用户名: 密码: 验证码:
时变运输周期影响下的供应链系统联合批量问题
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文旨在研究时变运输周期影响下的供应链系统批量决策问题,基于对时变运输周期的描述和其对系统批量决策问题的影响机制分析,主要采用动态规划方法对受时变运输周期影响显著的两类供应链系统的联合批量问题进行了建模分析和求解。
     论文基于大量实际调研数据,采用回归分析的方法对运输周期的变化特征进行了描述和建模,将运输周期的变化概括为三种情况:散点状态、线性趋势和非线性趋。并根据供应链系统结构特征的分析,得出时变运输周期主要以产生可变在途库存成本和改变系统生产能力的方式影响系统决策。
     时变运输周期产生的可变在途库存成本会使得供应链系统各期的成本参数发生变化,进而影响供应链系统批量决策。基于不同客户的补货模式对决策的影响分析,对客户采用一般性补货模式的供应链系统应用了一般的动态批量问题求解方法进行求解;对客户采用JIT补货模式且供应商与客户距离较远的供应链系统,设计了新的离散搜索方法进行求解。
     时变运输周期变化可能会改变供应链系统中的生产能力。通过对运输周期在不同的状态下对系统生产能力产生的影响分析得出,在运输周期为线性函数的情况下,一定的参数设置条件会使系统转变为中间级具有常数能力约束的问题,对此问题设计了一个新的基于动态规划方法的推拉混合规则并获得了最优解。
     为了方便企业的实际应用,本文利用Visual Basic的界面设计功能和Matlab的计算功能,设计了时变运输周期影响下的企业批量决策支持系统,为用户操作提供可视化窗口和相应的决策分析。
An integrated lot-sizing problem with time-varying delivery cycle is common in practice. In order to provide the support for the supply chain decision, two supply chains which are powerfully impacted by time-varying delivery cycle are studied in this paper. The integrated lot-sizing problems are solved in the two supply chains, based on the analysis of the system characters and the influence mechanisms respectively.
     Regression analysis method is used to describe and model the time-varying delivery cycle based on large practical data and three delivery cycle tendencies are concluded: scattered, linear tendency and non-linear tendency. Two ways of time-varying delivery cycle impact on integrated lot-sizing decisions are concluded based on the analysis of the system characters.
     One way is that time-varying in-transit inventory cost during delivery process can change the system parameters. A general method which is used in dynamic lot-sizing problem is adopted to solve the integrated lot-sizing problem with time-varying in-transit inventory cost in a supply chain with a general periodically customer ordering policy. A new discrete searching method is established to solve the same problem in a supply chain with a JIT customer ordering policy.
     Anther way is that time-varying delivery can change production capacity. Different changes under different time-varying delivery cycle are studied and conclude that, only under linear tendency delivery cycle situation, the problem probably becomes to an integrated lot-sizing decision with constant capacitated constraints which can be solved by polynomial method. A new mixed push and pull searching method is established to solve the new integrated lot-sizing decision problem with constant capacitated constraints in the middle of the supply chain system.
     At last a new lot-sizing decision support system under time-varying delivery cycle is established by using visual Basic and Matlab.
引文
[1] Hammond J H. Coordination as the Basis for Quick Response: A Case for Virtual Integration in Supply Networks (Working Paper). Boston: Harvard Business School, MA, 1992.
    [2] Arntzen, B C, G. G. Brown, T. P. Harrison. Global supply chain management at Digital Equipment Corporation. Interfaces, 1995, 25 (1):69-93.
    [3] Chandra, P, M L Fisher. Coordination of production and distribution planning. European Journal of Operational Research, 1994, 72: 503–517.
    [4] Geoffrion, A M, R F Powers. Twenty years of strategic distribution system design: An evolutionary perspective. Interfaces, 1995, 25(5):105-127.
    [5] Thomas, D J, P M Griffin. Coordinated supply chain management. European Journal of Operational Research. 1996, 94(1):1-15.
