用户名: 密码: 验证码:
内蒙古锡林浩特地区古生代岩浆作用的年代学与地球化学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锡林浩特地区大地构造位置上处在中亚造山带东段,夹持于西伯利亚板块、华北板块和太平洋板块之间。北部以贺根山为界与西伯利亚板块相邻,南部以西拉木伦河断裂为界和华北板块相邻,向东延伸以中锡霍特俯冲带为界濒临太平洋板块。这里是世界上元古代-显生宙陆壳增生最显著的地区之一,通过多阶段的地质演化和强烈的大陆改造过程,具有复杂多样的地壳物质组成和结构构造,是研究大陆动力学演化的最佳场所。
     带内的锡林浩特地区位于著名的东乌旗贺根山蛇绿岩带与西拉木伦断裂带之间,经历了古亚洲洋板块的俯冲,陆-陆碰撞造山及碰撞之后的伸展张裂,形成了大量不同构造环境下的岩浆岩岩石组合,这些岩石组合记录了古亚洲洋的构造演化历史。本论文在分析讨论锡林浩特地区1比25万和1比5万两轮区域地质调查过程中所获得的大量野外资料及测试数据基础上,通过对锡林浩特地区古生代-早中生代的岩浆岩构造组合的研究,结合前人对区域地层学、古生物学、构造地质学等方面的研究成果,建立锡林浩特地区的构造演化序列,进而讨论古亚洲洋的地质构造演化发展。
     区域岩浆岩年代学格架的建立是讨论区域地质构造演化的基础,本文利用锆石LA-ICP-MS U-Pb法及锆石SHRIMP法测年,获得了锡林浩特及其周边的古生代包尔汉图群哈拉组(411±6Ma)、中生代哈尔哈达组(241±14Ma)2个火山岩单元年龄数据及塔布代买卖花岗闪长岩单元、温都日德勒灰白色粒花岗闪长岩单元(252±2Ma)、锡林浩特水库北细粒闪长岩单元(275±2Ma)、博仁敖包灰白色花岗闪长岩单元(288±2Ma)、代托吉卡山灰白色花岗闪长岩单元(318±1Ma)、通讯连牧场灰白色中粒辉长岩单元(320±2Ma)、鹰头沟灰白色黑云二长花岗岩单元(323±2Ma)、阿利嘎吐乌拉肉红色钾长花岗岩单元(330±2Ma)、锡热图单元电气石二云母花岗岩单元(458±1Ma)共9个典型侵入岩的14个年龄数据。
     早石炭世晚期的花岗岩S.I.A型组合,具有陆陆碰撞后的后造山花岗岩的特征。其中钾长花岗岩的微量元素显示其具有A2型花岗岩特征。此外,从钾长花岗岩(C1ξγ,330Ma)、二长花岗岩(C1ηγ,323Ma)、辉长岩(C1v,320Ma)、花岗闪长岩(C1γδ,318Ma)的岩石组合可以看出,具有A2型花岗岩特征的钾长花岗岩及后期的辉长岩代表了在碰撞造山过程中局部存在的拉张环境或时期侵入形成的岩体,即代表了形成过程内拉张到挤压的地质过程,早期较为缓和,晚期加剧的特征,使得晚期花岗闪长岩发育面积最大为特征,反映出陆陆碰撞的相对强烈。
     从早石炭世晚期-晚石炭世的碰撞过渡环境到早二叠世的花岗闪长岩侵入过程,也是其间的小洋盆逐步闭合、隆升的过程。二叠世的花岗闪长岩从其总体的化学组成来看,与典型的Ⅰ型花岗岩相似。更晚一些,同时也是研究较为透彻的大石寨组火山岩应是弧后伸展的产物,产于弧后盆地环境。
     结合近年来前人所发表的年代学和地球化学资料,本文将锡林浩特地区古生代-早中生代构造岩浆活动划分为以下两个阶段:1、加里东岛弧对接阶段(O-S);2、海西-印支再生洋盆发育阶段(C-T)。在此基础上,探讨锡林浩特地区古生代以来的大地构造演化。
     中、晚寒武世(加里东阶段)为西伯利亚古陆和华北古陆之间的古亚洲洋主要扩张期。早古生代(奥陶纪-志留纪)扩张与俯冲并存,古亚洲洋开始分别向北部的锡林浩特微陆块和南部的双井微陆块双向俯冲,更北的大洋分别俯冲到锡林浩特地块和蒙古陆块之下。元古代随着俯冲作用的加剧,使锡林浩特微陆块之南的大洋消失成为造山带,在锡林浩特微陆块南缘及林西柯单山之间形成地域成为对接区,对接区内构造非常复杂,发育属岛弧沉积的奥陶纪岛弧钙碱性系列火山岩系,岛弧带呈东西向展布,并伴生有加里东期的基性超基性岩体和花岗质岩体侵入发育。从期间侵位的电气石二云母花岗岩中获得了大量的新元古代-寒武纪的残留锆石年龄火山岛弧南侧为弧后边缘盆地,形成了志留纪徐尼乌苏组复理石沉积和西别河组具磨拉石建造特征的盖层沉积。
     石炭纪-三叠纪为再生洋盆的演化阶段。加里东运动(O-S)使区域上隆起成山,遭受剥蚀风化夷平,整个区域不仅普遍缺失D-C,早期沉积和岩浆活动(锡林浩特还缺失C2沉积)。在锡林浩特以北乌什尼黑蛇绿岩分布区见到了晚石炭世格根熬包组陆相碎屑岩不整合在蛇绿岩之上。同时,在苏尼特左旗一带再次裂开并接受沉积。此时的原锡林浩特岛弧由于断裂作用而具有水下隆起性质,对沉积作用有一定的控制:早期(C2)在隆起以北先下陷,接受C2沉积;后期(P-T2)在隆起以南强烈拗陷,这一阶段也是全区开裂强度最大,裂陷最深的时期,沉积厚度很大。本区海西期和印支期岩浆活动比较强烈,特别是沿西拉木伦河断裂带和锡林浩特复背斜核部更为集中。由早石炭世末陆-陆碰撞后的造山环境岩浆岩组合、早二叠世的具大陆弧环境特征的花岗岩组合及早三叠世的过铝质花岗岩组合组成。其中早石炭世A型花岗岩应为造山过程中拉伸背景的产物,而具双峰式火山岩特征大石寨组火山岩中发现有岛弧拉斑玄武岩与洋脊拉斑玄武岩过渡性质的细碧岩,表明自早二叠纪开始,锡林浩特地区义一次洋盆再次打开的过程甚至达到洋壳的形成。在豁子梁-旧砖窑四合农场羊队一带,新厘定出的二叠纪辉绿岩墙群也为海西-印支再生洋盆裂陷作用提供了证据。二叠纪末到早三叠世,I-S型花岗岩组合标志着小洋盆闭合成陆,该阶段演化结束。
     中亚造山带是前寒武纪古老陆块、古生代岛弧、蛇绿岩套残片等地体组成的复合型增生造山带,以岛弧杂岩体侧向拼贴和地幔物质底垫为主要增生方式,中亚造山带经历了复杂的地壳增生过程,成为显生宙地壳增生最显著的地区。本文通过对锡林浩特地区古生代岩浆作用与构造演化关系的研究,发现古生代是中亚造山带大陆地壳增生的重要时期。在构造岩浆演化的不同阶段增生方式也有所不同,加里东期可能为岛弧杂岩体拼贴的侧向增生,石炭纪-早二叠世则以地幔物质的底侵或底垫的垂向增生为主,早三叠世则以侧向增生为主。即使是在同一时代,处于不同构造位置的地区增生方式也有所不同,早二叠世在南部林西地区主要以垂向增生为主,而锡林浩特地区则继续以侧向增生为主。锡林浩特地区的地壳增生是一个多阶段多旋回的过程,贯穿于整个中亚造山带发展演化过程。
The Xilinhot is located in the eastern section of Central Asian Orogenic Belt (CAOB) that separates the Siberia Craton to the North from the Tarim and North China Cratons to the South. This region is adjacent to Siberia Plate by Mongolia-Okhotsk suture belt to the west and north, adjacent to North China Plate by Xar Moron River suture belt to the south. Subduction of oceanic lithosphere and accretion of different paleo-microcontinents resulted in closure of the Paleo-Asian Ocean between the Siberia and North China Cratons in the area. CAOB is one of the regions that underwent significant Proterozoic-Phanerozoic continental crust growth in the world. With multi-stage geological evolution and strong reconstruction, the crust has complicated substance composition, texture and structure, and which is the ideal region for the research on dynamic evolution of continental lithosphere.
     Magmatism is the product of the movement of upper mantle of deep crust on the surface orshallow crust of the earth, which recorded abundant information of the evolution of crust and mantle and their interaction in geological history. Igneous petrotectonic assemblage or series is one of the important research contents to retrieve paleo-tectonic environment and discuss geodynamic processes of lithosphere. Based on analysis lots of field and test data from1:250000and1:50000geological survey programs in Xilinhot area, and researching on Paleozoic-Early Mesozoic igneous petrotectonic assemblage combined with previous research achievements in regional stratigraphy paleontology and tectonic geology, we attempt to reconstruct the tectonic framework of Xilinhot area and unravel the process of the closure of the Paleo-Asian Ocean.
