用户名: 密码: 验证码:
与传播水稻条纹病毒相关的灰飞虱蛋白质鉴定与功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻条纹病毒(Rice stripe virus,RSV)是纤细病毒属(Tenuivirus)的代表种,引起的水稻条纹叶枯病是温带和亚热带稻区最重要的水稻病害之。在自然条件下,RSV主要是依靠介体灰飞虱以持久增殖的方式在寄主植物间进行传播,介体灰飞虱的传播是水稻条纹叶枯病暴发成灾的主要原因,因此对介体灰飞虱传播RSV机制的研究具有重要意义。病毒在介体昆虫内的运动,复制和扩散除了需要自身的外壳蛋白(CP)外还需要借助于介体蛋白,通过与介体蛋白的互作从而克服介体昆虫体内的传播障碍,最终到达唾液腺,并随唾液的分泌到达寄主植物,来完成自身的传播。
     本研究利用酵母双杂交核系统和分离泛素膜系统对RSV与灰飞虱之间的互作进行了研究。先后构建了两个用于筛选蛋白质相互作用发生在细胞核内和细胞质内的灰飞虱cDNA文库。首先以RSV CP和SP为诱饵对酵母双杂核系统cDNA文库筛选并得到3个介体蛋白,其中肌动蛋白与RSV CP互作,假设蛋白与RSV SP互作,还有种属于RR2家族的表皮蛋白与RSV CP和SP都互作。随后以RSV CP为诱饵对酵母双杂膜系统cDNA文库进行了筛选,获得114个介体蛋白,进步利用该系统对其中17个蛋白与RSV CP的互作进行验证,明确了12个与其互作的介体蛋白,分别为核糖体相关膜蛋白,含有NAC domain的蛋白(NAC),钙转运ATP酶,突触囊泡蛋白,硒蛋白T,Jagunal,G蛋白受体,核糖体蛋白L13,卵黄蛋白原(Vg),40S核糖体蛋白S28,Atlastin,RR1家族的表皮蛋白(NCuP)。最后通过化学发光免疫共沉淀技术明确了与RSV CP互作的5个介体蛋白从强到弱依次为NCuP,Atlastin,Jagunal,Vg和NAC。
     以酵母双杂得到的NCuP和Vg序列为基础,通过5’ RACE方法得到了两个基因的全长,分别登录到NCBI,登录号为KC485263和KC469581。利用免疫荧光共聚焦显微镜技术明确了NCuP不仅与RSV CP可以在Sf9细胞内结合,还可以与RSV病毒粒子在灰飞虱细胞系和血细胞结合。通过对灰飞虱不同组织NCuP的ELISA检测,表明该蛋白在血淋巴中含量最高。随后本研究运用了RNAi技术沉默了NCuP的表达,发现灰飞虱RSV含量下降了65%并且传毒率也下降了40%,这表明NCuP与RSV的结合保护了病毒不被免疫系统降解,说明未与NCuP结合的RSV在血淋巴中被降解或不能复制,导致病毒量下降而影响了传毒效果。同时还利用免疫荧光共聚焦显微镜技术明确了Vg与RSV病毒粒子可在灰飞虱卵巢的生殖区内完全共定位,而在卵母细胞内几乎没有共定位,由于灰飞虱的卵巢是端滋型营养方式,推测RSV是通过与Vg在卵巢外结合被Vg的受体带入到了卵巢的生殖区,然后病毒与Vg分开,经由营养丝直接进入到了卵母细胞内,随着卵母细胞进而传递给后代。
Rice stripe virus (RSV), a typical member of the genus Tenuivirus, causes rice stripe disease,which is one of the most serious rice diseases in subtropical and temperate regions of Asia. RSV ismainly transmitted by the small brown planthopper (SBPH)(Laodelphax striatellus) in apersisent-propagative manner. Transmission is a critical step in the infection cycle of every virusbecause it controls dispersal in space and time, thus directly influences its epidemiology. SBPH,especially in high density, can cause damage to rice plants when sucking the sap. Even at a much lowerdensity, it can lead to more significant disease epidemics and yield losses because of virus transmission.Therefore, it is important to study the transmission mechanism of RSV by SBPH. The viral componentsinvolved in these interactions are relatively well established. Virus coat protein (CP) plays a major rolefor the invasion of various insect vector tissues and hence for the successful infection of the salivaryglands and subsequent introduction of viruses into plants.
     In this study, two cDNA library of SBPH were constructed using yeast two hybrid GAL4systemand split-ubiquitin yeast membrane system. These two systems are used to studying the proteininteractions occured in the nucleus and cytoplasm respectively. Firstly, a SBPH cDNA library of yeasttwo hybrid GAL4system was screened by RSV CP and SP as bait proteins. Three proteins of SBPH,actin, one hypothetical protein of unknown function and a cuticular protein which belongs to RR2family, were obtained. Out of three proteins, actin interacted with RSV CP, hypothetical proteininteracted with RSV SP and a cuticular protein interacted with both RSV CP and SP respectively.Seondly, a SBPH cDNA library of split-ubiquitin yeast membrane system was screened by RSV CP as abait protein. One hundred and fourteen proteins were obtained as putatives interactors and17proteinswere chosen to confirm the interaction with RSV CP using yeast membrane system. Twelve proteins ofSPBH were confirmed and they are ribosome associated membrane protein, protein with NAC domain(NAC), Calcium-transporting ATPase, Synaptic vesicle protein, Selenoprotein T, Jagunal, G-proteincoupled receptor, Ribosomal protein L13, Vitellogenin (Vg),40S ribosomal protein S28, Atlastin andNovel cuticular protein (NCuP) which belong to RR1family respectively. Finally, five proteins ofSBPH were identified the interactions with RSV CP by CO-IP assay as an independent confirmationanalysis. Different efficiency of protein interactions from strong to weak were NCuP,Atlastin,Jagunal,Vg and NAC.