    [6] Paul H Zipkin. Foundations of inventory management. Boston: McGraw-Hill, 2000.
    [7]赵晓波.库存管理.北京:清华大学出版社, 2008.
    [8]丁建生.假日旅客运输的组织与思考.铁道运输与经济, 2001, 23(5):20-23.
    [9]陈道林,陈希.长江流域遭50年一遇秋旱枯水严重[EB/OL]. [2007-12-13]. http://news.sina.com.cn/c/2007-12-13/060614510494.shtml.
    [10]李静宇.时变物流的供应链.中国储运, 2008, 1:48-49.
    [11]张潮顺.“假日经济”中物流系统的规划问题.现代家电, 2008, 1:25-26.
    [12]翟学魂.假日运输之供应链.中国储运, 2008, 1:52-53.
    [13] Kaminsky, P, Simchi-Levi, D. Production and distribution lot sizing in a two stage supply chain. IIE Transactions (Institute of Industrial Engineers), 2003, 35(11): 1065- 1075.
    [14] Liberatore, M J. Planning horizons for a stochastic leadtime inventory model. Operations Research, 1977, 24: 977-988.
    [15] Lee H L, Corey B. Managing supply chain inventory: Pitalls and portunities. Sloan Management Review, 1992, 33(1): 65-73.
    [16] Lee H L, Marguerita M S. Product University and design for supply chain. Production Planning &Control, 1995, 6(3): 270-277.
    [17]马士华,林勇,陈志祥.供应链管理.北京:机械工业出版社, 2000.
    [18]刘荣华,孙皓,赵娟.基于供应链的运输决策研究.中国海洋大学学报社会科学版, 2007, 1:63-65.
    [19] Joel D Wisner. Principles of Supply Chain Management: A Balanced Approach.北京:机械工业出版社, 2006.
    [20]鹏志忠,周新平.物流管理-现代物流与供应链管理理论.济南:山东大学出版社, 2004.
    [21]张振坤.多指标运输问题的数学其算法研究.郑州大学学报, 2001, (33):33-36.
    [22]吴育华等.运输问题最小运费合理分摊的对策模型及解法.系统工程学报, 1995(10):3 49-52
    [23] Li Jun等. Time-cost trade-off in a transportation problem with muti-constraint level,运筹学学报, 2001, 3 (5):11-20.
    [24]李珍萍.最短时限的运输问题.中国管理科学, 2001, 9 (1):50-56.
    [25]谢政等.带容量限制和手续费用的运输问题.系统工程, 1998, 5 (16):25-30.
    [26]杨群,赵亚男,张国伍.基于模糊规则货运车调度方法.系统工程理论与实践, 2002, 22(5): 125-128.
    [27]林耘.关于一般线性规划问题悖论.运筹学杂志, 1986, 5(1):22-26.
    [28]林耘.谈运输“悖论”产生的条件.运筹学杂志, 1984, 3(1): 28-32.
    [29]杨承恩,金大勇.线性规划与非线性规划中的“多反而少”现象.系统工程, 1991, 9(2):29-33.
    [30] Kadaba N K E, Nygard, P L Juell. Integration of adaptive machine learning and knowledge-based systems for routing and scheduling. Applictions Expert system, 1991, 4(12): 15-27.
    [31] Kirkpatric S, Gelatt C D, Vecchi M P. Optimization by simulated annealing. Science, 1983, 220:671-680.
    [32] Glover F, Taillard E, Werra D de. A user’s guide to tabu search. Annals of Operations Reasrch, 1993, (41):3-28
    [33] Shigeru Tsubaking, James R Evans. Optimizing tabu list size for the travelling salesman problem. Computers operations research, 1998, 25(2):91-97.
    [34] Michel Gendreau, Gilbert Laporte, Daniele Vigo. Heuristics for the traveling salesman Problem With ickup and delivery. Computer & operations research, 1999, 26:699-714.
    [35] Dantzig G B, Ramser J H. the truck dispatching problem. Management Science, 1959, (6):80-81.
