用户名: 密码: 验证码:
汉防己甲素对大鼠急性脊髓损伤后神经保护作用的机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
急性脊髓损伤(acute spinal cord injury, ASCI)在病理上表现为白质和灰质的损伤,现在普遍认为由原发性损伤和随着出现的继发性损伤造成,继发性损伤是在原发性损伤发生后数分钟内到数天,序贯发生的复杂的自我毁灭的级联反应的过程,其中ASCI后诱发的免疫炎性反应在继发性损伤中起着极其重要的作用,可导致损伤区残余的神经细胞及邻近组织的神经细胞死亡及凋亡,同时在损伤脊髓的微环境中存在抑制内源性神经干细胞增殖分化的负性因素,是造成脊髓功能障碍持续加重且功能恢复不好的主要原因。随着脊髓损伤机制研究的深入,认为继发性损伤有可干预性,在早期减轻继发性损伤能保护残余脊髓组织、促进脊髓功能的修复。汉防己甲素(tetrandrine,Tet)是中药防己的有效成分,大量研究证明其具有抗炎、抗脂质过氧化、防止细胞受损、改善微循环及Ca2+拮抗作用。本实验设计主要探讨Tet能否通过ASCI后炎症介质的调节作用、凋亡的抑制作用及其对内源性神经干细胞增殖分化的影响来促进ASCI后神经功能的恢复,为Tet应用于临床治疗ASCI提供进一步的理论依据。
     第一部分汉防己甲素对大鼠脊髓损伤后神经细胞凋亡的影响
     目的:观察Tet对大鼠急性脊髓损伤后神经细胞凋亡的影响。
     方法:选用114只成年大鼠,随机分为四组,即假手术组6只(A组)、损伤组(B组)36只、甲基强的松龙治疗组(C组)36只、Tet治疗组(D组)36只。胸8、9、10椎板切除后,B、C、D组用Allen重物下落打击法制备脊髓损伤模型。C组和D组动物于制模术后30分钟、伤后24h、伤后48h尾静脉注射甲基强的松龙(MP)和Tet。各组大鼠于术后8h,1d,3d,7d,14d、28d行BBB评分,分别于术后8h,1d,3d,7d,14d、28d取损伤段脊髓行石蜡切片HE染色观察脊髓组织的形态结构变化和免疫组织化学染色检测细胞凋亡因子bcl-2、bax的表达以及运用流式细胞仪对标本进行凋亡细胞的半定量分析。
     结果:伤后7d、14d、28dC组与D组大鼠运动功能评分(BBB评分)显著高于B组,各时间点C组与D组评分无统计学意义;A组的脊髓组织HE染色正常,C组与D组脊髓组织损害较B组轻,术后8h-28d动态观察,3d—7d损伤表现最为严重,达到损伤高峰期;A组中bax、bcl-2表达较少,C组与D组bax表达较B组少,而bcl-2表达较B组多。凋亡细胞半定量分析示B、C、D组均在损伤后7d达凋亡细胞数峰值,之后逐渐减少,各组间同一时点比较,Tet组明显少于ASCI组,有统计学意义,略多于Mp组,两组相较无统计学意义。
     结论:汉防己甲素可通过增加bcl-2表达、降低bax表达,抑制急性脊髓损伤后神经细胞的凋亡,有益于脊髓组织的保护,促进运动功能的恢复。第二部分汉防己甲素对大鼠急性脊髓损伤后炎症性因子的影响
     目的:探讨ASCI后早期运用Tet治疗对炎症性因子释放的影响。
     方法:选用78只成年大鼠,随机分为三组,即假手术组6只、损伤对照组36只、Tet治疗组(D组)36只。胸8、9、10椎板切除后,损伤组及Tet组用Allen重物下落打击法制备脊髓损伤模型。Tet组动物于制模术后30分钟、伤后24h、伤后48h尾静脉注射Tet。各组大鼠分别于术后6h,12h,1d,3d,5d,7d取损伤段脊髓用酶联免疫吸附法行TNF-α,IL-1β,IL-6,IL-10,NF-kB含量的检测。
     结果:ASCI后6h、12h、1d、3d、5d、7d损伤对照组和Tet组TNF-α,IL-1β,IL-6,IL-10,NF-kB含量高于假手术组,ASCI后6h即有明显的增加,在24h-72h达到高峰,5天时开始下降,Tet组IL-10含量高于损伤对照组,而TNF-α,IL-1β,IL-6,NF-kB含量低于损伤对照组。
     结论:脊髓损伤能增加伤段TNF-α,IL-1β,IL-6,IL-10,NF-kB的含量,汉防己甲素可通过增加损伤脊髓中IL-10的含量、降低TNF-α,IL-1β,IL-6,NF-kB的含量,改善局部微环境,有益于脊髓组织的保护。
     第三部分探讨汉防已甲素对内源性神经干细胞增殖分化的影响
     目的:探讨Tet对大鼠ASCI后脊髓损伤段ENSC增殖分化的影响。
     方法:选用78只大鼠,随机分为3组:损伤对照组(n=36只),Tet组(n=36只),假手术组(n=6)。损伤组、Tet组采用Allen’s打击法造模,Tet组于脊髓损伤后30分钟、术后24h、术后48h给予Tet22.5mg/kg体重治疗,损伤组注射同等剂量的生理盐水。于脊髓损伤伤后1d、3d、1w、2w、3w、4w取损伤段脊髓组织,用免疫荧光组织化学方法检测各组大鼠脊髓组织在不同时间段Nestin及BrdU的表达变化情况。
     结果:ASCI后1天时损伤对照组及Tet组均可见少量Nestin表达阳性细胞及BrdU表达阳性细胞,ASCI1周损伤对照组及Tet组可见大量阳性细胞,阳性细胞表达达高峰,持续至2周后逐渐开始下降,ASCI后4周时,Tet组、损伤对照组中BrdU及Nestin阳性细胞表达数明显减少,但仍较假手术组高。Tet组BrdU阳性细胞数量和Nestin阳性细胞数量在各时间点均高于损伤对照组。损伤对照组及Tet组在ASCI后1d、3d、1w、2w、3w时与假手术组相比BrdU、Nestin阳性细胞数量差异有统计学意义。损伤对照组及Tet组在ASCI后1d、3d、1w、2w、3w时BrdU、Nestin阳性细胞数量差异有统计学意义。