     Based on the screening sequences from yeast two hybrid,the full-length cDNA of NCuP and Vgwere acquired by Rapid Amplification of cDNA Ends (RACE). Two cDNA sequences of NCuP and Vghad been deposited in GenBank under accession no. KC485263and no. KC469581. NCuP couldcolocalized not only with RSV CP in Sf9cells, but also with ribonucleoprotein particles (RNPs) of RSVin the cell line and hemocytes of SBPH by fluorescent confocal microscopy. This demonstrated thatNCuP was involved in specific interactions that formed virus-vector combinations in the insect vectors.To learn more about NCuP, we investigated its expression levels among different organs of L. striatellusby ELISA. The results showed that the quantity of NCuP expression was higher in the hemolymph. To reveal the function of NCuP in virus transmission in the vector, we utilized a powerful strategy offunctional study, insect RNAi. The introduction of NCuP dsRNA into L. striatellus by microinjectionwas performed. The quantity of RSV in the SBPH silenced the expression of NCuP by RNAitechnology was65%lower than that of control groups and the virus transmission efficiency wasreduced40%. The declining quantity of virus demonstrated that NCuP could protect the virus fromdegradation in the hemolymph. Some persistent propagative virus could move from the intestine tohemolymph and be transported to the salivary glands. Colocalization of Vg and RNPs of RSV wasobserved in the germarium of SBPH ovarioles. Thus, VgR mediated endocytosis might haveoccasionally incorporated RSV encapsulated in Vg into the germarium of SBPH ovarioles and the RSVparticles then spread into the oocytes through nutritive cord.
引文
1.白雪亮,王金菊,周维等.水稻条纹叶枯病的研究进展.生物学通报,2007,42(08):4-6.
    2.彩万志,庞雄飞,花保祯等.普通昆虫学,中国农业大学出版社,2001,183-186.
    3.程兆榜,陈思宏,朱荣鹏等.水稻条纹病毒在玉米和水稻上流行差异分析.中国农学通报,2006,22(12):313-317.
    4.高东明,秦文胜,李爱民等.不同抗性品种与水稻条纹叶枯病的关系.中国水稻科学,1993,7(01):58-60.
    5.郭舒杨,周旭,国泰.病毒蛋白质相互作用的研究方法及其应用.微生物学免疫学进展,2011,39(01):71-75.
    6.纪拥军,杨呈芹.灰飞虱生物学特性、发生规律及暴发原因.植物医生,2013,(01):11-12.
    7.李大伟,韩成贵,邢恰明等.中国小麦黄花叶病毒(WYMV)分布的RT-PCR鉴定.植物病理学报,1997,27(04):303-307.
    8.梁昌镛,赵淑玲,侯艳玲等.酵母双杂交系统筛选与水稻条纹病毒Pc2互作的寄主蛋白基因片段.热带作物学报,2012,33(03):540-544.
    9.林董,何柳,谢荔岩等. RSV编码的4种蛋白在AcMNPV-sf9昆虫细胞体系中的重组表达.福建农林大学学报(自然科学版),2008,37(03):269-274.
    10.林含新,吴祖建,林奇英等.水稻条纹病毒蛋白与核酸的特性.中国病毒学,1999,14(04):344-352.
    11.林奇英,谢联辉,周仲驹等.水稻条纹叶枯病的研究I.病害的分布和损失.福建农学院学报,1990,19(04):421-425
    12.林奇英,谢联辉,谢莉妍等.水稻条纹叶枯病的研究Ⅱ.病害的症状和传播.福建农学院学报,1991,20(01):24-28.
    13.龙亚芹,王万东,李凡等.云南水稻条纹病毒RNA3的分子变异及遗传多样性分析.西南农业学报,2011,24(02):570-574.
    14.曲志才,沈大棱,徐亚南等.水稻条叶枯病毒基因产物在水稻和昆虫体内的Western印迹分析.遗传学报,1999,26(05):512-517.
    15.王锡锋,刘艳,韩成贵等.我国小麦病毒病害发生现状与趋势分析.植物保护,2010,36(03):13-19.
    16.吴爱忠,赵燕,曲志才等.水稻条叶枯病毒(RSV)的SP蛋白在介体灰飞虱内的亚细胞定位.科学通报,2001,46(14):1183-1186.
    17.吴维,毛倩卓,陈红燕等.应用免疫荧光技术研究水稻条纹病毒(RSV)侵染介体灰飞虱卵巢的过程.农业生物技术学报,2012,20(12):1457-1462.
    18.武明花,李桂源.分离的泛素系统——种新型的膜蛋白酵母双杂交系统.国外医学.遗传学分册,2005,28(02):88-90.
    19.谢联辉,周仲驹,林奇英等.水稻条纹叶枯病的研究Ⅲ.病害的病原性质.福建农学院学报,1991,20(02):144-149.
    20.谢联辉,魏太云,林含新等.水稻条纹病毒的分子生物学.福建农业大学学报,2001,30(03):269-279
    21.徐秀媛,锦华.灰飞虱雌性生殖系统的构造和卵巢发育分级.昆虫知识,1990,27(06):365-366.
    22.薛沿宁.用于蛋白质间相互作用研究的新型双杂交系统.生理科学进展,2001,32(03):229-232.
    23.张恒木,孙焕然,王华弟等.水稻条纹病毒分子生物学研究进展.植物保护学报,2007,34(04):436-439.
    24.张开慧.酵母双杂交系统及应用.价值工程,2011,30(23):321-322.
    25.张开玉,熊如意,吴建祥等.水稻条纹病毒编码蛋白在灰飞虱体内的检测及其与CP体外结合研究.中国农业科学,2008,41(12):4063-4068.
    26.张世贤,李莉,王锡锋等.我国北方稻区水稻条纹病毒分子变异和水稻品种抗病性分析.植物保护,2007,33(05):45-50.