    [36] Clarke G, Wright J V. Scheduling of vehicles from a central depot to a number of delivery points. Operation Research, 1964, (12):568-581.
    [37]刘江.基于层次分析法的企业运输方式的选择[硕士学位论文].北京:对外经济贸易大学, 2006.
    [38]刘涛,章桥新. DHGF综合算法在物流运输方式选择中的应用.商场现代化, 2002, 2:92-96.
    [39]刘旷.基于DEA的综合交通运输方式协调发展评价.生产力研究, 2007, 20:111-113.
    [40]谢苏苏.一类智能算法在物流运输一库存联合优化问题中的应用研究[硕士学位论文].南京:南京理工大学控制理论与控制工程专业, 2007.
    [41] Alberto D T, Antonella M. Traditional and innovative paths towards time-based competition. International Journal of Production Economics, 2000, 66(3): 255-268.
    [42] Bartezzaghi E. Lead time models of business processes. International Journal of Operations & Production Management, 1994, 14 (5): 5-20.
    [43] Tersine R J, Hummingbird E A. Lead-time Reduction: The research for Competitive Advantage. International Journal of Operations and Production Management, 1995, 15(2):8-18.
    [44]李必强.现代生产管理.武汉:武汉理工大学出版社,2006.
    [45] Tan K C. A framework of supply chain management literature. European Journal of Purchasing & Supply Management, 2001, 7(1): 39-48.
    [46] Khim Ling S, Anthony P C. Time-based competition. International Journal of Quality & Reliability Management, 1999, 16(7): 659-666.
    [47] Stalk G J, Hout T M. Competing against time: How time based competition is reshaping global markets. New York: Free Press, 1990.
    [48] Peters T. Thriving on Chaos. New York: Excel/A California Limited Partnership, 1987.
    [49] John Ettlie, M.Burstein, A Feigenbaum Eds. Inventory reduction and productivity growth: A study of Japanese automobile producers. Boston: Kluwer Academic Publishers, 1990.
    [50] Blackburn J D. Time-based competition: The next battleground in American manufacturing. Homewood: Business One Irwin, 1991.
    [51] Jayaram J, Vickery S K, Droge C. An empirical study of time-based competition 138 in the North American automotive supplier industry. International Journal of Operations & Production Management, 1999, 19(10): 1010-1033.
    [52] Towill D R. Time compression and supply chain management-A guided tour. Supply Chain Management, 1996, 1(1): 15-27.
    [53] Andrew K, Maurizio B. Designing innovations in industrial logistics modeling. Boca Raton: RC Press, 1997.
    [54] Yeh R, Pearlson K, Kozmetsky G. Zero TimeTM: Providing Instant Customer Value—Every Time, All the Time. New York: John Wiley & Sons, 2000.
    [55]李鑑,谢金星.分布式配送系统在运输周期正态分布条件下的性能分析.控制理论与应用, 2003, 20(3): 465-67.
    [56] Barnes-Schuster, Dawn, Yehuda Bassok et al. Optimizing Delivery Lead Time/inventory Placement in a Two-Stage Production/distribution System. European Journal of Operational Research, 2006, 174(3): 1664- 1684.
    [57] Grubbstrom R W, Thu Thuy Huynh T. Multi-level, multi-stage capacity-constrained production-inventory systems in discrete time with non-zero lead times using MRP theory. International Journal of Production Economics, 2006, 101(1): 53- 62.
    [58] Gupta D, Magnusson T. The capacitated lot-sizing and scheduling problem with sequence-dependent setup costs and setup times. Computers and Operations Research, 2005, 32(4):727-747.
    [59] Karmarkar US, Schrage L. The deterministic dynamic product cycling problem. Operations Research, 1985, 33:326–45.
    [60] Bagchi U J, Hayya and C Chu. The Effect of Lead time Variability; The Case of Independent Demand. Operations Management, 1986, 6: 159-177.
    [61] Song, J.-S. Effect of leadtime uncertainty in a simple stochastic inventory model. Management Science, 1994, 40(5):603- 613.
