层顶的最高温处,而使空中虫群在位于逆温层顶的低空急流中聚集成层并长时间维持的关键因子是急流上下边缘处负压所形成的气流向心垂直运动。当环境温度显著低于迁飞昆虫的最优飞行温度时,昆虫会选择一直向上爬升直至其持续飞行低温阈值所在高度,从而形成温障层(Ceiling layer)
     2.为了明确风和磁场变化对昆虫定向飞行行为的影响,在模拟风场和磁场条件下对鳞翅目蛾类粘虫和棉铃虫的定向行为进行了研究。悬吊的蛾子在不同风速条件下均表现为逆风头向;在高速平流条件下释放时,多数蛾子仍表现为逆风头向振翅飞行。试虫对侧面风的补偿角度随风速的增大而减小,在无定向信号时,试虫群体的定向分布于风两侧;只有在试虫体侧设置明显点光源时,供试群体才表现出偏向风同一侧的共同定向,因此风本身不是迁飞性昆虫定向的信号。磁场定向试验结果表明,试虫在正常地磁场条件下表现为显著的群体共同定向。其中,粘虫群体的共同定向是轴对称的。当将试虫置于较强的磁场条件下时,粘虫和棉铃虫供试个体的定向行为发生变化,群体共同定向行为消失。试虫的定向行为不受磁场水平分量极向变化的影响。因此推断,迁飞性昆虫可能利用磁场作为自身定向的罗盘信号,在这个过程中可能和鸟类一样利用了磁倾角。
     3.对影响棉铃虫振翅频率的关键因子进行研究发现:持续飞行时间,交配行为,温度及风速风向显著影响棉铃虫振翅频率。棉铃虫振翅频率在供试前3个小时内迅速下降,随后振翅频率进入平台期,3小时后再次迅速下降,这一动态与昆虫迁飞过程中的起飞、运行和降落三个阶段十分吻合;交配行为致使棉铃虫雌、雄虫振翅频率降低,但雄虫振翅频率在短时间内得以恢复,而雌虫则不能。试虫在19-23℃之间振翅频率最高,这一温度区间恰为棉铃虫最优飞行温度区间,适宜的温度是迁飞性昆虫长时间振翅飞行的关键。在逆风头向条件下,风速对试虫振翅频率影响不大;但在顺风条件下,试虫的振翅频率伴随风速的增大显著降低,当相对风速大于4m/s时,昆虫几乎无法振翅。
     4.2007和2009年利用南京农业大学多普勒昆虫监测雷达对稻纵卷叶螟的迁飞行为进行研究。雷达观测表明:稻纵卷叶螟主要选择黄昏时分起飞、黎明降落。其飞行高度通常在500m以下。空中虫群通常在100-500m高度范围内聚集成层,有时不同高度上会同时出现2个虫层。成层现象通常与最大风速(低空急流)密切相关而与温度无关。利用数值模拟的方法对风温场及迁飞动态进行分析发现,2007年浦口地区的第4代稻纵卷叶螟有4次明显的迁入、迁出过程。其迁飞动态受台风、副热带高压和江淮气旋的强烈影响;降落行为与下沉气流密切相关。
     5.2009年8月至9月,利用系留气艇携带高空捕虫网的方法对南京浦口地区的空中昆虫群落进行采样研究。结果表明:半翅目同翅亚目昆虫为网捕优势类群,其中稻飞虱、蚜虫及叶蝉等贡献最大;其次为双翅目和膜翅目昆虫。寄生蜂、捕食蝽等天敌昆虫与其寄主之间存在明显的伴迁行为。白天和夜间网捕在种类构成上存在明显的不同,不同的昆虫种类选择的飞行时间不同,蚜虫和寄生蜂等小型昆虫在白天比较活跃,而稻飞虱、叶蝉及鳞翅目成虫等在夜间迁飞。对整夜空中虫群的采样研究表明,傍晚时分捕获的昆虫数量与种类明显多于其他时段。空中网捕昆虫数量动态不同程度受到温度、风速和风向的影响。通过对几种重要稻飞虱种类的轨迹分析研究表明,网捕昆虫动态能够真实反映小型昆虫的实际迁飞动态。
     6.利用以往雷达观测数据对东北地区春季粘虫空中虫群的迁飞行为进行研究。结果表明:空中虫群的成层趋向于逆温层顶,选择较高的温度是空中虫群聚集成层的主要原因,但少数成层现象与风切变有关。低温是粘虫迁飞的重要限制因素,当温度低于13℃时粘虫很少起飞,空中虫群也不聚集成层。急剧降温会导致空中虫群的集中降落。空中虫群的位移方向的离散度与风速呈显著负相关。当风速较大(>5m/s)且风向为东北时,粘虫虫群的共同定向基本与风向一致;当风速较小(<3m/s)且风向与粘虫迁飞的意愿方向(东北)相差很大时,空中虫群表现为明显的侧风补偿甚至逆风飞行的行为。粘虫的共同定向与月亮无关,定向过程中可能利用了诸如地磁场等罗盘信号。
Many insect species undertake regular seasonal migration in order to exploit suitable breeding habitats. Migratory insects engage in high-altitude, windborne migration, often at heights of several hundred meters above ground level, at where they can take advantage of strong wind to fly considerable distance. The atmospheric transport of insects is worthy of study because many migrant species are serious pests of agriculture while other insects are important natural enemies. Knowledge of insect movement is necessary when formulating or improving management strategies for the species concerned. The development and use of entomological radar has made it possible to direct observe the high-altitude movements of insects. Entomological radars have revealed many fascinating phenomena, but among the most noticeable phenomena are the layer formation and common orientation of aerial fauna. Both of two flight behavior can cause a greater concentration of migratory pests in the fallout area and heavy loss of agriculture production. The aim of this study is to reveal the behavioral mechanisms of aerial migratory fauna, focus on layer formation and common orientation of nocturnal insects, and the results will provide very useful information for the remote forecast of migratory insect pests.