     The accurate geochronology frameworks of the magmatic rocks are the basic for the further researches on the evolution of regional tectonic environment. In this paper, we obtain14zircon U-Pb ages of9intrusive rock as Tabudaimaimai granodiorite formation (231±7Ma), Wendurodele granodiorite formation (252±2Ma), Xilinhot reservoir diorite formation (275±2Ma), BoRen aobao granodiorite formation (288.2±1.8Ma), Dituojika mountain granodiorite formation (318±1Ma), Tongxunlian field gabbro formation (320±2Ma), Yintougou biotite adamellite formation (323±2Ma), Aligatuwula moyite formation (330±2Ma), Xiretu gneissose tourmaline two-mica granite formation (458±1Ma); and2zircon U-Pb ages of volcanic rock for Hala formation (411±6Ma) in Paleozoic Baoerhantu group and Mesozoic Harhada formation (241±14Ma).
     During the late stage of early carboniferous, the S.I.A type granite assemblage formed with features of postorogenic granite after continent-continent collision; Including the trace elements of the moyite shows the geochemical characteristics of A type granite. As the invasion sequence of moyite-monzonitic granite-gabbro-granodiorite, the A type moyite and the later gabbro are formed in the extensional environment of collision post-orogenesis. A process of extension-(6Ma)-compression-(5Ma)-extension-(1Ma)-compression during orogenesis, with a long interval at early and shorter at later, which made the later granodiorite have the largest emergence area as the later extensive collision.
     As the environment of collision post-orogenesis during late stage of early carboniferous to late carboniferous changed into the emplacement of granodiorite during early Permian, the small oceanic basin disappeared and uplift by step. The geochemical characteristics of granodiorite emplaced in Permian is similar to the composition of I-type granite。The volcanic rock from Dashizhai group, which has been well researched, might formed in an extensional environment from back-arc.
     Combined with the geochronology and geochemistry information published recently, we divided the tectonic-magmatic activities during Paleozoic and early Mesozoic into two major periods:1. Stage of the island arc junction in Caledonian (from Ordovician to Silurian);2. Stage of the development of regenerated oceanic basin during Hercynian and Indosinian (from Carboniferous to Triassic). Based this division, the tectonic evolution since Paleozoic in Xilinhot area would be discussed.
     During middle-late Cambrian (stage of Caledonian), the Paleo-Asian ocean reached main extension between Siberia antient land and North China antient land. As the expansion and subduction is coexistence during the early Paleozoic (from Ordovician to Silurian), the Paleo-Asian ocean once underwent the subduction in two directions:northward subduction to the Xilinhot micro blocks and southward subduction to the Shuangjing micro blocks. The northern ocean take the subduction to the Xilinhot micro blocks and the Mongolia plate. Continued subduction of the oceanic crust finally resulted in disappearance of the ocean at the southern of the Xilinhot micro blocks and collision between the accretion zones of the Kedan Mountain and the southern margin of the Xilinhot micro blocks. The complex collision suture zone is was found from west to east, which is consisted of Ordovician volcanic rocks belongs to island arc calc-alkaline series, associated with Caledonian basic-ultrabasic rock and granite. the associated tourmaline two-mica granite shows lots of zicon ages during the Neoproterozoic-Cambrian period. The back arc basin deposited Xuniwusu group of flysch sediments and Xibiehe group of Molasse formation as sedimentary cover during the Silurian in southern margin of the volcanic island arc.