    27.周益军,李硕,程兆榜等.中国水稻条纹叶枯病研究进展.江苏农业学报,2012,28(05):1007-1015.
    28.朱凤美,肖庆璞,王法明等.江南稻区新发生的几种稻病.植物保护,1964,2(03):100-102.
    29. Abbink T E, Peart J R, Mos T N, et al. Silencing of a gene encoding a protein component of theoxygen-evolving complex of photosystem II enhances virus replication in plants. Virology,2002,295(2):307-319.
    30. Ammar E D and Hogenhout S A. A neurotropic route for Maize mosaic virus (Rhabdoviridae) in itsplanthopper vector Peregrinus maidis. Virus Research,2008,131(1):77-85.
    31. Ammar E D and Nault L. Assembly and accumulation sites of Maize mosaic virus in itsplanthopper vector. Intervirology,1985,24(1):33-41.
    32. Ammar E D, Gingery R and Madden L. Transmission efficiency of three isolates of maize stripetenuivirus in relation to virus titre in the planthopper vector. Plant Pathology,1995,44(2):239-243.
    33. Ammar E D, Khlifa E, Mahmoud A, et al. Evidence for multiplication of the leafhopper-bornemaize yellow stripe virus in its vector using ELISA and dot-blot hybridization. Archives Virology,2007,152(3):489-494.
    34. Ammar E D, Gingery R E and Nault L R. Two types of inclusions in maize infected with Maizestripe virus. Phytopathology,1985,75(1):84-89.
    35. Ammar E D, Gingery R E and Nault L R. Interactions between Maize mosaic virus and Maizestripe viruses in their insect vector and host plant. Phytopathology,1987,77(7):1051-1056.
    36. Ammar E D, Gomez-Luengo R G, Gordon D T, et al. Characterization of Maize Iranian MosaicVirus and Comparison with Hawaiian and Other Isolates of Maize Mosaic Virus (Rhabdoviridae).Journal of Phytopathology,2005,153(3):129-136.
    37. Araki N, Ishigami T, Ushio H, et al. Identification of NPC2protein as interaction molecule withC2domain of human Nedd4L. Biochemical and Biophysical Research Communications,2009,388(2):290-296.
    38. Aronheim A. Improved efficiency sos recruitment system: expression of the mammalian GAPreduces isolation of Ras GTPase false positives. Nucleic Acids Research,1997,25(16):3373-3374.
    39. Assis Filho F M, Naidu R A, Deom C M, et al. Dynamics of Tomato spotted wilt virus replicationin the alimentary canal of two thrips species. Phytopathology,2002,92(7):729-733.
    40. Bandla M D, Campbell L R, Ullman D E, et al. Interaction of Tomato Spotted Wilt Tospovirus(TSWV) Glycoproteins with a Thrips Midgut Protein, a Potential Cellular Receptor for TSWV.Phytopathology,1998,88(2):98-104.
    41. Baton L A, Robertson A, Warr E, et al. Genome-wide transcriptomic profiling of Anophelesgambiae hemocytes reveals pathogen-specific signatures upon bacterial challenge and Plasmodiumberghei infection. BMC Genomics,2009,10(1):257-270.
    42. Blanc S, Lopez-Moya J, Wang R, et al. A specific interaction between coat protein and helpercomponent correlates with aphid transmission of a potyvirus. Virology,1997,231(1):141-147.
    43. Blanc S, Ammar E, Garcia-Lampasona S, et al. Mutations in the potyvirus helper componentprotein: effects on interactions with virions and aphid stylets. Journal of General Virology,1998,79(2):3119-3122.
    44. Bouvaine S, Boonham N and Douglas A E. Interactions between a luteovirus and the GroELchaperonin protein of the symbiotic bacterium Buchnera aphidicola of aphids. Journal of GeneralVirology,2011,92(6):1467-1474.
    45. Brault V, van den Heuvel J F, Verbeek M, et al. Aphid transmission of Beet western yellowsluteovirus requires the minor capsid read-through protein P74. EMBO Journal,1995,14(4):650-658.
    46. Brault V, Mutterer J, Scheidecker D, et al. Effects of point mutations in the readthrough domain ofthe Beet western yellows virus minor capsid protein on virus accumulation in planta and ontransmission by aphids. Journal of Virology,2000,74(3):1140-1148.
    47. Brault V, Herrbach éand Reinbold C. Electron microscopy studies on luteovirid transmission byaphids. Micron,2007,38(3):302-312.
    48. Bruyere A, Brault V, Ziegler-Graff V, et al. Effects of mutations in the Beet western yellows virusreadthrough protein on its expression and packaging and on virus accumulation, symptoms, andaphid transmission. Virology,1997,230(2):323-334.
    49. BüNING J. Ovariole Structure Supports Sistergroup Relationship of Neuropterida and Coleoptera.Arthropod Systematics&Phylogeny,2006,64(2):115-126.
    50. Cai L J, Ma X Z, Kang L, et al. Detecting Rice stripe virus (RSV) in the small brown planthopper(Laodelphax striatellus) with high specificity by RT-PCR. Journal of Virological Methods,2003,112(1):115-120.
    51. Candiano G, Bruschi M, Musante L, et al. Blue silver: A very sensitive colloidal coomassie G-250staining for proteome analysis. Electrophoresis,2004,25(9):1327-1333.
    52. Caufield J H, Sakhawalkar N and Uetz P. A comparison and optimization of yeast two-hybridsystems. Methods,2012,58(4):317-324.
    53. Cheng DJ, Hou RF. Determination and distribution of a female-specific protein in the brownplanthopper, Nilaparvata lugens Stal (Homoptera: Delphacidae). Tissue Cell,2005,37(1):37-45.