     Simulation test, radar observation, aerial netting samples, analysis of meteorological factors and trajectory were used in this study. Some behavioral mechanisms of aerial migratory insects were explained satisfactorily. In the first part of this paper, the behavioral mechanisms of layer formation and common orientation were explored in simulation test by means of independent design experimental equipments. In the second part, the flight behavioral mechanisms and migration dynamics of Cnaphalocrocis medinalis, Mythimna separate and other small size insects were revealed by radar observations and aerial netting. The main results are as follows:
     1. The flight behavior of cotton bollworm Helicoverpa armigera was studied in simulated wind and temperature fields to explore the stratification mechanism of airborne migratory fauna. In the simulated temperature field, the tested moths exhibited significantly active selection behaviors for temperature. The moths tended to select their optimal flight temperature (20-22℃) and low temperature threshold (13℃) for flight. The result of simulation test indicated that high-speed airflow had significant suction effects on the tested moths, and that there was obvious negative pressure around the high-speed airflow. The inward vertical airflow generated by the high-speed removing jet pushed and bound the moths into the high-speed horizontal airflow. Our results illustrated that the active selection behavior of the airborne migrants for optimal flight temperature promoted their tendency towards the nocturnal inversion layer. The inward vertical airflow from the negative pressure at the edges of the low-level jet located on top of the inversion was the key factor that formed sustained layer concentration and aggregation of aerial fauna. If the environmental temperature was significantly lower than the optimal flight temperature of insects, the flying insects preferred to climb to their flight ceiling, i.e., the height with the low-temperature threshold.
     2. The orientation behavior of M. separate and H. armigera moth was studied in simulated wind and magnetic fields. Most of tether moths maintained upwind heading on condition of different wind speed and flew upwind when we released them in high speed horizontal airflow. The compensation angle for cross wind of moth decreased with increase of wind speed. The experimental moths exhibited common oriented to same side of airflow only when there was an obvious point light on the side of moths. Furthermore, we tested whether migratory moths orient by a magnetic compass in simulated magnetic field. Experimental moths exhibited common orientation in local geomagnetic filed and changed their heading obviously in the stronger magnetic field. The orientation behavior was not affected by polar change of horizontal component of magnetic field. Magnetic inclination may be the compass cues of aerial fauna collective orientation.
     3. The wing beat frequency (WBF) of H. armigera moths were tested in different conditions. The result showed that sustain flight time, temperature and mating behavior significantly affected WBF of moth. The WBF decreased quickly with the increase of sustain flight time in the first three hours, and kept constant over the next three hours, and then decreased quickly in the later period. This dynamic of WBF is a pretty good description of natural migratory dynamic of aerial fauna. The reducing of WBF of male moth caused by mating could be recovered in a short time, but female moth not. Moths maintained the maximum frequency and the longest time of wing beat when the temperature was between19and23℃. The wind speed had an obvious effect on WBF of moths in downward wind situation, nearly no efficacy on WBF in upward wind situation. Most of experimental moth could hardly beat double wings when the downward wind faster than4m/s.
     4. Doppler insect monitoring radar observations of rice leaf roller Cnaphalocrocis medinalis migration were made at Pukou district of Nanjing in2007and2009. Radar observations showed that large numbers of rice leaf roller moths migrated from dusk (18:00h) until about05:00h the following morning and moths mainly flew below500m (agl). The majority of the migrating moths on any one night usually aggregated in layers between100m and500m (agl), and sometimes two moth layers were present simultaneously. The stratification of moth density was closely related to the low-level nocturnal jet rather than air temperature. We analyzed the migration dynamics and the temperature and wind profiles on the migration routes by numerical simulation. The results showed that there were four migrations of the4th generation of the moth in Jangpu2007. The rice leaf rollers engaged in southwards'return'migration on the northeast winds following the cyclone. Two massive immigration peaks of the rice leaf roller on the night of18-19and25August2007was associated with the subsidence around the low pressure system.
     5. Day and night sampling of windborne insects at a height of200m (agl) was undertaken at Jiangpu, Nanjing, from August to September2009, using a net supported by a tethered balloon. Hemiptera was the most frequent order in our catches on account of the abundance of the rice plant hopper, aphids and leafhopper. The abundance of Diptera was generally the second and Hymenoptera was the third. The accompanying migration of some natural enemies, e.g. parasitic wasp, with their host insects was found in the aerial netting studies. There was a significant difference in composition of species in aerial fauna between daytime and nighttime. Every insect species has a preferred time of flight. Aphids and parasitic wasp are active in daytime, but rice plant hopper, leafhopper and moths fly in nighttime. The insect population dynamics of aerial netting were affected by temperature, wind speed and wind direction. The trajectory analysis of the rice plant hopper indicated that the insect population dynamics of aerial netting can reflect the natural migration dynamics very well.
     6. The spring migration behavior of the oriental armyworm M. separate was studied based on the previous radar data. The results indicated that most moths trended to aggregate near the inversion upper surface in order to select warm condition. Only a few moths' layers were related to wind shear. M. separate moths had a lower temperature threshold (about13℃) during the migration period. The mass landing of aerial fauna could be caused by sudden cooling. Furthermore, there was a significant correlation between the dispersion of migration direction for M. separate and the wind speed. When the wind was strong (>5m/s) and closely aligned with the armyworm moths heading (i.e., toward the NE), M. separate exhibited common orientation close to the downwind; When the wind speed wasn't high (<3m/s) and not closely aligned with the moths heading, M. separate can compensate for the cross-wind drift and even flight upwind. The oriental armyworm M separate maybe use some compass cues (e.g., geomagnetic compass) to orient general flight direction.
引文
1.陈瑞鹿,暴祥致,王素云,孙雅杰,李立群,刘继荣,1992.草地螟迁飞活动的雷达观测.植物保护学报,10(2):171-174.
    2.陈瑞鹿,暴祥致,王素云,孙雅杰,李立群,刘继荣,张德宽,卢加,1985.公主岭昆虫雷达的装置和初步应用.中国农业科学,(3):93.
    3.陈若篪,吴家荣,祝树德,张建新,1984.褐飞虱的飞翔能力.昆虫学报,27(2):121-127.
    4.陈世煌,王世槐,邹运鼎,1978.褐飞虱的高空迁飞观察.昆虫知识,(6):165-170.
    5.陈伟,傅强,张志涛,张信娣,唐晓清,1996a.粘虫蛾的翅振频率及其若干影响因素.浙江农业大学学报,22(1):25-29.
    6.陈伟,张志涛,傅强,1996b.若干吊飞昆虫的振翅模式及振翅频率.昆虫学报,39(2):246-252
    7.陈永林,宋绍宗,邓小山,1963.中国渤海及黄海海面迁飞昆虫的初步观察.昆虫学报,12(2):137-148.