     结论:Tet通过改善微环境能增加BrdU、Nestin阳性细胞,增加ENSCs的增殖,有利于神经功能的恢复。
Acute spinal cord injury(ASCI) manifests injury on white and graymatter in pathology, which results in primary injury and secondary lesion.The secondary lesion is a complicate cascade reaction several minutes todays after primary injury, and the immune inflammation reaction afterASCI plays a important role in secondary lesion. The immuneinflammation reaction after ASCI can result in the reside and adjacentnerve cells death and apoptosis, at the same time the micro environment ininjury spinal cord exits negative factors which can inhabit neural stem cellproliferation, and it is the main reason that recover bad after ASCI. Withstudy further on the mechanism of ASCI, the secondary lesion is realizedcould be intervened. It can protect residue spinal cord and promote thefunction of spinal cord recovery. The tetrandrine(TET) is the effectiveingredients of Radix Stephaniae Tetrandrae. A lot of research prove it canagainst inflammation and lipid peroxidation, prevent cell injury, improvemicrocirculation, and antagonize the Ca2+.Our study discuss if the TET could promote the function of spinal cord recovery through adjust theinflammation factors, inhabit the cell apoptosis and infect on neural stemcell proliferation, and provide theory proof for TET treat ASCI.
     PART ONE: EFFECT OF TETRANDRINE ON CELL APOPTOSISFOLLOWING ACUTE SPINAL CORD INJURY IN RATS
     Objective:To observe the influence of tetrandrine on cell apoptosisfollowing spinal cord injury in rats.
     Methods:114SD rats were randomly divided into three groups:sham group(group A),control group(group B),methylprednisolone(MP)group(group C) and tetrandrine(Tet) group(group D).The modified Allenmethod was adopted to make the models of T9spinal cord injury in B andC and D group. BBB score was recorded at8h,1d,3d,,7d,14d,28drespectively. The samples were taken from the spinal cord injury sites at8h,1d,3d,7d,14d,28d tested by HE staining for morphology and detectedthe expression levels of Bcl-2、Bax protein by immunohistochemistryassay. The semi-quantitative analysis for apoptosis nerve cells can begained by the flow cytometry (FCM).