    54. Chen H, Chen Q, Omura T, et al. Sequential infection of Rice dwarf virus in the internal organs ofits insect vector after ingestion of virus. Virus Research,2011,160(1):389-394.
    55. Chen J, Sohn, Chen, et al. Molecular comparisons amongst wheat bymovirus isolates from Asia,North America and Europe. Plant Pathology,1999,48(5):642-647.
    56. Cilia M, Tamborindeguy C, Fish T, et al. Genetics coupled to quantitative intact proteomics linksheritable aphid and endosymbiont protein expression to circulative polerovirus transmission.Journal of Virology,2011,85(5):2148-2166.
    57. Cornman R S, Togawa T, Dunn W A, et al. Annotation and analysis of a large cuticular proteinfamily with the R&R Consensus in Anopheles gambiae. BMC Genomics,2008,9(1):22-38.
    58. Cornman R S. Molecular evolution of drosophila cuticular protein genes. Plos One,2009,4(12):e8345.
    59. Dhadialla A S. Accumulation of yolk proteins in insect oocytes. Annual Review of Entomology,1992,37(1):217-251.
    60. Dombrovsky A, Huet H, Chejanovsky N, et al. Aphid transmission of a potyvirus depends onsuitability of the helper component and the N terminus of the coat protein. Archives of Virology,2005,150(2):287-298.
    61. Du Z G, Xiao D L, Wu J G, et al. p2of Rice stripe virus (RSV) interacts with OsSGS3and is asilencing suppressor. Molecular Plant Pathology,2011,12(8):808-814.
    62. Edelbaum D, Gorovits R, Sasaki S, et al. Expressing a whitefly GroEL protein in Nicotianabenthamiana plants confers tolerance to Tomato yellow leaf curl virus and Cucumber mosaic virus,but not to grapevine virus A or Tobacco mosaic virus. Archives of Virology,2009,154(3):399-407.
    63. Estabrook E, Suyenaga K, Tsai J, et al. Maize stripe tenuivirus RNA2transcripts in plant andinsect hosts and analysis of pvc2, a protein similar to the Phlebovirus virion membraneglycoproteins. Virus Genes,1996,12(3):239-247.
    64. Falk B W and Tsai J H. Biology and molecular biology of viruses in the genus Tenuivirus. AnnualReview of Phytopathology,1998,36(1):139-163.
    65. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution,1985,39(4):783-791.
    66. Fields S and Song O. A novel genetic system to detect protein-protein interactions. Nature,1989,340(6230):245-246.
    67. Fields S. High-throughput two-hybrid analysis. The FEBS Journal,2005,272(21):5391-5399.
    68. Filichkin S A, Brumfield S, Filichkin T P, et al. In vitro interactions of the aphid endosymbioticSymL chaperonin with Barley yellow dwarf virus. Journal of Virology,1997,71(1):569-577.
    69. Gamez R, Leon P. Maize rayado fino and related viruses. In The Plant Viruses, New York: Plenum.R Koenig,1988,231-233.
    70. Garret A, Kerlan C and Thomas D. The intestine is a site of passage for Potato leafroll virus fromthe gut lumen into the haemocoel in the aphid vector, Myzus persicae Sulz. Archives of Virology,1993,131(3):377-392.
    71. Geng Y, Yang J, Huang W, et al. Virus Host Protein Interaction Network Analysis Reveals That theHEV ORF3Protein May Interrupt the blood coagulation process. Plos One,2013,8(2): e56320.
    72. Ghanim M, Kontsedalov S and Czosnek H. Tissue-specific gene silencing by RNA interference inthe whitefly Bemisia tabaci (Gennadius). Insect Biochemistry and Molecular Biology,2007,37(7):732-738.
    73. Gingery R E, Gordon D T and Nault L R. Purification and properties of an isolate of maize rayadofino virus from the United States. Phytopathology,1982,72(10):1313-1318.
    74. Gray S and Gildow F E. Luteovirus-aphid interactions. Annual Review of Phytopathology,2003,41(1):539-566.
    75. Guo D Y, Merits A and Saarma M. Self-association and mapping of interaction domains of helpercomponent-proteinase of potato A potyvirus. Journal of General Virology,1999,80(5):1127-1131.
    76. Guo H T, Gao C J, Mi Z Y, et al. Characterization of the PC4binding domain and its interactionswith HNF4alpha. Journal of Biochemistry,2007,141(5):635-640.
    77. Ham B K, Lee T H, You J S, et al. Isolation of a putative tobacco host factor interacting withCucumber mosaic virus-encoded2b protein by yeast two-hybrid screening. Molecules and Cells,1999,9(5):548-555.
    78. Han C G, Li D W, Xing Y M, et al. Wheat yellow mosaic virus widely occurring in wheat (Triticumaestivum) in China. Plant Disease,2000,84(6):627-630.
    79. Hogenhout S A, van der Wilk F, Verbeek M, et al. Potato leafroll virus binds to the equatorialdomain of the aphid endosymbiotic GroEL homolog. Journal of Virology,1998,72(1):358-365.
    80. Hogenhout S A, Ammar el D, Whitfield A E, et al. Insect vector interactions with persistentlytransmitted viruses. Annual Review of Phytopathology,2008,48(46):327-359.
    81. Hohn T. Plant virus transmission from the insect point of view. Proceedings of the NationalAcademy of Sciences of the United States of America,2007,104(46):17905-17906.
    82. Huang Z, Andrianov V M, Han Y, et al. Identification of arabidopsis proteins that interact with theCauliflower mosaic virus (CaMV) movement protein. Plant Molecular Biology,2001,47(5):663-675.
    83. Huiet L, Tsai J H and Falk B W. Complete sequence of Maize stripe virus RNA4and mapping ofits subgenomic RNAs. Journal of General Virology,1992,73(7):1603-1607.
    84. Ingwell L L, Eigenbrode S D and Bosque-Perez N A. Plant viruses alter insect behavior to enhancetheir spread. Scientific Reports,2012,2(578):1-6.