    8.陈元光,钦俊德.,1961.东亚飞蝗翅振频率的初步研究.昆虫学报,10(4-6):436-438.
    9.程遐年,陈若篪,习学,杨联民,朱子龙,吴进才,钱仁贵,杨金生,1979.稻褐飞虱迁飞规律的研究,昆虫学报,22(1):1-21.
    10.邓望喜,1981.褐飞虱及白背飞虱空中迁飞规律的研究.植物保护学报,8(2):74-80.
    11.邓望喜,许克进,荣秀兰,许甲柱,1980.飞机网捕褐飞虱及白背飞虱的研究初报.昆虫知识,(3):97-102.
    12.高月波,陈晓,陈钟荣,包云轩,杨荣明,刘天龙,翟保平,2008.稻纵卷叶螟(Cnaphalocrocis medinalis)迁飞的多普勒昆虫雷达观测及动态.生态学报,28(11):5 238-5247.
    13.高月波,翟保平,2010.昆虫定向机制研究进展.昆虫知识,47(6):1055-1065.
    14.郭予元,1997.棉铃虫迁飞规律及其与寄主植物的互作关系研究进展概况.昆虫学报40(1):1-6.
    15.胡高,包云轩,王建强,翟保平,2007.褐飞虱的降落机制.生态学报,27(12):5068-5075.
    16.黄冠辉,侯无危,1966.粘虫蛾飞翔研究:飞翔持续时间和振翅频率.昆虫学报,15(2):96-103.
    17.贾佩华,曹雅忠,1992.小地老虎成虫的飞翔活动.昆虫学报,35:59-65.
    18.赖凤香,陈伟,姚青,张志涛,2000.风洞内粘虫飞翔行为与气流的关系.昆虫知识,37(4): 193-194.
    19.李光博,1995.粘虫.中国农业科学院植物保护研究所主编.中国农作物病虫害(第二版).北京:中国农业出版社,697-723.
    20.李国清,陈长琨,韩召军,王荫长,1998.棉铃虫蛾性成熟与交配习性的研究.南京农业大学学报,21(2):42-46.
    21.李世良,张凤海,梁家荣,刘树法,1986.空中昆虫的航捕观察,(2):53-56.
    22.林昌善,1990.粘虫生理生态学.北京:北京大学出版社,173-252.
    23.林凌伟,董国堃,汪恩国,2001.水稻黑条矮缩病传毒昆虫的防治实践与研究.昆虫知识,38(6):426-428.
    24.林志伟,刘洋,辛惠普,2004.寒地稻田灰飞虱生物学特性初步研究.黑龙江八一农垦大学学报,16(2):15-18.
    25.刘浩官,1981.我国稻纵卷叶螟迁飞规律研究进展.中国农业科学,(5):1-8.
    26.刘浩官,刘振杰,王乾超,江智才,1980.东海网捕褐飞虱的研究.福建农林科技,(5):193-196
    27.马春森,马罡,杜尧,杨和平,2005.连续温度梯度下昆虫趋温性的研究现状与展望.生态学报,25(12):3390-3397.
    28.苗进,武予清,郁振兴,陈华爽,刘顺通,蒋月丽,段云,2011.麦红吸浆虫随气流远距离扩散的轨迹分析.昆虫学报,54(4):432-436.
    29.潘蕾,2009.东亚迁飞场的Pied Piper效应与我国三代粘虫的问歇性暴发机制.南京农业大学硕士毕业论文.
    30.全国褐飞虱科研协作组,1981.高山捕虫网在研究褐飞虱迁飞规律和预测中的作用,昆虫知识,(2):241-247.
    31.沈慧梅,吕建平,周金玉,张孝羲,程遐年,翟保平,2011.2009年云南省白背飞虱早期迁入种群的虫源地范围与降落机制.生态学报,31(15):4350-4364.
    32.石尚柏,李绍石,胡伯海,1997.稻纵卷叶螟.农作物病虫长期运动规律与预测.胡伯海,姜瑞中主编,北京:中国农业出版社,13-16.
    33.孙雅杰,1997.中国第一部昆虫雷达及其应用.世界农业,2:50-52.
    34.孙雅杰,陈瑞鹿,1997.雷达观测空中飞行昆虫的有效距离.昆虫知识,34(4):201-203.
    35.谈涵秋,毛瑞增,程极益,姚禾芬,1984.褐飞虱远距离迁飞中的降落和垂直气流、降雨的关系.南京农学院学报,(2):18-24.
    36.唐江霞,2004.水稻—白背飞虱—尖钩宽黾蝽的相互关系研究.湖南农业大学,硕士毕业 论文.
    37.王凤英,张孝羲,翟保平,2010.稻纵卷叶螟的飞行与再迁飞能力.昆虫学报,(11)
    38.王素云,陈瑞鹿,暴祥致,孙雅杰,翟保平,谢为民,1997.昆虫雷达回波图像的拍摄和识别方法.昆虫知识,34(3):167-170.
    39.王毅男,潘永信,田兰香,梁冰,张树义,2005.生物磁学在鸟类定向研究中的进展.动物学杂志,40(5):119-123.
    40.吴进才,1985.光照、温度及食物的变化对稻纵卷叶螟迁飞的效应.昆虫学报,28(4):398-405.
    41.吴孔明,郭予元,1996.棉铃虫的飞翔活动.生态学报,16(6):612-617
    42.吴孔明,郭予元,2007.棉铃虫种群的地理型分化和区域性迁飞规律.植物保护,33(7):6-11.
    43.吴孔明,徐广,郭予元,1998.棉铃虫一代成虫在渤海迁飞的考察.植物保护学报,25(4):337-340.
    44.武向文,2001.我国东北地区昆虫迁飞场的Pied Piper效应.南京农业大学硕士毕业论文.
    45.杨秀丽,2008.广西地区褐飞虱、白背飞虱及稻纵卷叶螟的毫米波扫描昆虫雷达监测,中国农业科学院硕士毕业论文.
    46.尹姣,封洪强,程登发,曹雅忠,2003.粘虫成虫在气流场中飞行行为的观察研究.昆虫学报,46(6):732-738.
    47.翟保平,1999.追踪天使—雷达昆虫学30年.昆虫学报,42(3):315-326.
    48.翟保平,2001.昆虫雷达:从研究型到实用型,应用生态学报,5(3):231-240.