     Results:The BBB score of group C and D were significantly higherthan that of group B at7,14and28day time point. HE stain showed thespinal cord of group C and D has fewer necrosis than that of group B. Thenumber of Bcl-2postive cells in group C and D were significantly higherthan those of group B at each time points. However the number of Baxpostive cells in group C and D were significantly lower than those of groupB at each time points.
     Conclusions: Tetrandrine can prevent neurons from apoptosis andpromote the nerve function recover by inhibiting the expression of Bax and promoting the expression of Bcl-2.
     PART TWO: EFFECT OF TETRANDRINE ON RELEASE OFINFLAMMATORY FACTOR FOLLOWING ACUTE SPINALCORD INJURY IN RATS
     Objective:To observe the influence of tetrandrine on release ofinflammatory factor following spinal cord injury in rats.
     Methods:78SD rats were randomly divided into:shamgroup,control group, Tet group.The modified Allen method was adopted tomake the models of T9spinal cord injury in control group and Tet group.The samples were taken from the spinal cord injury sites at6h,12h,1d,3d,5d,7ddetected the contents of TNF-α,IL-1β,IL-6,IL-10,NF-kBby using enzyme-linked immunosorbent assay.
     Results: The expression of TNF-α, IL-1β, IL-6, IL-10, NF-kB ininjury control group and Tet group at6h,12h,1d,3d,5d,7d After ASCI washigher than that in sham operation group, has obviously increased at6hafter ASCI, peaked at24h-72h, began to decrease at5day after ASCI,.Theexpression of IL-10in Tet group was higher than the control group,but theexpression of TNF-α, IL-1β, IL-6, NF-kB is lower than the control group.
     Conclusion:The content of TNF-α,IL-1β,IL-6,IL-10,NF-kB wasincrease in the spinal cord. Tetrandrine is able to improve local microenvironment and promote the nerve function recover by increasing theexpression of IL-10and decreasing the expression of TNF-α,IL-1 β,IL-6,NF-kB in the spinal cord injury.
     PART THREE: EXPERIMENTAL STUDY ON EFFECT OFTETRANDRINE IN THE ENDOGENOUS NEURAL STEM CELLPROLIFERATION AND DIFFERENTIATION AFTER SPINALCORD INJURY IN RATS
     Objective: Discuss the effects of tetrandrine on the endogenousneural stem cell proliferation and differentiation after spinal cord injury inrats.
     Methods:78rats were randomly divided into3groups: injuriedgroup (n=36), Tet-treated group (n=36),sham-operated group (n=6).Injuried group and Tet-treated group damage spinal cord with Allen 'scombat modeling method.30minutes after damage, Tet was injected with adosage22.5mg/kg in Tet group at30minutes,24h and48h after ASCI, andthe same dosement of saline was injected in injuried group as control. Thesamples were dissected from the spinal cord injury sites at1d,3d,1w,2w,3w,4w and detected the expression of BrdU and nestin byimmunofluorescence staining.
     Results: A little nestin positive cells and brdU positive cells werefound in injuried group and Tet-treated group at1day after injury. A largenumber of positive cells were found in both groups at one week after injuryand reached the peak which lasted for2weeks and then decreasedgradually. The expression of Nestin positive cells and brdU positive cells decreased significantly at4weeks after injury. Compared with the shamoperation group, the number of Nestin positive cells and brdU positive cellswas more in injuried group and Tet-treated group at1d,3d,1W,2W,3W afterinjury. The expression was higher in Tet-treated group than injuried groupat1d,3d,1w,2w,3w after injury and had no difference at4weeks afterinjury.
     Conclusion: It was concluded that tetrandrine could increase thenumber of Nestin positive cells, brdU positive cells and endogenous neuralstem cells.It is beneficial to the recovery of spinal cord injury in rats.
引文
[1]Kirshblum S C,Groah S L,Mckinley W O,et al.Spinalcord injurymedicine.1.Etiology,classification,and acute medical management.Arch Phys MedRehabil.2002;83(3suppl1):S50-7,S90-8.Review.