     Permian-Triassic represents the evolution of revived oceanic basin. Caledonian movement caused the uplifting, which then be eroded and lead to a hiatus in early D-C1sedimentary and magmatism (C2sediments are lost in Xilinhot). In the Wusinihei ophiolites, north of Xilinhot, the late Carboniferous continental clastic rocks of Gegenaobao formation overlay on the ophiolites unconformably. Meanwhile, Sonid Left Banner rifted again and began to deposit. Proto Xilinhot arc then show the characteristics of underwater uplifting due to rifting, and have some constrains on the sedimentary:in early-stage (C2), north of the swelling sink and accept the C2sediments; while in late-stage (P-T2) the south of the swelling depressed, which is the strongest and deepest rupture in this region, it accepted the P-T sediments and the sedimentary thickness is quite great. Hercynian and Indosinian magmatisms in this region are strong and especially focused along the Xilamulun fault and core of Xilinhot anticlinorium. They are consists of early-Carboniferous post-collisional orogenic igneous rocks, early-Permian granites with continental arc characteristics and early-Triassic peraluminous granites. The early-Carboniferous A-type granites might be produced in the extension background during orogenic process, e.g. spilite with the transitional characters between arc and mid-oceanic ridge tholeiites have been found in the Dazhai bimodal lavas, indicating that the oceanic basin open again and even produced the oceanic crust in Xilinhot since early-Permian. The Permian diabase dyke found in the Huoziliang-Jiuzhuanyao Sihe farm also give evidence to the Hercynian-Indosinian depression of revive oceanic basin. Late-Permian to early-Triassic, I type>S type granites suggest the closure of oceanic basin and the termination of this stage.
     The Central Asian Orogenic Belt (CAOB) is a complex accretionary orgrnic belt composed of Precambrian micro-continental blocks, ancient island arcs and ophiolites, which grow by lateral accretion of arc complex and vertical mantle materials underplating. The CAOB experienced complex crustal growth and celebrated for its massive juvenile crustal production in the Phanerozoic. In this paper, we studied the relationship between the Paleozoic magmatisms in Xilinhot and tectonic evolution, and found that the Paleozoic is the important period of crustal growth in CAOB. The accretionary mechanisms are different during different tectonic-magmatic evolutionary stage: lateral accretion of arc complex in Caledonian, vertical mantle materials underplating in Carboniferous to early-Permian, and the lateral accretion is dominantly in early-Triassic. Even at the same times, the acctrtionary ways in different tectonic background have some differences:during early-Permian period, it is dominated by vertical accretion in southern Linxi region, while the lateral accretion is dominantly in Xilinhot. Crustal growth in Xilinhot is a multi-stage and multi-cycle process, which is throughout the whole stage of CAOB evolution.
引文
[1].张国伟,董云鹏与姚安平,造山带与造山作用及其研究的新起点.西北地质,2001(1):第1-9页.
    [2].张国伟,董云鹏与姚安平,关于中国大陆动力学与造山带研究的几点思考.中国地质,2002(1):第7-13页.
    [3].Maniar, P.D. and P.M. Piccoli,TECTONIC DISCRIMINATION OF GRANITOIDS.Geological Society of America Bulletin,1989.101(5):p.635-643.
    [4].Wilson,Igneous Petrogenesis:A global tectonic approach.1989, London:Unwin Hyman.
    [5].Barbarin, B.,A review of the relationships between granitoid types, their origins and their geodynamic environments.Lithos,1999.46(3):p.605-626.
    [6].邓晋福,肖庆辉与苏尚国等,火成岩组合与构造环境:讨论.高校地质学报,2007(3):第392-402页.
    [7].邓晋福,罗照华与赵海玲等,岩浆作用、深部壳幔过程与资源—环境效应.地质论评,1999:第21-25页.
    [8].邓晋福,赵海玲与叶德隆等,中国东部新生代火山的迁移与大陆裂谷的扩张和大陆漂移.石油实验地质,1993(1):第1-10页.
    [9].莫宣学,邓晋福与董方浏等,西南三江造山带火山岩-构造组合及其意义.高校地质学报,2001(2):第121-138页.
    [10].何国琦邵济安,内蒙古东南部西拉木伦河一带早古生代蛇绿岩建造的确认及其大地构造意义,in中国北方板块论文集(第一集)1983,辽宁科技出版社:辽宁.第243-249页.
    [11].唐克东,中朝陆台北侧褶皱带构造发展的几个问题.现代地质,1989(2):第195-204页.
    [12].Tang, K.D.,Tectonic development of Paleozoic foldbelts at north margin of the Sino-Korean craton, in Tectonics.1990. p.249-260.
    [13].王荃,刘雪亚与李锦轶,中国内蒙古中部的古板块构造.中国地质科学院院报,1991:第1-15页.
    [14].王荃,刘雪亚与李锦轶,中国华夏与安加拉古陆间的板块构造.1991,北京:北京大学出版社.
    [15].邵济安,中朝板块北缘中段地壳演化.1991,北京:北京大学出版社.
    [16].曹熹,党增欣,张兴洲,等.佳木斯复合地体.1992,吉林科学技术出版社:长春.
    [17].张新洲,黑龙江岩系-古佳木斯地块加里东缝合带的证据,长春地质学院学报1992.第94-101页.
    [18].梁日暄,内蒙古中段蛇绿岩特征及地质意义.中国区域地质,1994(1):第37-45页.
    [19].洪大卫,黄怀曾与肖宜君等,内蒙古中部二叠纪碱性花岗岩及其地球动力学意义.地质学报,1994(3):第219-230页.