    85. Irving P, Ubeda J-M, Doucet D, et al. New insights into Drosophila larval haemocyte functionsthrough genome-wide analysis. Cellular Microbiology.2005,7(3):335–350.
    86. Ishikawa H. Host-symbiont interactions in the protein synthesis in the pea aphid, Acyrthosiphonpisum. Insect Biochemistry,1982,12(6):613-622.
    87. Jasrapuria S, Specht C A, Kramer K J, et al. Gene families of cuticular proteins analogous toperitrophins (CPAPs) in tribolium castaneum have diverse functions. Plos One,2012,7(11):e49844.
    88. Mockli N, Deplazes A, Hassa P O, et al. Yeast split-ubiquitin-based cytosolic screening system todetect interactions between transcriptionally active proteins. Biotechniques,2007,42(6):725-730.
    89. Ng J C K, Liu S J, Perry K L. Cucumber mosaic virus mutants with altered physical properties anddefective in aphid vector transmission. Virology,2000,276(2):395-403.
    90. Noda H. Histological and histochemical obervation of tntracellular yeastlike symbiotes in the fatboday of the smaller brown planthopper, Laodelophax stratellus (Homotera: Delphacidae).Applied Entomology and Zoology,1977,12(1):134-141.
    91. Jeger M J, van den bosch F, Madden L V, et al. A model for analysing plant-virus transmissioncharacteristics and epidemic development. Mathematical Medicine and Biology,1998,15(1):1-18.
    92. Jia D, Chen H, Mao Q, et al. Restriction of viral dissemination from the midgut determinesincompetence of small brown planthopper as a vector of Southern rice black-streaked dwarf virus.Virus Research,2012,167(2):404-408.
    93. Johnsson N and Varshavsky A. Split ubiquitin as a sensor of protein interactions in vivo.Proceedings of the National Academy of Sciences of the United States of America,1994,91(22):10340-10344.
    94. Kakutani T, Hayano Y, Hayashi T, et al. Ambisense segment4of Rice stripe virus: possibleevolutionary relationship with phleboviruses and uukuviruses (Bunyaviridae). Journal of GeneralVirology,1990,71(7):1427-1432.
    95. Karimova G, Pidoux J, Ullmann A, et al. A bacterial two-hybrid system based on a reconstitutedsignal transduction pathway. Proceedings of the National Academy of Sciences of the United Statesof America,1998,95(10):5752-5756.
    96. Kassanis B and Govier D A. New evidence on the mechanism of aphid transmission of Potato Cand Potato aucuba mosaic viruses. Journal of General Virology,1971,10(1):99-101.
    97. Kikkert M, Meurs C, van de Wetering F, et al. Binding of Tomato spotted wilt virus to a94kDathrips protein. Phytopathology,1998,88(1):63-69.
    98. King J G and Hillyer J F. Infection-Induced Interaction between the Mosquito Circulatory andImmune Systems. Plos Pathogens,2012,8(11): e1003058.
    99. Kiso A, Yamamoto T, Kitani K. Studies on Rice stripe disease with special reference to the causalvirus, its laction in the diseased tissues and the metabolic changes in the disease Plant. BulletinShikoku Agricultural Experiment Station,1974,27(1):1-5.
    100. Kittanakom S, Chuk M, Wong V, et al. Analysis of membrane protein complexes using thesplit-ubiquitin membrane yeast two-hybrid system. Methods in Molecular Biology,2009,548:247-271.
    101. Koganezawa H, Doi Y, Yora K. Purification of Rice stripe virus. Annals of the hytopathologicalSociety of Japan,1975,41:148-154
    102. Larkin M A, Blackshields G, Brown N P, et al. Clustal W and Clustal X version2.0.Bioinformatics,2007,23(21):2947-2948.
    103. Leh V, Jacquot E, Geldreich A, et al. Aphid transmission of Cauliflower mosaic virus requires theviral PIII protein. EMBO Journal,1999,18(1):7077-7095.
    104. Leh V, Jacquot E, Geldreich A, et al. Interaction between the open reading frame III product andthe coat protein is required for transmission of Cauliflower mosaic virus by aphids. Journal ofVirology,2001,75(1):100-106.
    105. Li C, Cox-Foster D, Gray S M, et al. Vector specificity of Barley yellow dwarf virus (BYDV)transmission: identification of potential cellular receptors binding BYDV-MAV in the aphid,Sitobion avenae. Virology,2001,286(1):125-133.
    106. Li S, Xiong R Y, Wang X F, et al. Five Proteins of Laodelphax striatellus are potentially involvedin the Interactions between Rice Stripe Virus and Vector. Plos One,2011,6(10) e26585.
    107. Liang D L, Qu Z, Ma X Q, et al. Detection and localization of Rice stripe virus gene products invivo. Virus Genes,2005,31(2):211-221.
    108. Liu S, He X, Park G, et al. A conserved capsid protein surface domain of Cucumber mosaic virus isessential for efficient aphid vector transmission. Journal of Virology,2002,76(19):9756-9762.
    109. Liu S H, Ding Z P, Zhang C W, et al. Gene knockdown by intro-thoracic injection ofdouble-stranded RNA in the brown planthopper, Nilaparvata lugens. Insect Biochemistry andMolecular Biology,2010,40(9):666-671.
    110. Lu L M, Du Z G, Qin M L, et al. Pc4, a putative movement protein of Rice stripe virus, interactswith a type I DnaJ protein and a small Hsp of rice. Virus Genes,2009,38(2):320-327.
    111. Luo T, Kuriakose J A, Zhu B, et al. Ehrlichia chaffeensis TRP120Interacts with a diverse array ofeukaryotic proteins involved in transcription, signaling, and cytoskeleton organization. Infectionand Immunity,2011,79(11):4382-4391.