    49.翟保平,2005.昆虫雷达让我们看到了什么?昆虫知识,42(2):217-226.
    50.翟保平,张孝羲,1993.迁飞过程中昆虫的行为:对风温场的适应与选择.生态学报,13(4):356-363
    51.翟保平,张孝羲,1998.稻纵卷叶螟标记蛾迁飞轨迹的数值模拟.西南农业大学学报,20(5):528-535.
    52.张孝羲,耿济国,周威君,1981.稻纵卷叶螟迁飞规律的研究进展.植物保护,(6):2-7.
    53.张孝羲,陆自强,耿济国,1980.稻纵卷叶螟迁飞途径的研究.昆虫学报,23(2):130-140.
    54.张云慧,陈林,程登发,姜玉英,张跃进,蒋金炜,2007.旋幽夜蛾迁飞的雷达观测和虫源分析.昆虫学报,20(5):61-67.
    55.张云慧,陈林,程登发,姜玉英,张跃进.2008,步甲夜间迁飞习性的探讨.中国农业科学, 41(1):108-115.
    56.张志涛,李光博,1985.粘虫飞翔生物学特性初步研究.植物保护学报,12(2):93-100.
    57.赵鸣,2006.大气边界层动力学,高等教育出版社,北京.
    58.周益军,熊如意,周彤,程兆榜,杨荣明,朱叶芹,2010.水稻条纹叶枯病.科学技术出版社.南京.
    59.庄建安,朱谦,李爱民,周明哲,张东升,王小舟,王万松,王永聚,2002.嗜人按蚊迁飞可能性的研究Ⅰ“同期突增”和“同期突发”现象的初步观察.中国寄生虫病防治杂志,15(5):315-316.
    60. Achtemeier GL,1991. Grasshopper response to rapid vertical displacements within a "clear air" boundary layer as observed by Doppler radar:Environmental Entomology,21(5):921-938.
    61. Baker RR,1987. Integrated use of moon and magnetic compasses by the heart-and-dart moth, Agrotis exclamationis. Animal Behavior,35(1):94-101.
    62. Baker RR, Mather JG,1982. Magnetic compass sense in the large yellow underwing moth, Noctua pronuba. Animal Behavior,30(2):543-548.
    63. Banks AN, Srygley RB,2003. Orientation by magnetic field in leaf-cutter ants. Atta colombica (Hymenoptera:Formicidae). Ethology,109(10):835-846.
    64. Batschelet E,1981. Circular statistics in biology. Academic press, London, New York.114.
    65. Bean BR, McGavin RE, Chadwick RB, Warner BD,1971. Preliminary results of utilizing the high resolution FM radar as a boundary layer probe. Boundary-Layer Meteorology,1(4): 466-473.
    66. Beason RC,2005. Mechanisms of magnetic orientation in birds. Integrative and Comparative Biology,45(3):565-573.
    67. Beerwinkle KR, Lopez JD, Witz JA, Schleider PG, Eyster RS, Lingren PD,1994. Seasonal radar and meteorological observations associated with nocturnal insect flight at altitudes to 900 meters. Environmental Entomology,23(3):676-683.
    68. Beerwinkle KR, Witz JA, Schleider PG,1993. An automated, vertical looking, X-band radar system for continuously monitoring aerial insect activity:Transactions of the ASAE,36(3): 965-970.
    69. Bent GA,1984. Developments in detection of airborne aphids with radar. pp.2665-2674 in Proceedings of the 1984 British Crop Protection Conference-Pests and Diseases, Brighton.
    70. Berry RE, Taylor, LR,1968. High-altitude migration of aphids in maritime and continental climates. Journal of Animal Ecology,37(3):713-722.
    71. Cant ET, Smith AD, Reynolds DR, Osborne JL,2005. Tracking butterfly flight paths across the landscape with harmonic radar. Philosophical Transactions of the Royal Society of London B, 272(1565):785-790.
    72. Chapman JW, Drake VA,2010. Insect migration. pp.2161-2166 in Breed MD & Moore J (Eds.) Encyclopedia of Animal Behavior, Academic Press, Oxford.
    73. Chapman JW, Nesbit RL, Burgin LE, Reynolds DR, Smith AD, Middleton DR, Hill JK,2010. Flight orientation behaviors promote optimal migration trajectories in high-flying insects. Science,327(5966):682-685.
    74. Chapman JW, Reynolds DR, Hill JK, Sivell D, Smith AD Woiwod IP,2008b. A seasonal switch in compass orientation in a high-flying migrant moth. Curret Biology,18(19):R908-R909.
    75. Chapman JW, Reynolds DR, Mouritsen H, Hill JK, Riley JR, Sivell D, Simth AD, Woiwod IP, 2008a. Wind selection and drift compensation optimize migratory pathways in high-flying moth:Current Biology,18(7):514-518.
    76. Chapman JW, Reynolds DR, Smith AD,2003. Vertical-looking radar:A new tool for monitoring high-altitude insect migration. Bioscience,53(5):503-511.
    77. Chapman JW, Reynolds DR, Smith AD, Smith ET, Woiwod IP,2004. An aerial netting study of insects migrating at high altitude over England. Bulletin of Entomological Research,94(2): 123-136.
    78. Chapman JW, Smith AD, Woiwood IP, Reynolds DR, Riley JR,2002. Development of vertical-looking radar technology for monitoring insect migration. Computer and electronics in agriculture,35(2-3):95-110.
    79. Chen RL, Bao XZ, Drake VA, Farrow RA, Wang SY, Sun YJ, Zhai BP,1989. Radar observations of the spring migration into northeastern China of the oriental armyworm moth, Mythimna separata, and other insects:Ecological Entomology,14(2):149-162
    80. Chen RL, Sun YJ, Wang SY, Zhai BP, Bao XZ,1995. Migration of the Oriental Armyworm Mythimna separata in East Asia in relations to weather and climate, pp.93-104 in Drake VA & Gatehouse AD (Eds.) Insect Migration:Tracking resources through space and time. Cambridge University Press, UK.
    81. Cheng DF, Wu KM, Tian Z, Wen LP, Shen ZR,2002. Acquisition and analysis of migration data from the digitised display of a scanning entomological radar. Computers and Electronics in Agriculture,35(2-3):63-75.