    [2]Albert T,Ravaud J F.Rehabilitation of spinal cord injury in France:a nationwidemulticentre study of incidence and regional disparities.Spinalcord.2005;43(6):357-365
    [3]张强、贾连顺.脊髓损伤的临床统计学资料分析[J].第二军医大学学报,2003,24(6):684-686
    [4]Sullivan PG,Krishnamurthy S,Patel SP,et al.Temporal characterization ofmitochon-drial bioenergetics after spinal cordinjury[J].Neurotrauma,2007,24(6):991-999
    [5]Dohmen C,Kumura E,Rosner G,et al.Ext racellular correlates of glutamate toxicity inshort-term cerebral ischemia and reperfusion:a direct in vivo comparison betweenwhite and gray matter[J].Brain Res,2005,1037(122):43-51
    [6]Sekhon L H,Fehlings M G.Epidemiology,demographics,and pathophysiology of acutespinal cord injury.Spine2001;26(24Suppl):S2-I2
    [7]Profyris C,Cheema S S,Zang D,et al.Degenerative and regenerative mechanismsgoverning spinal cord injury.Neurobiol Dis2004;15(3):415-436
    [8]Fukaya C,Katayama Y,Kasai M,et al.Evaluation of time-dependent spread of tissuedamage in experiment spinal cord injury by killed-end evoked potential:effect ofhigh-dose methylprednsolone.J Neurosurg2003,98(1Suppl):56-62
    [9]Lee JM,Yan P,Xiao Q,et al.Methylprednisolone pretects oligodendrocytes but notneurons after spinal cord injury[J].J Neurosci,2008,28(12):3141-3149
    [10]Sayer FT,Kronvall E,Nilsson OG.Methylprednisolone treatment in acute spinalcord injury:the myth challenged through a structured analysis of publishedliterature[J].Spine,2006,6(3):335-343
    [11]Bydon M,Lin J,Macki M,et al.The role of steroids in acute spinal cord injury.Worldneurosurg2013,11(20)S1878
    [12]Carvalho MO,Barros Filho TE,Tebet MA.Effects of methylprednisolone andganglioside GM-1on a spinal lesion:a functional analysis[J].Clinics(SaoPaulo),2008,63(3):375-380
    [13]Fleming JC,Norenberg MD,Ramsay DA,et al.The cellular inflammatory response inhuman spinal cords after injury[J].Brain,2006,129(12):3249-3269
    [14]Ankeny DP,Popovich PG,Mechanisms and implications of adaptive immuneresponses after traumatic spinal cord injury[J].Neuroscience,2009,158(3):1112-1121
    [15]Beril GH,Solaroglu I,Okutan O,et al.Metoprolol treatment decreases tissuemyeloperoxidase activity after spinal cord injury in rats[J].J ClinNeurosci,2007,14(2):138-142
    [16]Genovese T,Mazzon E,Crisafulli C,et al.TNF-α blockage in a mouse model ofSCI:evidence for improved outcome[J].Shock,2008,29(1):32-41
    [17]Mukaino M,Nakamura M,Yamada O,et al.Anti-IL-6-receptor antibody promotesrepair of spinal cord injury by inducing microglia-dominant inflammation[J].ExperNeurol,2010,224(2):403-414
    [18]Zhou Z,Peng X,Insolera R,ey al.IL-10promotes neuronal survival following spinalcord injury[J].Exper Neurol,2009,220(1):183-190
    [19]Genovese T,Esposito E,Mazzon E,et al.Absence of endogenous interleukin-10enhances secondary inflammatory process after spinal cord compression injury inmice[J].J Neurochem,2009,108(6):1360-1372
    [20]Saganova K,Orendacova J,Sulla I,et al.Effects of long-term FK-506administrationon functional and histopathological outcome after spinal cord injury in adultrat[J].Cell Mol Neurobiol,2009,29(6):1045-1051
    [21]Tymianski M,Tator CH.Normal and abnormal calcium homeostasis in neurons:abasis for the pathophysiology of traumatic and ischemic central nervous systeminjury.Neurosurgery,1996,38(6):1176-1195
    [22]Follis F,Blisard K.Competitive NMDA receptor antagonists and spinal cordischemia[J].Invest Surg,2000,13(2):117-121
    [23]Harrington JF,Messier AA,Levine A,et al.Shedding of tumor necrosis factor typeⅠreceptor after experimental spinal cord injury[J].JNeurotrauma,2005,22(8):919-928
    [24]Campbell SJ,Zahid I,Losey P,et al.Liver kuppre cells control the magnitude of theinflammatory response in the injured brain and spinalcord[J].Neuropharmacology,2008,55(5):780-787
    [25]Waldmeier PC,Zimmermann K,Qian T,et al.Cyclophilin D as a drug target.CurrMed Chem,2003,10(160):1485-1506
    [26]Green DR,Kroemer G.The pathophysiology of mitochondrial celldeath.Science,2004,305(5684):626-629
    [27]Yune TY,Kim SJ,Lee SM,et al.Systemic administ ration of17beta-estradiol reducesapoptotic cell death and improves functional recovery following traumatic spinalcord injury in rats[J].J Neuro trauma,2004,21(3):293-306
    [28]Iwanami A, Kaneko S, Nakamura M, et al. Transplantation of human neural stemcells for spinal cord injury in primates. Journal of neuroscience research.2005;80:182-190.