    112. Ma Y, Wu W, Chen H, et al. An insect cell line derived from the small brown planthopper supportsreplication of Rice stripe virus, a tenuivirus. Journal of General Virology,2013,94:1-7.
    113. Maier R H, Maier C J, Hintner H, et al. Quantitative real-time PCR as a sensitive protein-proteininteraction quantification method and a partial solution for non-accessible autoactivator andfalse-negative molecule analysis in the yeast two-hybrid system. Methods,2012,58(4):376-384.
    114. Marcellini L, Giammatteo M, Aimola P, et al. Fluorescence and electron microscopy methods forexploring antimicrobial peptides mode(s) of action. Methods Molecular Biology,2010,618:249-266.
    115. Mauck K, Bosque-Pérez N A, Eigenbrode S D, et al. Transmission mechanisms shape pathogeneffects on host–vector interactions: evidence from plant viruses. Functional Ecology,2012,26(5):1162-1175.
    116. Mon H, Sugahara R, Hong S M, et al. Analysis of protein interactions with two-hybrid system incultured insect cells. Analytical Biochemistry,2009,392(2):180-182.
    117. Morin S, Ghanim M, Sobol I, et al. The GroEL protein of the whitefly Bemisia tabaci interactswith the coat protein of transmissible and nontransmissible begomoviruses in the yeast two-hybridsystem. Virology,2000,276(2):404-416.
    118. Morrison D A. Multiple sequence alignment for phylogenetic purposes. Australian SystematicBotany,2006,19(6):479-539.
    119. Murphy F A, Fauquet C M, Bishop D H L, et al. Virus taxonomy-6th report of the internationalcommittee on taxonomy of viruses. Archives of Virology,1995,10:313-314.
    120. Nagata T, Inoue-Nagata A, Prins M, et al. Impeded thrips transmission of defective Tomato spottedwilt virus isolates, Phytopathology,2000,90(5):454-459.
    121. Nagata T, Inoue-Nagata A K, van Lent J, et al. Factors determining vector competence andspecificity for transmission of Tomato spotted wilt virus. Journal of General Virology,2002,83(3):663-671.
    122. Naidu R, Sherwood J and Deom C. Characterization of a vector-nontransmissible isolate of Tomatospotted wilt virus. Plant Pathology,2008,57(1):190-196.
    123. Nault L and Gordon D. Multiplication of Maize stripe virus by the greenbug, Schizaphis graminum.Annuals of the Entomolological Society of America,1988,62:403-408.
    124. Nault L and Ammar E D. Leafhopper and planthopper transmission of plant-viruses. AnnualReview of Entomology,1989,34(1):503-529.
    125. Ng J C K and Falk B W. Virus-vector interactions mediating nonpersistent and semipersistenttransmission of plant viruses. Annual Review of Phytopathology,2006,44(1):183-212.
    126. NODA H. Histological and histochemical obervation of intracellular yeastlike symbiotes in the fatboday of the smaller brown planthopper, Laodelophax stratellus (Homotera: Delphacidae).Japanese Society of Applied Entomology and Zoology,1977,12(2):134-141.
    127. Ogorzalek A and Trochimczuk A. Ovary structure in a presocial insect, Elasmucha grisea(Heteroptera, Acanthosomatidae). Arthropod Structure and Development,2009,38(6):509-519.
    128. Peng Y, Kadoury D, Gal-On A, et al. Mutations in the HC-Pro gene of Zucchini yellow mosaicpotyvirus: effects on aphid transmission and binding to purified virions. Journal of GeneralVirology,1998,79(4):897-904.
    129. Plisson C, Drucker M, Blanc S, et al. Structural characterization of HC-Pro, a plant virusmultifunctional protein. Journal of Biological Chemistry,2003,278(26):23753-23761.
    130. Powell G, Tosh C and Hardie J. Host plant selection by aphids: behavioral, evolutionary, andapplied perspectives. Annual Review of Entomology,2006,51:309-313.
    131. Power A G. Insect transmission of plant viruses: a constraint on virus variability. Current Opinionin Plant Biology,2000,3(4):336-340.
    132. Pu Y Y, Kikuchi A, Moriyasu Y, et al. Rice dwarf viruses with dysfunctional genomes generated inplants are filtered out in vector insects: implications for the origin of the virus. Journal of Virology,2011,85(6):2975-2979.
    133. Racotta A R C. Ovariole structure of the cochineal scale insect dactylopius coccus. Journal ofInsect Science,2008,8(20):1-5.
    134. Rajagopala S V, Sikorski P, Caufield J H, et al. Studying protein complexes by the yeast two-hybridsystem. Methods,2012,58(4):392-399.
    135. Ramirez B C, Lozano I, Constantino L M, et al. Complete nucleotide sequence and coding strategyof rice hoja blanca virus RNA4. Journal of General Virology,1993,74(11):2463-2468.
    136. Ramirez B C and Haenni A L. Molecular biology of tenuiviruses, a remarkable group of plantviruses. Journal of General Virology,1994,75(3):467-475.
    137. Rasmussen N and Ditzel H J. Identification of the specificity of isolated phage display single-chainantibodies using yeast two-hybrid screens. Methods Molecular Biology,2009,562:165-176.
    138. Rebers J E and Willis J H. A conserved domain in arthropod cuticular proteins binds chitin. InsectBiochemistry Molecular Biology,2001,31(11):1083-1093.
    139. Sacchi L, Genchi M, Clementi E, et al. Multiple symbiosis in the leafhopper Scaphoideus titanus(Hemiptera: Cicadellidae): details of transovarial transmission of Cardinium sp. and yeast-likeendosymbionts. Tissue Cell,2008,40(4):231-242.
    140. Salomon R and Bernardi F. Inhibition of Viral Aphid Transmission by the N-Terminus of the MaizeDwarf Mosaic Virus Coat Protein. Virology,1995,213(2):676-679.