    [20].李春昱,王荃与张之孟等,中国板块构造的轮廓.中国地质科学院院报,1980.2(1):第11-19+130页.
    [21].张贻侠,孙运生,张兴洲,等.中国满洲里-绥芬河地学断面1:1000000说明书.第.1998,地质出版社:北京.
    [22].李双林与欧阳自远,兴蒙造山带及邻区的构造格局与构造演化.海洋地质与第四纪地质,1998(3):第46-55页.
    [23].任纪舜,牛宝贵与刘志刚,软碰撞、叠覆造山和多旋回缝合作用.地学前缘,1999(3):第85-93页.
    [24].谢鸣谦.拼贴板块构造及其驱动机理-中国东北及其邻区的大地构造演化.第.2000,科学出版社:北京.
    [25].彭玉鲸与赵成弼,古吉黑造山带的演化与陆壳的增生.吉林地质,2001(2).
    [26].Sengor, A.M.C.,B.A. Natalin and V.S. Burtman,EVOLUTION OF THE ALTAID TECTONIC COLLAGE AND PALEOZOIC CRUSTAL GROWTH IN EURASIA.Nature,1993.364(6435):p. 299-307.
    [27].Sengor, A.M.C. and B.A. Natalin,Paleotectonics of Asia:Fragments fo a synthesis, in The Tectonic Evolution of Asia, A. Yin and M. Harrison, A. Yin and M. Harrison(?)Editors.1996, Cambridge University Press: Cambridge. p.486-640.
    [28].徐备与陈斌,内蒙古北部华北板块与西伯利亚板块之间中古生代造山带的结构及演化.中国科学(D辑:地球科学),1997(3):第227-232页.
    [29].Xiao, W.J.,B.F. Windley and J. Hao, et al.,Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: Termination of the central Asian orogenic belt.Tectonics,2003. 22(6).
    [30]. Windley, B.F.,D. Alexeiev and W. Xiao, et al.,Tectonic models for accretion of the Central Asian Orogenic Belt.Journal of the Geological Society,2007.164(1):p.31--47.
    [31].李春昱与汤耀庆,亚洲古板块划分以及有关问题.地质学报,1983(1):第1-10页.
    [32].王玉净与樊志勇,内蒙古西拉木伦河北部蛇绿岩带中二叠纪放射虫的发现及其地质意义.古生物学报,1997(1):第60-71页.
    [33].王成文.哲斯腕足动物群.第.2003,地质出版社:北京.
    [34].孙德有,吴福元与张艳斌等,西拉木伦河-长春-延吉板块缝合带的最后闭合时间——来自吉林大玉山花岗岩体的证据.吉林大学学报(地球科学版),2004(2):第174-181页.
    [35].林强,葛文春与吴福元等,大兴安岭中生代花岗岩类的地球化学.岩石学报,2004(3):第403-412页.
    [36].尚庆华,北方造山带内蒙古中、东部地区二叠纪放射虫的发现及意义.科学通报,2004(24):第2574-2579页.
    [37].Li, J.Y.,Permian geodynamic setting of Northeast China and adjacent regions: closure of the Paleo-Asian Ocean and subduction of the Paleo-Pacific Plate.Journal of Asian Earth Sciences,2006.26(3-4):p.207--224.
    [38].曹从周,杨芳林与田昌裂等,内蒙古贺根山地区蛇绿岩及中朝板块和西伯利亚板块之间的缝合带位置,in中国北方板块构造论文集(第一集)1986,地质出版社:北京.
    [39].徐备,J.Charvet与张福勤,内蒙古北部苏尼特左旗蓝片岩岩石学和年代学研究.地质科学,2001(4):筇424-434页.
    [40].柳长峰,内蒙古四子王旗地区古生代-早中生代岩浆岩带及其构造意义,2010,中国地质大学(北京).
    [41].王友勤与苏养正,东北区区域地层发育与地壳演化.吉林地质,1996:第118-133+1页.
    [42].邵积东,王惠与张梅等,内蒙古大地构造单元划分及其地质特征.西部资源,2011(2):第51-56页.
    [43].内蒙古自治区地质矿产局,内蒙古自治区区域地质志.1991:北京地质出版社.725.
    [44].郝旭与徐备,内蒙古锡林浩特锡林郭勒杂岩的原岩年代和变质年代.地质论评,1997(1):第101-105页.
    [45].施光海,刘敦一与张福勤等,中国内蒙古锡林郭勒杂岩SHRIMP锆石U-Pb年代学及意义.科学通报,2003(20):第2187-2192页.
    [46].徐备,陈斌与邵济安,内蒙古锡林郭勒杂岩Sm-Nd,Rb-Sr同位素年代研究.科学通报,1996(2):第153-155页.
    [47].徐备,刘树文与王长秋等,内蒙古西北部宝音图群Sm-Nd和Rb-Sr地质年代学研究.地质论评,2000(1):第86-90页.
    [48].赵光,朱永峰与张勇,内蒙古锡林郭勒杂岩岩石学特征及其变质作用的p-t条件.岩石矿物学杂志,2002(1):第40-48页.
    [49].朱永峰,孙世华与毛骞等,内蒙古锡林格勒杂岩的地球化学研究:从Rodinia聚合到古亚洲洋闭合后碰撞造山的历史记录.高校地质学报,2004(3):第343-355页.
    [50].葛梦春,周文孝与于洋等,内蒙古锡林郭勒杂岩解体及表壳岩系年代确定.地学前缘,2011(5):第182-195页.
    [51].邓晋福,莫宣学与罗照华等,火成岩构造组合与壳-幔成矿系统.地学前缘,1999(2):第66-77页.
    [52].肖庆辉.邓晋福.马大栓等.花岗岩研究思维与方法.2002,地质出版社:北京.
    [53].陈斌与徐备,内蒙古苏左旗地区古生代两类花岗岩类的基本特征和构造意义.岩石学报,1996(4):第49-64页.
    [54].石玉若,刘敦一与简平等,内蒙古中部苏尼特左旗富钾花岗岩锆石SHRIMPU-Pb年龄.地质通报,2005(5):第424-428页.