    82. Cochran WW, Mouritsen H, Wikelski M,2004. Migrating songbirds recalibrate their magnetic compass daily from twilight cues. Science,304(5669):405-408.
    83. Dingle H,1972. Migration strategies of insects. Science,175(4028):1327-1355
    84. Dingle H,1996. Migration:The Biology of Life on the Move. pp.375-413. Oxford University Press, Oxford.
    85. Drake VA,1983. Collective orientation by nocturnally migrating Australian plague locusts, Chortoicetes terminifera (Walker) (Orthoptera:Acrididae):a radar study. Bulletin of Entomological Research,73(4):679-692.
    86. Drake VA,1984. The vertical distribution of macro-insects migrating in the nocturnal boundary layer:A radar study:Boundary-layer meteorology,28(3-4):353-374.
    87. Drake VA,1985. Radar observations of moths migrating in a nocturnal lowlevel jet:Ecological Entomology,10(3),259-265.
    88. Drake VA,2002. Automatically operating radars for monitoring insect pest migrations: Entomologia Sinica,9(4):27-39.
    89. Drake VA, Farrow RA,1985. A radar and aerial-trapping study of an early spring migration of moths (Lepidoptera) in inland New South Wales. Australian Journal of Ecology,10(3): 223-235.
    90. Drake VA, Farrow RA,1988. The influence of atmospheric structure and motions on insect migration:Annual Review of Entomology,33:183-210.
    91. Drake VA, Gatehouse AG,1995. Insect Migration; Tracking Resources through Space and Time. Cambridge University Press, UK.
    92. Drake VA, Wang HK, Harman IT,2002. Insect monitoring radar:remote and network operation: Computer and Electronics in Agriculture,35(2-3):77-94.
    93. Etheredge JA, Perez SM, Taylor OR,1999. Monarch butterflies(Danaus plexippus L.) use a magnetic compass for navigation. Proceedings of the National Academy of Sciences,96(24):13 845-13846
    94. Farrow RA,1986. Interactions between synoptic scale and boundary-layer meteorology on micro-insect migration, pp.185-195 in Danthanarayana W (Ed.) Insect Flight. Springer-Verlag Berlin Heidelberg, Berlin.
    95. Feng HQ, Wu KM, Cheng DF, Guo YY,2003. Radar observations of the autumn migration of the beet armyworm Spodoptera exigua (Lepidoptera:Noctuidae) and other moths in northern China:Bulletin of Entomological Research,93:115-124.
    96. Feng HQ, Wu KM, Cheng DF, Guo YY,2004a. Spring migration and summer dispersal of Loxostege sticticalis (Lepidoptera:Pyralidae) and other insects observed with radar in northern China. Environmental Entomology,33(5):1253-1265.
    97. Feng HQ, Wu KM, Cheng DF, Guo YY,2004b. Northward migration of Helicoverpa armigera (Lepidoptera:Noctuidae) and other moths in early summer observed with radar in northern China. Journal of Economic Entomology,97(6):1874-1883.
    98. Feng HQ, Wu KM, Cheng DF, Ni YX, Guo YY,2005a. High-altitude windborne transport of Helicoverpa armigera (Lepidoptera:Noctuidae) in mid-summer in northern China. Journal of Insect Behavior,18(3):335-349.
    99. Feng HQ, Wu KM, Ni YX, Cheng DF, Guo YY.2005b. Return migration of Helicoverpa armigera (Lepidoptera:Noctuidae) during autumn in northern China. Bulletin of Entomological Research,95(4):361-370.
    100. Feng HQ, Zhang YH, Wu KM, Cheng DF, Guo YY,2007. Nocturnal windborne migration of ground beetles (Coleoptera:Carabidae) in China. Agricultural and Forest Entomology,9(2): 103-113.
    101. Feng HQ,Wu KM, Ni YX, Cheng DF, Guo YY,2006. Nocturnal migration of dragonflies over the Bohai Sea in Northern China. Ecological Entomology,31 (5):511-520.
    102. Freeman JA,1946. The distribution of sipers and mites up to 300ft. in the air. Journal of Animal Ecology,15(1):69-74.
    103. Frisch KV,1967. The dance language and orientation of bees. The Belknap Press of Harvard University Press, Cambridge, Mass.
    104. Gatehouse AG,1997. Behavior and ecological genetics of windborne migration by insects: Annual Review Entomology,42:475-502.
    105. Geerts B, Miao Q,2005. Airborne radar observations of the flight behavior of small insects in the atmospheric convective boundary layer. Environmental Entomology,34(2):361-377.
    106. Geerts B, Miao Q,2005. Airborne radar observations of the flight behavior of small insects in the atmospheric connective boundary layer. Environmental Entomology,34(2):361-377.
    107. Glick PA,1939. The distribution of insects, spiders, and mites in the air. Technical Bulletin of the United States Department of Agriculture,673:1-151.
    108. Gould JL,1986. The locale map of honey bees:do insects have cognitive maps? Science, 232(4752):861-863.
    109. Gould JL, Kirschvink JL, Deffeyes KS,1978. Bees have magnetic remanence. Science, 201(4360):1026-1028.
    110. Green k, Broome L, Heinze D, Jhonston S,2011. Long distance transport of arsenic by migrating Bogong moths from agricultureal lowlands to mountain ecosystems. The Victorian Naturalist,118(4):112-116.
    111.Greenbank DO, Schaefer GW, Rainey RC,1980. Spruce budworm (Lepidoptera:Tortricidae) moth flight and dispersal:new understanding from canopy observations, radar, and aircraft: Memoirs of the Entomological Society of Canada,110(112):1-49.
    112. Hardie J, Powell G,2002. Video analysis of aphid flight behaviour. Computers and Electronics in Agriculture,35(2-3):229-242.
    113. Hardy AC, Milne PS,1938. Studies in the distribution of insects by aerial currents. Experiments in aerial tow-netting from kites. Journal of Animal Ecology,7(2):199-229.
    114. Hendrie LK, Irwin M, Liquido NE, Ruesin WG, Mueller EA, Voegtlin DJ, Achtemeier GL, Steiner WM, Scott RW,1985. Conceptual approach to modeling aphid migration, pp.566-569 in MacKenzie DR (Ed.) The Movement and Dispersal of Agriculturally Important Biotic Agents. Claitor's Publishing Division, Baton Rouge LA.