    141. Seddas P, Boissinot S, Strub J M, et al. Rack-1, GAPDH3, and actin: proteins of Myzus persicaepotentially involved in the transcytosis of Beet western yellows virus particles in the aphid.Virology,2004,325(2):399-412.
    142. Seddas P and Boissinot S. Glycosylation of Beet western yellows virus proteins is implicated in theaphid transmission of the virus. Archives of Virology,2006,151(5):967-984.
    143. Smith T, Chase E, Schmidt T, et al. The structure of Cucumber mosaic virus and comparison toCowpea chlorotic mottle virus. Journal of Virology.,2000,74(16):7578-7586.
    144. Stagljar I, Korostensky C, Johnsson N, et al. A genetic system based on split-ubiquitin for theanalysis of interactions between membrane proteins in vivo. Proceedings of the National Academyof Sciences of the United States of America,1998,95(9):5187-5192.
    145. Suter B, Fontaine J F, Yildirimman R, et al. Development and application of a DNAmicroarray-based yeast two-hybrid system. Nucleic Acids Research,2013,41(3):1496-1507.
    146. Suzuki Y, Fuji S, Takahashi Y, et al. Immunogold localization of Rice stripe virus particle antigenin thin sections of insect host cells. Annals of the Phytopathological Society of Japan,1992,58(3):480-484.
    147. Sylvester E S. Circulative and Propagative Virus Transmission by Aphids. Annual Review ofEntomology,1980,25(1):257-286.
    148. Szklarzewicz T, Jankowska W, Wieczorek K, et al. Structure of the ovaries of the primitive aphidsPhylloxera coccinea and Phylloxera glabra(Hemiptera, Aphidinea: Phylloxeridae). Acta Zoologica,2009,90(2):123-131.
    149. Szklarzewicz T, Kalandyk-Kolodziejczyk M, Kot M, et al. Ovary structure and transovarialtransmission of endosymbiotic microorganisms in Marchalina hellenica (Insecta, Hemiptera,Coccomorpha: Marchalinidae). Acta Zoologica,2013,94(2):184-192.
    150. Thomas W. Sappington A S R. Molecular characteristics of insect vitellogenins and vitellogeninreceptors. Insect Biochemistry and Molecular Biology,1998,28(5):277-300.
    151. Togawa T, Nakato H and Izumi S. Analysis of the chitin recognition mechanism of cuticle proteinsfrom the soft cuticle of the silkworm, Bombyx mori. Insect Biochemistry and Molecular Biology,2004,34(10):1059-1067.
    152. Tomaru M, Maruyama W, Kikuchi A, et al. The loss of outer capsid protein P2results innontransmissibility by the insect vector of Rice dwarf phytoreovirus. Journal of Virology,1997,71(10):8019-8023.
    153. Toriyama K, Hinata K and Sasaki T. Haploid and diploid plant regeneration from protoplasts ofanther callus in rice. Theoretical and Applied Genetics,1986,73(1):16-19.
    154. Toriyama S. An RNA-dependent RNA Polymerase Associated with the FilamentousNucleoproteins of Rice stripe virus. Journal of General Virology,1986,67(7):1247-1255.
    155. Toriyama S, Takahashi M, Sano Y, et al. Nucleotide sequence of RNA1, the largest genomicsegment of Rice stripe virus, the prototype of the tenuiviruses. Journal of General Virology,1994,75(12):3569-3579.
    156. Tufail M and Takeda M. Molecular characteristics of insect vitellogenins. Journal of InsectPhysiology,2008,54(12):1447-1458.
    157. Tufail M and Takeda M. Insect vitellogenin/lipophorin receptors: molecular structures, role inoogenesis, and regulatory mechanisms. Journal of Insect Physiology,2009,55(2):87-103.
    158. Uetz P. Editorial for "The Yeast two-hybrid system" Introduction. Methods,2012,58(4):315-316.
    159. Uzest M, Gargani D, Drucker M, et al. A protein key to plant virus transmission at the tip of theinsect vector stylet. Proceedings of the National Academy of Sciences of the United States ofAmerica,2007,104(46):17959-17964.
    160. van den Heuvel J F, Bruyere A, Hogenhout S A, et al. The N-terminal region of the luteovirusreadthrough domain determines virus binding to Buchnera GroEL and is essential for viruspersistence in the aphid. Journal of Virology,1997,71(10):7258-7265.
    161. Van Regenmortel M H V. On the relative merits of italics, Latin and binomial nomenclature invirus taxonomy. Archives of Virology,2000,145(2):433-441.
    162. Visser P B and Bol J F. Nonstructural proteins of Tobacco rattle virus which have a role innematode-transmission: expression pattern and interaction with viral coat protein. Journal ofGeneral Virology,1999,80(12):3273-3280.
    163. Wakeel A, Kuriakose J A and McBride J W. An Ehrlichia chaffeensis Tandem Repeat ProteinInteracts with Multiple Host Targets Involved in Cell Signaling, Transcriptional Regulation, andVesicle Trafficking. Infection and Immunity,2009,77(5):1734-1745.
    164. Wang H L, Sudarshana M R, Gilbertson R L, et al. Analysis of cell-to-cell and long-distancemovement of a Bean dwarf mosaic geminivirus-green fluorescent protein reporter in host andnonhost species: Identification of sites of resistance. Molecular Plant-Microbe Interactions,1999,12(4):345-355.
    165. Wang X and Zhou G. Identification of a protein associated with circulative transmission of Barleyyellow dwarf virus from cereal aphids, Schizaphis graminum and Sitobion avenae. Chinese ScienceBulletin,2003,48(19):2083-2087.
    166. Wei T, Kikuchi A, Moriyasu Y, et al. The spread of Rice dwarf virus among cells of its insectvector exploits virus-induced tubular structures. Journal of Virology,2006,80(17):8593-8602.