    [62] Chen Fangruo, Bin Yu. Quantifying the Value of Lead time Information in a Single-Location Inventory System. Manufacturing and Service Operations Management, 2005, 7(2): 144- 151.
    [63] Jans R, Degraeve Z. Meta-heuristics for dynamic lot sizing: A review and comparison of solution approaches. European Journal of Operational Research, 2007, 177(3): 1855- 1875.
    [64] Wagner, H. M, Whitin, T. M. Dynamic version of the economic lot size model. Management Science, 1958, 50(12): 1770- 1777.
    [65] Zangwill W I. Single and Multi-Commodity Minimum Concave Cost Flows in Certain Networks (Working Paper). California: Center for Research in Management Science, University of California, Berkeley, 1966.
    [66] Zangwill W I. Convergence Conditions for Nonlinear Programming Algorithms, 1969, 16(1):1- 13.
    [67] Florian M, J K Lenstra, A H G Rinnooy Kan. Deterministic production planning: Algorithms and complexity. Management Science, 1980, 26(7):669–679.
    [68] Lee Chung-Yee, Cetinkaya Sila, Jaruphongsa et al. A dynamic model for inventory lot sizing and outbound shipment scheduling at a third-party warehouse. Operations Research, 2003, 51(5):735- 747.
    [69] Hwang H.-C, Jaruphongsa W. Dynamic Lot-sizing model with demand time windows and speculative cost structure. Operations Research Letters, 2006, 34(3): 251- 256.
    [70] Hwang H.-C. Dynamic lot-sizing model with production time windows. Naval Research Logistics, 2007, 54(6): 692- 701.
    [71] Hwang H.-C. An efficient procedure for dynamic lot-sizing model with demand time windows. Journal of Global Optimization, 2007, 37(1):11- 26.
    [72] Alp Osman, Erkip Nesim K, Gullu Refik. Optimal lot-sizing/vehicle-dispatching policies under stochastic lead times and stepwise fixed costs. Operations Research, 2003, 51(1):160- 166.
    [73] Bitran G. R, H H Yanasse. Computational complexity of the capacitated lot size problem. Management Sci, 1982, 28(10):1174–1186.
    [74] Klein M F. Deterministic production planning with concave costs and capacity constraints. Hanaoehent Science, 1971, 18(1):12-22.
    [75] Van Hoesel Stan, Romeijn H Edwin, Morales Dolores Romero, et al. Integrated lot sizing in serial supply chains with production capacities. Management Science, 2005, 51(11): 1706- 1719.
    [76] Karmarkar U S, Schrage L. The deterministic dynamic product cycling problem. Operations Research, 1985, 33(2): 326– 345.
    [77] Karmarkar U S, Kekre S. The dynamic lot sizing problem with startup and reservation costs. Operations Research, 1987, 35(3): 389–398.
    [78] Diaby M, Bahl H C, Karwan et al. Capacitated lot-sizing and scheduling by Lagrangean relaxation. European Journal of Operational Research, 1992a, 59:444–458.
    [79] Hindi K S. Solving the CLSP by a tabu search heuristic. Journal of the Operational Research Society, 1996, 47:151–161
    [80] Kohlmorgen U, Schmeck H, Haase K. Experience with fine-grained parallel genetic algorithms. Annals of Operations Research, 1999, 90:203–219.
    [81] O¨zdamar, L Bozyel, M A. The capacitated lot sizing problem with overtime decisions and setup times. IIE Transactions, 2000, 32: 1043–1057.
    [82] Hung Y F, Chen C P, Shih C C, Hung, M.H. Using tabu search with ranking candidate list to solve production planning problems with setups. Computers & Industrial Engineering, 2003, 45: 615–634.
    [83] Salomon M, Kuik R, Van Wassenhove L N. Statistical search methods for lot sizing problems. Annals of Operations Research, 1993, 41:453–468.