    [55].石玉若,刘敦一与张旗等,内蒙古苏左旗地区闪长-花岗岩类SHRIMP年代学.地质学报,2004(6):第789-799页.
    [56].徐备,陈斌与邵济安,内蒙古锡林郭勒杂岩Sm-Nd,Rb-Sr同位素年代研究.科学通报,1996(2).
    [57].Chen, B.,B. Jahn and S. Wilde, et al.,Two contrasting Paleozoic magmatic belts in northern Inner Mongolia, China: petrogenesis and tectonic implications.Tectonophysics,2000.328(1-2): p. 157-182.
    [58].施光海,苗来成与张福勤等,内蒙古锡林浩特A型花岗岩的时代及区域构造意义.科学通报,2004(4):第384-389页.
    [59].叶栩松,廖群安与葛梦春,内蒙古锡林浩特、林西地区三叠纪过铝质花岗岩的成因及构造意义.地质科技情报,2011(3):第57-64页.
    [60].唐克东,王莹与何国琦等,中国东北及邻区大陆边缘构造.地质学报,1995(1):第16-30页.
    [61].王成文,金巍与张兴洲等,东北及邻区晚古生代大地构造属性新认识.地层学杂志,2008(2):第119-136页.
    [62].王成文,马志红与孙跃武等,晚古生代海相地层—东北地区油气勘查的一个新层系.世界地质,2008(2):第113-118页.
    [63].张兴洲,周建波与迟效国等,东北地区晚古生代构造-沉积特征与油气资源.吉林大学学报(地球科学版),2008(5):第719-725页.
    [64].Kent C., C.,Episodic continental growth models: afterthoughts and extensions.Tectonophysics,2000.322(1-2):p.153-162.
    [65].赵海玲,邓晋福与陈发景等,东北地区新生代火山作用、深部作用与大陆裂谷型盆地.地球科学,1996(6):第51-55页.
    [66].黄汲清,任纪舜与姜春发等,中国大地构造基本轮廓.地质学报,1977(2):第117-135页.
    [67].李春昱,中国板块构造的轮廓.地质与勘探,1981(8):第7-14页.
    [68].邵积东,内蒙古大地构造分区及其特征.内蒙古地质,1998(2):第2-3+5-29页.
    [69].潘桂棠,肖庆辉与陆松年等,中国大地构造单元划分.中国地质,2009(1):第1-16+255+17-28页.
    [70].苏养正,论图瓦贝Tuvaella的时空分布和生态环境.古生物学报,1981(6):第567-576+608页.
    [71].郭胜哲,中朝板块与西伯利亚板块拼合实现的确定及其生物地层学依据,中国地质科学院沈阳地质矿产研究所所刊1986.第127-136页.
    [72].张松梅与王成文,兴蒙造山带中二叠世哲斯期腕足动物古生物地理归属.地球科学进展,2004:第70-73页.
    [73].王成源,王平与李文国,内蒙古二叠系哲斯组的牙形刺及其时代.古生物学报,2006(2):第195-206页.
    [74].Lee, J.,I. Williams and D. Ellis,Pb.U.Th diffusion in nature zircon, in Nature.1997. p.159-162.
    [75].Cherniak, D.J. and Y. Liang,Rare earth element diffusion in natural enstatite.Geochimica et Cosmochimica Acta,2007.71(5):p.1324-1340.
    [76].吴元保与郑永飞,锆石成因矿物学研究及其对U-Pb年龄解释的制约.科学通报,2004(16):第1589-1604页.
    [77].Ballard, J.R.,J.M. Palin and I.S. Williams, et al.,Two ages of porphyry intrusion resolved for the super-giant Chuquicamate Copper deposit of northern Chile by ELA-ICP-MS and SHRIMP, in Geology.2001. p.383-386.
    [78].袁洪林,吴福元与高山等,东北地区新生代侵入体的锆石激光探针U-Pb年龄测定与稀土元素成分分析.科学通报,2003(14):第1511-1520页.
    [79].Pidgeon, R.T. and S.A. Wilde,The interpretation of complex zircon U - Pb systems in Archaean granitoids and gneisses from the Jack Hills, Narryer Gneiss Terrane, Western Australia-Precambrian Research,1998.91(3-4):p.309-332.
    [80].Hanchar, J.M. and C.F. Miller,Zircon zonation patterns as revealed by cathodoluminescence and backscattered electron images: Implications for interpretation of complex crustal histories.Chemical Geology,1993.110(1-3):p.1-13.
    [81].Hanchar, J.M. and R.L. Rudnick,Revealing hidden structures:The application of cathodoluminescence and back-scattered electron imaging to dating zircons from lower crustal xenoliths.Lithos,1995.36(3-4):p.289-303.
    [82].Daniela, R.,Zircon trace element geochemistry: partitioning with garnet and the link between U -Pb ages and metamorphism.Chemical Geology,2002.184(1-2):p.123-138.
    [83].宋彪,张玉海与万渝生等,锆石SHRIMP样品靶制作、年龄测定及有关现象讨论.地质论评,2002:第26-30页.
    [84].耿建珍,李怀坤与张健等,锆石Hf同位素组成的LA-MC-ICP-MS测定.地质通报,2011(10):第 1508-1513页.
    [85].李怀坤,耿建珍与郝爽等,用激光烧蚀多接收器等离子体质谱仪(LA-MC-ICPMS)测定锆石U-Pb同位素年龄的研究.矿物学报,2009:第600-601页.
    [86].李惠民,李怀坤与陈志宏等,基性岩斜锆石U-Pb同位素定年3种方法之比较.地质通报,2007(2):第128-135页.
    [87].Black, L.P.,S.L. Kamo and I.S. Williams, et al.,The application of SHRIMP to Phanerozoic geochronology; a critical appraisal of four zircon standards.Chemical Geology,2003.200(1-2):p. 171-188.
    [88].Jackson, S.E.,N.J. Pearson and W.L. Griffin, et al.,The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology.Chemical Geology,2004.211(1-2):p.47-69.
    [89].Liu, Y.,S. Gao and Z. Hu, et al.,Continental and Oceanic Crust Recycling-induced Melt-Peridotite Interactions in the Trans-North China Orogen:U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths.JOURNAL OF PETROLOGY,2010.51(1-2):p.537-571.