    115. Irwin ME, Thresh JM,1988. Long-range dispersal of cereal aphids as virus vectors in North America. Philosophical Transactions of the Royal Society B,321(1207):421-446.
    116. Jander R,1963. Insect orientation. Annual Review of Entomology,8:95-114.
    117. Johnson CG,1951. The study of wind-borne insect populations in relation to terrestrial ecology, flight periodicity and the estimation of aerial populations. Science Progress,153:41-62.
    118. Johnson CG,1969. Migration and Dipersal of Insect by Flight. Methuen, London.
    119. Johnson CG, Taylor LR, Southwood TRE,1962. High altitude migration of Oscinella frit L. (Diptera:Chloropidae). Journal of Animal Ecology,31(2):373-383.
    120. Johnson SJ,1995. Insect migration in North America:synoptic-scale transport in a highly seasonal environment. pp.31-66 in Drake VA & Gatehouse AD. (Eds.) Insect Migration: Tracking resources through space and time. Cambridge University Press, Cambridge.
    121. Kennedy JS (1985) Migration:Behavioral and ecological. pp.5-26 in:Rankin MA (ed.) Migration:Mechanisms and Adaptive Significance. Contributions in Marine Science, Port Aransas, TX:Marine Science Institute, University of Texas at Austin.
    122. Kennedy JS,1940. The visual response of flying mosquitoes. Proceedings of Zoological Society of London A,109(4):221-242.
    123. Kennedy JS,1951. The migration of the desert locust (Schistocerca gregaria Forsk.), Philosophical Transactions of the Royal Society of London B,235:163-290.
    124. Kennedy, J. S.1975 Insect dispersal. pp.103-119 in Pimental D. (ed.) Insects, science and society. Academic Press, New York.
    125. Kutsch W,2002. Transmission of muscle potentials during free flight of locusts. Computers and Electronics in Agriculture,35(2-3):181-199.
    126. Lewis T, Taylor LR,1965. Diurnal periodicity of flight by insects. Transactions of the Entomological Society of London,116(15):393-435.
    127. Martin G, Elizabeth AC,1999. Vectors, routes and maps:new discoveries about navigation in insects. Trends in Neurosciences,22 (6):237-242.
    128. Menzel. R, Geiger K, Joerges J, Muller U, Chittka L,1998. Bees travel novel homeward routes by integrating separately acquired vector memories. Animal Behaviour,55(1):139-152.
    129. Menzel. R, Greggers U, Smith A, Berger S, Brandt R, Brunke S, Bundrock G, Hulse S, Plumpe T, Schaupp F, Schuttler E, Stach S, Stindt J, Stollhoff N, Watzl S,2005. Honey bees navigate according to a map-like spatial memory. Proceedings of the National Academy of Sciences, 102(8):3040-3045.
    130. Ming JG, Jin H, Riley JR, Reynolds DR, Smith AD, Wang RL, Cheng JY, Cheng XN,1993. Autumn Southward 'return' migration of the mosquito Culex tritaeniorhynchus in China Medical and Veterinary Entomology,7:323-327.
    131. Mouritsen H, Frost BJ,2002. Virtual migration in tethered flying monarch butterflies reveals their orientation mechanisms. Proceedings of the National Academy of Sciences,99(15):10 162-10166.
    132. Nieminen M, Leskinen M, Helenius J,2000. Doppler radar detection of exceptional mass-migration of aphids into Finland:International Journal of Biometeorology,44(4): 172-181.
    133. Oliveira EG, Srygley RB, Dudley R,1998. Do neotropical migrant butterflies navigate using a solar compass? The Journal of Experimental Biology,201:3317-3331.
    134. Otuka A,2009. Migration of rice planthoppers and simulation techniques, pp.343-356 in: Heong KL & Hardy B. (Eds.) Planthoppers:new threats to the sustainability of intensive rice production systems in Asia. International Rice Research Institute, Los Banos.
    135. Pedgley DE,1993. Managing migratory insect pests-a review. International Journal of Pest Management,39(1):3-12.
    136. Pedgley DE, Reynolds DR, Riley JR, Tucker MR,1982. Flying insects reveal small-scale wind systems. Weather,37:295-306.
    137. Perez SM, Taylor OR, Jander RA,1997. A sun compass in monarch butterflies. Nature,387:97
    138. Perez SM, Taylor OR, Rudolf,1999. The effect of a strong magnetic field on monarch butterfly (Danaus plexippus) migratory behavior. Naturwissenschaften,86(3):140-143.
    139. Rainey RC,1974. Biometeorology and insect flight:some aspects of energy exchange. Annual Review of Entomology,19:407-439.
    140. Reid DG, Wardhaugh K, Roffey J. Radar studies of insect flight at Benalla, Victoria, in February 1974,1979. Paper no.16 in Division of Entomology Technical. CSIRO Australia.
    141.Reppert SM, Zhu HS, Mouritsenand RH,2004. Polarized light helps monarch butterflies navigate. Current Biology,14(2):155-158.
    142. Reynolds AM, Reynolds DR, Riley JR,2009. Does a 'turbophoretic' effect account for layer concentrations of insects migrating in the stable night-time atmosphere. Journal of the Royal Society Interface,6(30):87-95.
    143. Reynolds AM, Reynolds DR, Smith AD,2010. A single wind-mediated mechanism explains high-altitude 'non-goal oriented' headings and layering of nocturnally migrating insects. Proceedings of the Royal Society B,277(1682):765-772.
    144. Reynolds DR, Riley JR,1997. The flight behavior and migration of insect pests:radar studies in developing countries. Paper no.71 in NRI Bulletin, Natural Resources Institute, Chatham.
    145. Reynolds DR, Chapman JW, Edwards AS, Smith AD, Wood CR, Barlow JF, Woiwod IP,2005. Radar studies of the vertical distribution of insects migrating over southern Britain:the influence of temperature inversions on nocturnal layer concentrations. Bulletin of Entomology Research,95(3):259-274.
    146. Reynolds DR, Riley JR,2002. Remote-sensing, telemetric and computer-based technologies for investigating insect movement:a survey of existing and potential techniques. Computers and Electronics in Agriculture,35(2-3):271-307.
    147. Reynolds DR, Smith AD, Chapman JW,2008. A radar study of emigratory flight and layer formation by insects at dawn over southern Britain. Bulletin of Entomological Research,98(1): 35-52.