    [29]Cummings BJ, Uchida N, Tamaki SJ, et al. Human neural stem cells differentiateand promote locomotor recovery in spinal cord-injured mice. Proceedings of theNational Academy of Sciences of the United States of America.2005;102:14069-1476.
    [30]Chung BG, Flanagan LA, Rhee SW, et al. Human neural stem cell growth anddifferentiation in a gradient-generating microfluidic device. Lab Chip.2005;5:401-406.
    [31]Keirstead HS. Stem cell transplantation into the central nervous system and thecontrol of differentiation. Journal of neuroscience research.2001;63:233-236.
    [32]Zhang N,Wimmer J,Qian SJ,et al.Stem cells:Current approach and future prospectsin spinal cord injury repair.Anat Rec(Hoboken).2010,293(3):519-530
    [33]McLaren A. Ethical and social considerations of stem cell research.NATURE-LONDON-.2001:129-131.
    [34]Chiasson BJ,Tropepe V,Morshead CM,et al.Adult mammalian forebrain ependymaland subependymal cells demonstrate proliferative potential, but only subependymalcells have neural stem cell characteristics. The Journal of Neuroscience.1999;19:4462-4471.
    [35]Clarke DL, Johansson CB, Wilbertz J, et al. Generalized potential of adult neuralstem cells. Science.2000;288:1660-1663.
    [36]Lim DA, Huang YC, Alvarez-Buylla A. The adult neural stem cell niche: lessonsfor future neural cell replacement strategies. Neurosurg Clin N Am.2007;18:81-92.
    [37]Pallini R, Vitiani LR, Bez A, et al. Homologous transplantation of neural stem cellsto the injured spinal cord of mice. Neurosurgery.2005;57:1014-1019.
    [38]Teng YD, Lavik EB, Qu X, et al. Functional recovery following traumatic spinalcord injury mediated by a unique polymer scaffold seeded with neural stem cells.Proceedings of the National Academy of Sciences.2002;99:3024-3029.
    [39]Ogawa Y, Sawamoto K, Miyata T, et al. Transplantation of in vitro‐expanded fetalneural progenitor cells results in neurogenesis and functional recovery after spinalcord contusion injury in adult rats. Journal of neuroscience research.2002;69:925-933.
    [40]Lu J,Ashwell KW,Waite P.Advances in secondary spinal cord injury:role ofapoptosis.Spine,25(14):1859-1866
    [41]Wu CJ,Wang YH,Lin CJ,et al.Tetrandrine down-regulates ERK/NF-kB signalingand inhibits activation of mesangial cells[J].Toxicol in Vitro,2011,25(8):1834-1840
    [42]He FQ,Qin BY,Li TK,et al. Tetrandrine suppresses amyloid-β-induced inflammatorycytokines by inhibiting NF-kB pathway in murine BV2Microglial cells[J].IntImmunopharmacol,2011,11(9):1220-1225
    [43]He FQ,Qin BY,,Zhang XH,et al. Tetrandrine attenuates spatial memory impairmentand hippocampal neuroinflammation via inhibiting NF-kB activation in a rat modelAlzheimer’s disease induced by amyloid-β(1-42)[J].Brain Res,2011,1384:89-96
    [44]Chen J,Liu J,Wang T,et al.Effects of tetandrine on cAMP and cGMP levels in rabbitcorpus cavernosum in vitro[J].Nat Prod Res,2010,24(12):1095-1103
    [45]王中峰,薛春生,周岐新.汉防己碱对大鼠皮层神经元钙通道的阻滞作用[J].重庆医科大学学报,2000,25(1):18-19
    [46]安荣泽,罗春山.汉防己甲素治疗急性脊髓损伤的实验研究.中国骨伤,2003,16(1):26-28
    [47]罗春山,安荣泽,田晓滨.汉防己甲素对大鼠急性脊髓损伤的作用及意义.中国脊柱脊髓杂志,2003,13(3):160-163
    [1]Basso DM,Beattie MS,Bresnahan JC.A sensitive and reliable locomotor ratingscale for open field testing in rats.J Neurotrauma,1995,12(1):1-21