    [90].Liu, Y.,Z. Hu and S. Gao, et al.,In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard.CHEMICAL GEOLOGY,2008.257(1-2):p. 34-43.
    [91].Ludwig, K.R., ed.A Geochronological Toolkit for Microsoft Excel.2003, Berkeley Geochronology Center,California:Berkeley.
    [92].Condie, K.C., ed.Plate Tectonics and Crustal Evolution.1982, Pergarnon Press: New York.
    [93].邓晋福,莫宣学与赵海玲等,壳幔物质与深部过程.地学前缘,1998(3):第67-74页.
    [94].Scherer, E.E.,K.L. Cameron and J. Blichert-Toft,Lu-Hf garnet geochronology:Closure temperature relative to the Sm-Nd system and the effects of trace mineral inclusions.Geochimica et Cosmochimica Acta,2000.64(19):p.3413-3432.
    [95].吴福元,李献华与郑永飞等,Lu-Hf同位素体系及其岩石学应用.岩石学报,2007(2):第185-220页.
    [96].徐平,吴福元与谢烈文等,U-Pb同位素定年标准锆石的Hf同位素.科学通报,2004(14):第1403-1410页.
    [97].Goolaerts, A.,N. Mattielli and J. de Jong, et al.,Hf and Lu isotopic reference values for the zircon standard 91500 by MC-ICP-MS.Chemical Geology,2004.206(1):p.1--9.
    [98].Blichert-Toft, J. and F. Albar E De,The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system.Earth and Planetary Science Letters,1997.148(1):p. 243-258.
    [99].Griffin, W.L.,N.J. Pearson and E. Belousova, et al.,The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites.Geochimica et Cosmochimica Acta,2000.64(1):p.133-147.
    [100].Sun, S.S. and W.F. McDonough,Chemieal and isotopic systematies of oceanic basalts:implications for mantle compositon and processes
    , in Magmatism in the ocean Basins, A.D. Saunders and M.J. Norry, A.D. Saunders and M.J. Norry(?)Editors.1989, Geological Socirty Special Publications: Lomdon. p.313-345.
    [101].许立权,陈志勇与陈郑辉等,内蒙古东乌旗朝不楞铁矿区中粗粒花岗岩SHRIMP定年及其意义.矿床地质,2010(2):第317-322页.
    [102].Pearce, J.A.,N.B.W. Harris and A.G. Tindle,Trace element discrimination diagrams for the tectonic interpretation of granitic rocks.Journal of petrology,1984.25(4):p.956-983.
    [103].Pearce, J.A.,N.B.W. Harris and A.G. Tindle,TRACE-ELEMENT DISCRIMINATION DIAGRAMS FOR THE TECTONIC INTERPRETATION OF GRANITIC-ROCKS.Journal of Petrology,1984.25(4):p.956-983.
    [104].Streckeisen, A.,Classification and nomenclature of plutonic rocks, recommendations: N. Jb. Miner.Mh,1973.4:p.149-164.
    [105].Le Maitre, R.W.,P. Bateman and A. Dudek, et al.,A classification of igneous rocks and glossary of terms. Recommendations of the IUGS Subcommission on the Systematics of Igneous rocks.London: Blackwell Scientific Publication,1989.55:p.1781-1791.
    [106].Boynton, W.V.,Geochemisttry of the rare earth elements: meteorite studies, in Rare earth element geochemistry, P. Henderson, P. Henderson(?)Editors.1984, Elsever: Amsterdam, p.61-114.
    [107].Coryell, C.D.,J.W. Chase and J.W. Winchester,A procedure for geochemical interpretation of terrestrial rare-earth abundance patterns.Journal of Geophysical Research,1963.68(2):p. 559-566.
    [108].洪大卫,试论华南花岗岩岩套(岩石序列)的划分原则和研究方法.中国区域地质,1986(3):第193-203页.
    [109].Poli, G.,F.A. Frey and G. Ferrara,Geochemical characteristics of the south Tuscany (Italy) volcanic province: constraints on lava petrogenesis.Chemical geology,1984.43(3):p.203-221.
    [110].Sun, S.S. and W.F. McDonough.Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes.1989. Lomdon.
    [111].De la Roche,H. Leterrier and J. Grandclaude, et al.,A classification of volcanic and plutonic rocks using R1,R2-diagrams and major element analysis — its relationships with current nomenclature.Chemical Geology,1980(29):p.183-210.
    [112].Streckeisen, A.,To each plutonic rock its proper name.Earth-Science Reviews,1976.12(1):p. 1-33.
    [113].KOSCHEK, G.,ORIGIN AND SIGNIFICANCE OF THE SEM CATHODOLUMINESCENCE FROM ZIRCON.JOURNAL OF MICROSCOPY-OXFORD,1993.171:p.223-232.
    [114].Peccerillo, A. and S.R. Taylor,Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey.Contributions to mineralogy and petrology,1976.58(1):p. 63-81.
    [115].Poli, G.,F.A. Frey and G. Ferrara,Geochemical characteristics of the south Tuscany (Italy) volcanic province: Constraints on lava petrogenesis.Chemical Geology,1984.43(3-4):p. 203-221.
    [116].邓晋福.中国大陆根-柱构造——大陆动力学的钥匙.1996,地质出版社:北京.1-10.
    [117]Johnston, A.D.,Anhydrous PT phase relations of near-primary high-alumina basalt from the South Sandwich Islands.Contributions to Mineralogy and Petrology,1986.92(3):p.368-382.
    [118].周新民,徐夕生与董传万等,中国东南活动大陆边缘的矿物标志:钙长石质斜长石.科学通报,1994(11):第1011-1014页.
    [119].Burns, L.E.,The Border Ranges ultramafic and mafic complex, south-central Alaska:cumulate fractionates of island-arc volcanics.Canadian Journal of Earth Sciences.1985.22(7):p. 1020-1038.
    [120].于洋,葛梦春与周文孝等,内蒙古锡林浩特岩群岩石学特征及变质温压条件.地学前缘,2012(5):第136-143页.