    148. Reynolds DR, Smith AD, Mukhopadhyay S, Chowdhury AK, De BK, Nath PS, Mondal SK, Das BK, Mukhopadhyay S,1996. Atmospheric transport of mosquitoes in northeast India. Medical and Veterinary Entomology,10:185-186.
    149. Riley JR,1975. Collective orientation in night flying insects. Nature,253:113-114.
    150. Riley JR,1989. Orientation by high-flying insects at night:observations and theories. In Orientation and navigation:birds, humans and other animals. Paper no.21 in Conference of the Royal Institute of Navigation, Cardiff, London.
    151. Riley JR,1992. A millimetric radar to study the flight of small insects. Electronics & Communication Engineering Journal,4(1):43-48.
    152. Riley JR, Cheng XN, Zhang XX, Reynolds DR, Chen XN, Xiao-Xi, Z., Reynolds DR, Xu GM, Smith AD, Cheng JY, Bao AD, Zhai BP,1991. The long-distance migration of Nilaparvata lugens (Stal) (Delphacidae) in China:radar observation of mass return flight in autumn. Ecological entomology,16(4):471-489.
    153. Riley JR, Greggers U, Smith AD, Reynolds DR, Menzel R,2005. The flight paths of honeybees recruited by the waggle dance. Nature,435:205-207.
    154. Riley JR, Krueger U, Addison CM, Gewecke M,1988. Visual detection of wind-drift by high-flying insects at night; a laboratory study. Journal of Comparative Physiology,162(6): 793-798.
    155. Riley JR, Osborne JL,2001. Flight trajectories of foraging insects:observations using harmonic radar, pp.19-41 in Woiwood JP, Reynolds DR & Thomas CD. (Eds.) Insect Movement:Mechanism and Consequences, CABI.
    156. Riley JR, Reynolds DR,1979. Radar-based studies of the migratory flight of grasshoppers in the middle Niger area of Mali:Philosophical Transactions of the Royal Society of London, 204(1154):67-82.
    157. Riley JR, Reynolds DR,1983. A long-range migration of grasshoppers observed in the Sahelian zone of Mali by two radars. Journal of Animal Ecology,52(1):167-183.
    158. Riley JR, Reynolds DR,1986. Orientation at night by high-flying insects. In Danthanarayana D. (Ed) Insect Flight:Dispersal and Migration. Springer-Verlag.
    159. Riley JR, Reynolds DR, Mukhopadhyay S, Ghosh MR, Sarkar TK,1995a. Long distance migration of aphids and other small insects in northeast India. European Journal of Entomology, 92:639-653.
    160. Riley JR, Reynolds DR, Smith AD, Edwards AS, Zhang XX, Cheng XN, Wang HK, Cheng JY, Zhai BP,1995b. Observations of the autumn migration of the rice leaf roller Cnaphalocrocis medinalis (Lepidoptera:Pyralidae) and other moths in eastern China:Bulletin of Entomological Research,85(3):397-414.
    161. Riley JR, Reynolds DR, Smith AD, Rosenberg LJ, Cheng XN, Zhang XX, Xu GM, Cheng JY, Bao AD, Zhai BP, Wang HK,1994. Observations on the autumn migration of Nilaparvata lugens (Homoptera:Delphacidae) and other pests in east central China:Bulletin of Entomological Research,84(3):389-402.
    162. Riley JR, Smith AD, Reynolds DR,2003. The feasibility of using vertical-looking radar to monitor the migration of brown planthopper and other insect pests of rice in China Entomologia Sinica,10(1):1-19.
    163. Riley JR, Smith, AD,2002. Design considerations for an harmonic radar to investigate the flight of insects at low altitude:Computers and Electronics in Agriculture,35(2-3):151-169.
    164. Rossel S, Wehner R,1982. The bee's map of the e-vector pattern in the sky. Proceedings of the National Academy of Sciences,77(14):4 451-4 455.
    165. Rossel S, Wehner R,1984. Celestial orientation in bees:the use of spectral cues. Journal of Comparative Physiology A,155(5):605-613.
    166. Rossel S, Wehner R, Lindauer M,1978. E-Vector Orientation in Bees. Journal of Comparative Physiology A,125(1):1-12.
    167. Sane S P, Dieudonne A, Willis MA, Daniel TL,2007. Antennal mechanosensors mediate flight control in moths. Science,315(5813):863-866.
    168. Schaefer G.W,1976. Radar observations of insect flight. In Rainey RC. (Ed.) Insect Flight, Blackwell Scientific.
    169. Schaefer GW,1969. Radar studies of locust, moth and butterfly migration in the Sahara. Proceeding of the Royal Entomological Society of London C,34:39-40.
    170. Schaefer GW,1979. An airborne radar technique for the investigation and control of migrating pest insects:Philosophical Transactions of the Royal Society of London B,287(1022):459-465.
    171. Service MW,1993. Mosquito Ecology:Field Sampling Methods. Elservier Applied Science, New York.
    172. Smith AD, Reynolds DR, Riley JR,2000. The use of vertical-looking radar to continuously monitor the insect fauna flying at altitude over southern England:Bulletin of Entomological Research,90(3):265-277.
    173. Sotavalta O,1952. Flight-tone and wing-stroke frequency of insects and the dynamics of insect flight. Nature,170:1057-1058.
    174. Southwood TRE,1977. Habitat, the templet for migration strategies? Journal of Animal Ecology,46(2):337-365.
    175. Srygley RB,2001. Compensation for fluctuations in crosswind drift without stationary landmarks in butterflies migrating over seas. Animal Behaviour,61(1):191-203.
    176. Srygley RB,2003. Wind drift compensation in migrating dragonflies Pantala (Odonata: Libellulidae). Journal of Insect Behavior,16(2):217-232.
    177. Srygley RB, Dudley R,2008. Optimal strategies for insects migrating in the flight boundary layer:Mechanisms and consequences. Integrative and Comparative Biology,48(1):119-133.
    178. Srygley RB, Dudley R, Oliveira EG, 2006. Experimental evidence for a magnetic sense in Neotropical migrating butterflies (Lepidoptera:Pieridae). Animal Behavior,71(1):183-191.
    179. Srygley RB, Oliveira EG,2001. Sun compass and wind drift compensation in migrating butterflies. Journal of Navigation,5493):405-417.