    [2]I GL, Brodin G, Farooque M, et al. Apoptosis and expression of bcl-2aftercompression trauma to rat spinal cord[J].J Neuropathol Exp Neurol,1996,55(3):280-289
    [3]Ratan RR,Noble M.Novel multimodal strategies to promote brain and spinal cordinjury recovery.J Stroke.2009,40(3suppl):S130-132
    [4]Emery E,Aldana P,Bunge MB,et al.Apoptosis after traumatic human spinal cordinjury.J Neurosurg,1998,89(6):911-920
    [5]Tymianski M,Tator CH.Normal and abnormal calcium homeostasis in neurons:abasis for the pathophysiology of traumatic and ischemic central nervous systeminjury.Neurosurgery,1996,38(6):1176-1195
    [6]Follis F,Blisard K.Competitive NMDA receptor antagonists and spinal cordischemia[J].Invest Surg,2000,13(2):117-121
    [7]Harrington JF,Messier AA,Levine A,et al.Shedding of tumor necrosis factor typeⅠreceptor after experimental spinal cord injury[J].J Neurotrauma,2005,22(8):919-928
    [8]Campbell SJ,Zahid I,Losey P,et al.Liver kuppre cells control the magnitude of theinflammatory response in the injured brain and spinal cord[J].Neuropharmacology,2008,55(5):780-787
    [9]Kisehkel FC,Laerence DA,Tinel A,et al.Death receptor recruitment of endogenouscaspase-10and apoptosis initiation in the absence of caspase-8[J].J Biol Chem,2001,276(49):46639-46
    [10]Kawadler H,Gantz MA,Riley JL,et al.The paracaspase MALT1controls caspase-8activation during lymphocyte proliferation[J].Mol Cell,2008,31(3):415-421
    [11]Waldmeier PC,Zimmermann K,Qian T,et al.Cyclophilin D as a drug target.CurrMed Chem,2003,10(160):1485-1506
    [12]Green DR,Kroemer G.The pathophysiology of mitochondrial cell death.Science,2004,305(5684):626-629
    [13]Clemens JA,Stephenson DT,Dixon EP,et al.Global cerebra ischemia activatesnuclear factor-kappa B prior evidence DNA fragmentation.Brain Res Mol BrainRes,1997,48(2):187-196
    [14]Plunkett JA,Yu CG,Eaton MJ,et al.Effects of interleukin-10on pain behavior andgene expression following excitotoxic spinal cord injury in the rat.Exp Neurol,2001,168:155-154
    [15]Kori LB,John RB,Robert PY.Neuroprotective effects of interleukin-10followingexcitotoxic spinal cord injury.Experimental Neurology,1999,159:484-493
    [16]Yune TY,Kim SJ,Lee SM,et al.Systemic administ ration of17beta-estradiol reducesapoptotic cell death and improves functional recovery following traumatic spinalcord injury in rats[J].J Neuro trauma,2004,21(3):293-306
    [17]Moskowitz Michael A, Lo Eng H, Neurogenesis and apoptotic cell death[J].Strike,2003,34(2):324-326
    [18]Seki T,Hida K,Tada M,et al.Role of the bcl-2gene after contusive spinal cordinjury in mice.Neurosurg,2003;53(1):192-198
    [19]Vaquero J,Zurita M,Oya S,et al.Early adm in istration of methylpredniso-lonedecreases apoptotic cell death after spinal cord injury[J].Histol Histopathol,2006,21(10):1091-1102
    [20]Lou J, LenKe LG, Obrien M. In vivo Bcl-2oncogene Neuronal expression inthe rat spinal cord[J].Spine,1998,23(5):2517-2523
    [21]Men BZ,Zhou DB,Zhang XM,et al.Bcl-2/Bax gene expression in different types ofcarotid plaque[J].Zhong Guo Yi Xue Ke Xue Yuan Bao,2005,27(2):241-244
    [22]Tsujimoto Y.Role of bcl-2family proteins in apoptosis:apoptosomes or mitochondria[J].Genes Cells,1998,3(11):697-707