    [121]]孙俊俊,葛梦春与周文孝等,内蒙古锡林浩特岩群岩相学、地球化学特征及构造环境分析.地学前缘,2012(5):第144-155页.
    [122].Maniar, P.D. and P.M. Piccoli,Tectonic discrimination of granitoids.Geological society of America bulletin,1989.101(5):p.635-643.
    [123].Whalen, J.B.,K.L. Currie and B.W. Chappell,A-type granites: geochemical characteristics, discrimination and petrogenesis.Contributions to Mineralogy and Petrology,1987.95(4):p. 407-419.
    [124].BAS, M.J.L.E.,R.W.L. Maitre and A. Streckeisen, et al.,A chemical classification of volcanic rocks based on the total alkali-silica diagram.Journal of petrology,1986.27(3):p.745--750.
    [125].Meschede, M.,A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb 1bZr 1bY diagram.Chemical Geology,1986.56(3-4):p. 207-218.
    [126].Wood, B.J.,Fluids in the earth's crust: W.S. Fyfe, N.J. Price and A.B. Thompson. Elsevier Scientific Publishing Co., Amsterdam-Oxford-New York, N.Y.,1978,383 pp.,227 illus.,12 tables, Dfl.120.00/US $ 49.75.Physics of the Earth and Planetary Interiors,1979.18(3):p. 252-253.
    [127].Pearce, J.A.,Trace element characteristics of lavas from destructive plate boundaries, in Andesites: Orogenic Andesites and Related Rockc, R. Thorpe, R. Thorpe Editors.1982, John Wiley&Sons: Chichester. p.525-48.
    [128].Mullen, E.D.,MnO/TiO2/P2O5:a minor element discriminant for basaltic rocks of oceanic environments and its implications for petrogenesis.Earth and Planetary Science Letters,1983.62(1): p.53-62.
    [129].吕志成,段国正与郝立波等,大兴安岭中段二叠系大石寨组细碧岩的岩石学地球化学特征及其成因探讨.岩石学报,2002(2):第212-222页.
    [130].洪大卫,王式与谢锡林等,兴蒙造山带正ε(Nd,t)值花岗岩的成因和大陆地壳生长.地学前缘,2000(2):第441-456页.
    [131].Jahn, B.M.,F.Y. Wu and B. Chen,Massive granitoid generation in Central Asia: Nd isotope evidence and implication for continental growth in the Phanerozoic.Episodes,2000.23(2):p. 82-92.
    [132].Wu, F.,D. Sun and H. Li, et al.,A-type granites in northeastern China: age and geochemical constraints on their petrogenesis.Chemical Geology,2002.187(1-2):p.143-173.
    [133].李锦轶,高立明与孙桂华等,内蒙古东部双井子中三叠世同碰撞壳源花岗岩的确定及其对西伯利亚与中朝古板块碰撞时限的约束.岩石学报,2007(3):第565-582页.
    [134].张金阳,廖群安与李德威,西藏定结地区高喜马拉雅淡色花岗岩的地球化学特征与岩浆源区研究.地质科技情报,2003(3):第9-14页.
    [135].Clemens, J.D. and D. Vielzeuf,Constraints on melting and magma production in the crust.Earth and Planetary Science Letters,1987.86(2-4):p.287-306.
    [136].和政军,刘淑文与任纪舜等,内蒙古林西地区晚二叠世—早三叠世沉积演化及构造背景.中国区域地质,1997(4):第68-74+92页.
    [137].Batchelor, R.A. and P. Bowden,Petrogenetic interpretation of granitoid rock series using multicationic parameters.Chemical Geology,1985.48(1-4):p.43-55.
    [138].陈斌,赵国春与Simon WILDE,内蒙古苏尼特左旗南两类花岗岩同位素年代学及其构造意义.地质论评,2001(4):第361-367页.
    [139].石玉若,刘敦一与张旗等,内蒙古中部苏尼特左旗地区三叠纪A型花岗岩锆石SHRIMP U-Pb年龄及其区域构造意义.地质通报,2007(2):第183-189页.
    [140].陶继雄,胡凤翔与陈志勇,华北陆块北缘印支期S型花岗岩带特征及其构造环境.岩石矿物学杂志,2003(2):第112-118页.
    [141].Jian, P.,D. Liu and A. Kroener, et al.,Time scale of an early to mid-Paleozoic orogenic cycle of the long-lived Central Asian Orogenic Belt, Inner Mongolia of China: Implications for continental growth.LITHOS,2008.101(3-4):p.233-259.
    [142].张连昌,英基丰与陈志广等,大兴安岭南段三叠纪基性火山岩时代与构造环境.岩石学报,2008(4):第911-920页.
    [143].鲍庆中,张长捷与吴之理等,内蒙古东南部晚古生代裂谷区花岗质岩石锆石SHRIMPU-Pb定年及其地质意义.中国地质,2007(5):第790-798页.
    [144].葛文春,吴福元与周长勇等,大兴安岭中部乌兰浩特地区中生代花岗岩的锆石U-Pb年龄及地质意义.岩石学报,2005(3):第749-762页.
    [145].张万益,聂凤军与江思宏等,内蒙古查干敖包石英闪长岩锆石SHRIMPU-Pb年龄及其地质意义.岩石矿物学杂志,2008(3):第177-184页.
    [146].张维,内蒙古达茂旗地区早古生代和早中生代埃达克深成岩SHRIMP年代学,2007,中国地质科学院.
    [147].刘伟,潘小菲与谢烈文等,大兴安岭南段林西地区花岗岩类的源岩:地壳生长的时代和方式.岩石学报,2007(2):第441-460页.
    [148].Miao, L.,W. Fan and D. Liu, et al.,Geochronology and geochemistry of the Hegenshan ophiolitic complex:Implications for late-stage tectonic evolution of the Inner Mongolia-Daxinganling Orogenic Belt, China.JOURNAL OF ASIAN EARTH SCIENCES,2008.32(5-6):p.348-370.
    [149].刘建峰,内蒙古林西—东乌旗地区晚古生代岩浆作用及其对区域构造演化的制约,2009,吉林大学.