    180. Srygley RB, Oliveira EG, Dudley R,1996. Wind drift compensation, flyways and conservation of diurnal migrant. Proceedings of the Royal Society London B,263(1375):1351-1357.
    181. Stalleicken J, Mukhida M, Labhart T,2005. Do monarch butterflies use polarized skylight for migratory orientation? The Journal of Experimental Biology,208:2 399-2 408.
    182. Stull RB,1988. An Introduction to Boundary Layer Meteorology. Kluwer Academic Publishers, Dordrecht.
    183. Stull RB,2000. Meteorology for Scientists and Engineers. Brooks/Cole.
    184. Syobu S, Otuka A, Matsumura M,2011. Trap catches of the small brown planthopper, Laodelphax striatellus (Fallen) (Hemiptera:Delphacidae), in northern Kyushu district, Japan in relation to weather conditions. Applied Entomology and Zoology,46(1):41-50.
    185. Taylor LR,1974. Insect migration, flight periodicity and the boundary layer. Journal of Animal Ecology,43(1):225-238.
    186. Thomas AAG, Ludlow WG, Kennedy JS,1977. Sinking speeds of falling and flying Aphis fabae Scopoli. Ecological Entomology,2(4):315-326.
    187. Unwin DM, Ellington CP,1979. An optical tachometer for measurement of the wing-beat frequency of free-flying insects. The Journal of Experimental Biology,8:377-378,
    188. Wajnberg E, Avalos AD, El-Jaick LJ, Abracado L, Coelho JLA., Bakuzis AF, Morais PC,2004. Magnetic material arrangement in oriented termites:a magnetic resonance study. Journal of Magnetic Resonance,168(2):246-251.
    189. Wajnberg E, Cernicchiaro G, Avalos DA, E1-Jaick LJ, Esquivel DMS,2001. Induced remanent magnetization of social insects. Journal of Magnetism and Magnetic Materials,226-230:2 040-2041.
    190. Walcott C, Gould JL, Kirschvink JL,1979. Pigeons have magnets. Science,205(4410):1027-1 029.
    191. Walker TJ,1980. Migrating Lepidoptera:Are butterflies better than moths? The Florida Entomologist,63(1):79-98.
    192. Wang H.K., Drake V.A.,2004. Insect monitoring radar:retrieval of wing beat information from conical-scan observation data. Computers and Electronics in Agriculture,43(3):209-222.
    193. Wang ZJ,2005. Dissecting insect flight. Annual Review of Fluid Mechanics,37:183-210.
    194. Webb, B,2007. Insect behaviour:controlling flight altitude with optic flow. Current Biology, 17(4):R124-R125.
    195. Wehner R,1984. Astronavigation in insects. Annual Reviews of Entomology,29:277-298.
    196. Westbrook JK, Wolf WW, Allen S, Ward JD,1998. Nexrad Doppler weather radar network: potential for areawide surveillance of pest insect migrations, pp.1304-1310 in Proceedings Beltwide Cotton Conferences.
    197. Westbrook JK, Wolf WW, Pair SD, Sparks AN, Raulston JR,1987. Empirical moth flight behavior in the nocturnal planetary boundary layer. pp.263-264 in Proceedings 18th Conference on Agricultural and Forest Meteorology-8th Conference on Biometeorology and Aerobiology, Indiana.
    198. Wikelski M, Kays RW, Kasdin NJ, Thorup K, Smith JA, Swenson GW,2007. Going wild:what a global small-animal tracking system could do for experimental biologists. The Journal of Experimental Biology,210:181-186.
    199. Wikelski M, Tarlow EM, Raim A, Diehl RH, Larkin RP, Visser GH,2003. Costs of migration in free-flying songbirds. Nature,423:704.
    200. Wikelskil M, Moskowitz D, Adelmanl JS, Cochran J, Wilcove DS, May ML,2006. Simple rules guide dragonfly migration. Biology Letter,2(3):325-329.
    201. Wiltschko R, Wiltschko W,1995. Magnetic Orientation in Animals. Springer-Verlag, Berlin.
    202. Wiltschko W,2003. Magnetic orientation in birds and other animals, vol.43, pp.815-829 in Kramer B. (Ed.) Advances in Solid State Physics. Springer-Verlag, Berlin Heidelberg.
    203. Wiltschko W, Munro U, Ford H, Wiltschko R,1993. Magnetic inclination compass:a basis for the migratory orientation of birds in the Northern and Southern Hemisphere. Experientia,49(2): 167-170.
    204. Wiltschko W, Wiltschko R,1996. Magnetic orientation in birds. The Journal of Experimental Biology 199:29-38
    205. Wiltschko W, Wiltschko R,2002. Magnetic compass orientation in birds and its physiological basis. Naturwissenschaften,89(10):445-452.
    206. Wolf WW, Westbrook JK, Raulston J, Pair SD, Hobbs SE.1990. Recent airborne radar observations of migrant pests in the United States. Philosophical Transactions of the Royal Society of London B,328(1252):619-630.
    207. Wolf WW, Westbrook JK, Raulston J, Pair SD, Lingren PD,1995. Radar observations of orientation of noctuids migrating from corn fields in the Lower Rio Grande Valley. Southwestern Entomologist,18:45-61.
    208. Wolf WW, Westbrook JK, Sparks AN,1986. Relationships between radar entomological measurements and atmospheric structure in South Texas during March and April 1982. pp. 84-97 in Sparks AN ed. Long-Range Migration of Moths of Agronomic Importance to the United States and Canada:Specific Examples of the Occurrence and Synoptic Weather Patterns Conducive to Migration. U. S. Department of Agriculture, Agricultural Research Service.
    209. Wood CR, Chapman JW, Reynolds DR, Barlow JF, Smith AD, Woiwod IP,2006. The influence of the atmospheric boundary layer on nocturnal layers of noctuids and other moths migrating over southern Britain. International Journal of Biometeorology,50(4):193-204.
    210. Wood CR, Clark SJ, Barlow JF, Chapman JW,2010. Layers of nocturnal insect migrants at high-altitude:the influence of atmospheric conditions on their formation. Agricultural and Forest Entomology,12(1):113-121.
    211. Wood CR, Reynolds DR, Wells PM, Barlow JF, Woiwod IP, Chapman JW,2009. Flight periodicity and the vertical distribution of high-altitude moth migration over southern Britain. Bulletin of Entomological Research,99:525-535.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700