    167. Wei T, Shimizu T, Hagiwara K, et al. Pns12protein of Rice dwarf virus is essential for formation ofviroplasms and nucleation of viral-assembly complexes. Journal of General Virology,2006,87(2):429-438.
    168. Wei T, Chen H, Ichiki-Uehara T, et al. Entry of Rice dwarf virus into cultured cells of its insectvector involves clathrin-mediated endocytosis. Journal of Virology,2007,81(14):7811-7815.
    169. Wei T, Shimizu T and Omura T. Endomembranes and myosin mediate assembly into tubules ofPns10of Rice dwarf virus and intercellular spreading of the virus in cultured insect vector cells.Virology,2008,372(2):349-356.
    170. Wei T Y, Yang J G, Liao F L, et al. Genetic diversity and population structure of Rice stripe virus inChina. Journal of General Virology,2009,90(4):1025-1034.
    171. Wezensky S J, Hanks T S, Wilkison M J, et al. Modulation of PLAGL2transactivation by positivecofactor2(PC2), a component of the ARC/Mediator complex. Gene,2010,452(1):22-34.
    172. Whitfield A, Ullman D and German T. Expression and characterization of a soluble form of Tomatospotted wilt virus glycoprotein GN. Journal of Virology,2004,78(23):13197-13206.
    173. Whitfield A, Ullman D and German T. Tomato spotted wilt virus glycoprotein GC is cleaved atacidic pH. Virus Research,2005,110(1):183-186.
    174. Whitfield A, Kumar N, Rotenberg D, et al. A soluble form of the Tomato spotted wilt virus (TSWV)glycoprotein GN (GN-S) inhibits transmission of TSWV by Frankliniella occidentalis.Phytopathology,2008,98(1):45-50.
    175. Whitfield A E, Ullman D E and German T L. Tospovirus-thrips interactions. Annual Review ofPhytopathology,2005,48(43):459-489.
    176. Wyatt G R and Pan M L. Insect plasma proteins. Annual Review of Biochemistry,1978,47(1):779-817.
    177. Xiong R Y, Cheng Z B, Wu J X, et al. First report of an outbreak of Rice stripe virus on wheat inChina. Plant Pathology,2008,57(2):397-397.
    178. Xiong R Y, Wu J X, Zhou Y J, et al. Identification of a Movement Protein of the Tenuivirus Ricestripe virus. Journal of Virology,2008,82(24):12304-12311.
    179. Xiong R Y, Wu J X, Zhou Y J, et al. Characterization and subcellular localization of an RNAsilencing suppressor encoded by Rice stripe tenuivirus. Virology,2009,387(1):29-40.
    180. Yamashita S, Doi Y, Yora K, Intercelluar appearance of Rice stripe virus. Annuals of thephytopathological society of Japan,1985,51(5):637-641.
    181. Yan J, Tomaru M, Takahashi A, et al. P2protein encoded by genome segment S2of Rice dwarfphytoreovirus is essential for virus infection. Virology,1996,224(2):539-541.
    182. Yang H Y, Tan Y F, Zhang T T, et al. Identification of Novel Protein-Protein Interactions ofYersinia pestis Type III Secretion System by Yeast Two Hybrid System. Plos One,2013,8(1):e54121.
    183. Yang W D, Wang X H, Wang S Y, et al. Infection and replication of a planthopper transmitted virusRice stripe virus in rice protoplasts. Journal of Virological Methods,1996,59(1):57-60.
    184. Yoon J M, Nakajima M, Mashiguchi K, et al. Chemical screening of an inhibitor for gibberellinreceptors based on a yeast two-hybrid system. Bioorganic and Medicinal Chemistry Letters,2013,23(4):1096-1098.
    185. Yu J L, Yan L Y, Su N, et al. Analysis of nucleotide sequence of Wheat yellow mosaic virusgenomic RNAs. Science in China Series C-Life Sciences,1999,42(5):554-560.
    186. Zhang C, Pei X W, Wang Z X, et al. The Rice stripe virus pc4functions in movement and foliarnecrosis expression in Nicotiana benthamiana. Virology,2012,425(2):113-121.
    187. Zhang H M, Yang J, Sun H R, et al. Genomic analysis of Rice stripe virus Zhejiang isolate showsthe presence of an OTU-like domain in the RNA1protein and a novel sequence motif conservedwithin the intergenic regions of ambisense segments of tenuiviruses. Archives of Virology,2007,152(10):1917-1923.
    188. Zhang P, Mar T T, Liu W, et al. Simultaneous detection and differentiation of Rice black streakeddwarf virus (RBSDV) and Southern rice black streaked dwarf virus (SRBSDV) by duplex realtime RT-PCR. Virology Journal,2013,10(1):24-42.
    189. Zhang X, Wang X and Zhou G. A one-step real time RT-PCR assay for quantifying Rice stripe virusin rice and in the small brown planthopper (Laodelphax striatellus Fallen). Journal of VirologicalMethods,2008,151(2):181-187.
    190. Zheng Y F, Ao Z J, Jayappa K D, et al. Characterization of the HIV-1integrase chromatin-andLEDGF/p75-binding abilities by mutagenic analysis within the catalytic core domain of integrase.Virology Journal,2010,7(1):1-14.
    191. Zhou F, Wu G, Deng W L, et al. Interaction of Rice dwarf virus outer capsid P8protein with riceglycolate oxidase mediates relocalization of P8. Febs Letters,2007,581(1):34-40.
    192. Zhu Y, Hayakawa T, Toriyama S, et al. Complete nucleotide sequence of RNA3of Rice stripevirus: an ambisense coding strategy. Journal of General Virology,1991,72(4):763-767.
    193. Ziegler-Graff V and Brault V. Role of vector-transmission proteins. Methods Molecular Biology,2008,451:81-96.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700