    [84] Hung Y F, Chien K L. A multi-class multi-level capacitated lot sizing model. Journal of the Operational Research Society, 2000, 51:1309–1318.
    [85] O¨zdamar, L, Barbarosog?lu, G. An integrated Lagrangean relaxation—simulated annealing approach to the multi-level multi-item capacitated lot sizing problem. International Journal of Production Economics, 2000, 68:319–331.
    [86] Xie J, Dong, J. Heuristic genetic algorithms for general capacitated lot-sizing problems. Computers and Mathematics with Applications, 2002, 44:263–276.
    [87] Kimms A. Competitive methods for multi-level lot sizing and scheduling: Tabu search and randomized regrets. International Journal of Production Research, 1996, 34 (8): 2279–2298.
    [88] Kimms A. A genetic algorithm for multi-level, multi-machine lot sizing and scheduling. Computers & Operations Research, 1999, 26:829–848.
    [89] Hindi K S. Solving the single-item, capacitated dynamic lot sizing problem with startup and reservation costs by tabu search. Computers and Industrial Engineering, 1995, 28 (4): 701–707.
    [90] Michalewicz Z, Fogel D B. How to solve it: Modern heuristics. Berlin: third ed. Springer-Verlag, 2002.
    [91] Berge C. Theory of Graphs and Applications. New York, N Y: John Wiley and Sons, Inc, 1962.
    [92] Zangwill W I. Minimum concave cost flows in certain networks. Management Science, 1968, 14(7): 429- 450.
    [93] Klein M F. Deterministic Production Planning With Concave costs And Capacity Constraints. Hanaoehent Science, 1971, 18(1): 12-22.
    [94] Karmarkar US, Schrage L. The deterministic dynamic product cycling problem. Operations Research 1985, 33:326–45.
    [95]魏大鹏.丰田生产方式研究:准时化生产方式的技术支撑体系.天津:天津科学技术出版社, 1996.
    [96]王久河.企业实现准时化物流的政策研究.燕山大学学报, 2003, 4( 4) : 82- 89.
    [97]李苏剑,常志明.准时制生产方式下的物流管理.物流技术, 2000, ( 5) : 3- 5.
    [98] Sarker R A, Khan L R. Optimal batch size for a production system operating under periodic delivery policy. Compute Eng, 1999, 37(4): 711- 730.
    [99] Sarker R A, Khan L R. An optimal batch size under a periodic delivery policy. International Journal of Systems Science, 2001, 32(9): 1089- 1099.
    [100] Nie Lanshun, Xu xiaofe, Zhan Dechen. Incorporating transportation costs into JIT lot splitting decisions for coordinated supply chains. Journal of Advanced Manufacture System, 2006, 5(1): 111- 121.
    [101] Siajadi Hans, Ibrahim Raafat N, Lochert Paul B. Joint economic lot size in distribution system with multiple shipment policy. International Journal of Production Economics, 2006, 102(2): 302- 316.
    [102] Diponegoro, A, Sarker, B. R. Determining manufacturing batch sizes for a lumpy delivery system with trend demand. International Journal of Production Economics, 2002, 77(2):131- 143.
    [103] William W Trigeiro, L Joseph Thomas, John O McClain. Capacitated Lot Sizing with Setup Times.Management Science, 1989, 35(3): 353-366.
    [104] Vanderbeck F. Lot-sizing with start-up times. Management Science, 1998, 44(10): 1409- 1425.
    [105] Ahuja R K, T L Magnanti, J B Orlin. Network Flows: Theory, Algorithms, and Applications. Prentice Hall, Englewood Cliffs, NJ, 1993.
    [106]袁燕,方骏. Visual Basic与Matlab通信交互方法.黑龙江水专学报, 2006, 33(1):130-132.
    [107]祁世京.土石坝碾压式沥青混凝土心墙施工技术.北京:中国水利水电出版社, 2002:41-42.
    [108]李诊照.中国水利百科全书:水工建筑物分册.北京:中国水利水电出版社, 2004, 95-96.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700