    [150].李益龙,周汉文与葛梦春等,内蒙古林西县双井片岩北缘混合岩LA-ICPMS锆石U-Pb年龄.矿物岩石,2008(2):第10-16页.
    [151].Zhu, Y.F.,S.H. Sun and L.B. Gu, et al.,Permian volcanism in the Mongolian orogenic zone, northeast China: geochemistry, magma sources and petrogenesis.GEOLOGICAL MAGAZINE,2001.138(2):p.101-115.
    [152].Zhang, X.,H. Zhang and Y. Tang, et al.,Geochemistry of Permian bimodal volcanic rocks from central inner Mongolia, North China: Implication for tectonic setting and Phanerozoic continental growth in Central Asian Orogenic Belt.CHEMICAL GEOLOGY,2008.249(3-4): p.262-281.
    [153].鲍庆中,张长捷与吴之理等,内蒙古白音高勒地区石炭纪石英闪长岩SHRIMP锆石U-Pb年代学及其意义.吉林大学学报(地球科学版),2007(1):第15-23页.
    [154].石玉若,刘敦一与简平等,内蒙古中部苏尼特左旗富钾花岗岩锆石SHRIMPU-Pb年龄.地质通报,2005(5):第424-428页.
    [155].张炯飞,庞庆邦与朱群等,内蒙古白音宝力道花岗斑岩锆石U-Pb定年——白音宝力道金矿成矿主岩的形成时代.地质通报,2004(2):第189-192页.
    [156].石玉若,刘敦一与张旗等,内蒙古苏左旗白音宝力道Adakite质岩类成因探讨及其SHRIMP年代学研究.岩石学报,2005(1):第145-152页.
    [157].江小均,柳永清与彭楠等,内蒙古克什克腾旗广兴源复式岩体SHRIMPU-Pb定年及地质意义讨论.地质学报,2011(1):第114-128页.
    [158].马艾阳,上岗岗坤兑断层糜棱岩白云母40Ar-39Ar定年——西拉木伦河断裂带活动主期新证据.新疆地质,2009(2):第170-175页.
    [159].郑亚东,王十政与王玉芳,中蒙边界区新发现的特大型推覆构造及伸展变质核杂岩.中国科学(B辑化学生命科学地学),1990(12):第1299-1305+1347-1348页.
    [160].王涛,郑亚东与刘树文等,中蒙边界亚干变质核杂岩糜棱状钾质花岗岩——早中生代收缩与伸展构造体制的转换标志.岩石学报,2002(2):第177-186页.
    [161].工涛与郑亚东,中蒙边界中生代推覆-伸展递进转换及地壳尺度的切向剪切.地质通报,2002:第232-237页.
    [162].王涛,郑亚东与李天兵等,一个伸展构造体制下的花岗岩体的主动侵位作用——亚干变质核杂岩同构造花岗岩体.地质学报,2002(1):第99页.
    [163].王涛,郑亚东与李天斌等,中蒙边界区亚干变质核杂岩的组成与结构.地质科学,2002(1):第79-85页.
    [164].陈志勇,李玉玺与王新亮等,包头—呼和浩特北部地区逆冲推覆构造.地质通报,2002:第251-258页.
    [165].洪大卫,王式与谢锡林等,兴蒙造山带正ε(Nd,t)值花岗岩的成因和大陆地壳生长.地学前缘,2000(2):第441-456页.
    [166].Kent C., C.,Episodic continental growth models: afterthoughts and extensions.Tectonophysics,2000.322(1-2):p.153-162.
    [167].洪大卫,王式洮与谢锡林等,从中亚正ε_(Nd)值花岗岩看超大陆演化和大陆地壳生长的关系.地质学报,2003(2):第203-209页.
    [168].McCulloch, M.T. and V.C. Bennett,Progressive growth of the Earth's continental crust and depleted mantle: Geochemical constraints.Geochimica et Cosmochimica Acta,1994.58(21):p. 4717-4738.
    [169].Taylor, S.R. and S.M. McLennan,THE GEOCHEMICAL EVOLUTION OF THE CONTINENTAL-CRUST.Reviews of Geophysics,1995.33(2):p.241-265.
    [170].Wu, F.,B. Jahn and S. Wilde, et al.,Phanerozoic crustal growth:U-Pb and Sr-Nd isotopic evidence from the granites in northeastern China.Tectonophysics,2000.328(1-2):p.89-113.
    [171].Wu, F.Y.,D.Y. Sun and H.M. Li, et al.,The nature of basement beneath the Songliao Basin in NE China: geochemical and isotopic constraints.Physics and Chemistry of the Earth, Part A:Solid Earth and Geodesy,2001.26(9-10):p.793-803.
    [172].吴福元,李献华与杨进辉等,花岗岩成因研究的若干问题.岩石学报,2007(6):第1217-1238页.
    [173].Petford, N. and M. Atherton,Na-rich partial melts from newly underplated basaltic crust: The Cordillera Blanca Batholith, Peru.Journal of Petrology,1996.37(6):p.1491-1521.
    [174].Atherton, M.P. and N. Petford,GENERATION OF SODIUM-RICH MAGMAS FROM NEWLY UNDERPLATED BASALTIC CRUST.Nature,1993.362(6416):p.144-146.
    [175].Whalen, J.B.,G.A. Jenner and F.J. Longstaffe, et al.,Geochemical and isotopic (O Nd, Pb and Sr) constraints on a type granite petrogenesis based on the topsails igneous suite, Newfoundland Appalachians.Journal of Petrology,1996.37(6):p.1463-1489.
    [176].Jahn, B.M.,F.Y. Wu and D.W. Hong,Important crustal growth in the Phanerozoic: Isotopic evidence of granitoids from east-central Asia.Proceedings of the Indian Academy of Sciences-Earth and Planetary Sciences,2000.109(1):p.5-20.
    [177].Jahn, B.M.,The central Asian orogenic belt and growth of the continental crust in the phanerozoic, in Aspects of the Tectonic Evolution of China, J.F.C.J. Malpas, J.F.C.J. Malpas(?)Editors.2004. p. 73-100.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700