    [23]Green D,Kroemer G.The central executioners of apoptosis Caspases or mitochondia.Trends Cell Biol,1998,8(7):267-271
    [24]Green DR,Reed JC.Mitochondria and apoptosis.Science,1998,281(5381):1309-1312
    [25]Lu J,Ashwell KW,Waite P.Advances in secondary spinal cord injury:role ofapoptosis.Spine,25(14):1859-1866
    [26]Mohammadi M,Yazdanparast R.Modulation of H2O2-induced Nitogen-Actvatedprotein kinases activation and cell death in SK-N-MC cells by EUK134,a salenderivative[J].Basic,Clinical Pharmcology,Toxicology,2011,108(6):378-384
    [27]Xue Hong-Yu,Niu Dong-Yan,Gao Gui-Zhen,et al.Aucubin modulates Bcl-2familyproteins expression and inhibits caspases cascade in H2O2-induced PCI2cells[J].Molecular Biology Reports.2011,38(5):3561-3567
    [28]Naseer MI,Ullah N,Ullah I,et al.Vitamin C protects against ethanol andPTZ-induced apoptosis neurodegeneration in prenatal rat hippocampal neurons[J].Synapse,2011,65(7):562-571
    [29]Zhang JD,Alter N,Reed JC,et al.bcl-2interrupts the ceramide-mediated pathway ofcell death[J].Proc Natl Acad Sci USA,1996,93(11):5325-5328
    [30]Cuzzoctea S,Deiqner HP,Cenovese,et al.Inhibition of ceramide biosynthesisameliorates pathological consequences of spinal cord injury.Shock,2009,31(6):634-644
    [31]Lebedeva IV, Sarkar D, Su ZZ, et al. Bcl2and Bclx(L) differentially protecthuman prostate cancer cells from induction of apoptosis by melanomadifferentiation associated gene7, mda7/IL24[J]. Oncogene,2003;22(54):8758-8773.
    [32]Fan LH, Wang KZ, Cheng B, et al.Anti-apoptotic and neuroprotective effects ofTetramethylpyrazine following spinal cord ischemia in rabbits.BMCNeuroscience.2006;7:48.
    [33]Fukaya C,Katayama Y,Kasai M,et al.Evaluation of time-dependent spread of tissuedamage in experiment spinal cord injury by killed-end evoked potential:effect ofhigh-dose methylprednsolone.J Neurosurg2003,98(1Suppl):56-62
    [34]Lee JM,Yan P,Xiao Q,et al.Methylprednisolone pretects oligodendrocytes but notneurons after spinal cord injury[J].J Neurosci,2008,28(12):3141-3149
    [35]Sayer FT,Kronvall E,Nilsson OG.Methylprednisolone treatment in acute spinalcord injury:the myth challenged through a structured analysis of publishedliterature[J].Spine,2006,6(3):335-343
    [36]Bydon M,Lin J,Macki M,et al.The role of steroids in acute spinal cord injury.Worldneurosurg2013,11(20)S1878
    [37]Wu CJ,Wang YH,Lin CJ,et al.Tetrandrine down-regulates ERK/NF-kB signalingand inhibits activation of mesangial cells[J].Toxicol in Vitro,2011,25(8):1834-1840
    [38]He FQ,Qin BY,Li TK,et al. Tetrandrine suppresses amyloid-β-induced inflammatorycytokines by inhibiting NF-kB pathway in murine BV2Microglial cells[J].IntImmunopharmacol,2011,11(9):1220-1225
    [39]He FQ,Qin BY,,Zhang XH,et al. Tetrandrine attenuates spatial memory impairmentand hippocampal neuroinflammation via inhibiting NF-kB activation in a rat modelAlzheimer’s disease induced by amyloid-β(1-42)[J].Brain Res,2011,1384:89-96
    [40]Chen J,Liu J,Wang T,et al.Effects of tetandrine on cAMP and cGMP levels in rabbitcorpus cavernosum in vitro[J].Nat Prod Res,2010,24(12):1095-1103
    [41]王中峰,薛春生,周岐新.汉防己碱对大鼠皮层神经元钙通道的阻滞作用[J].重庆医科大学学报,2000,25(1):18-19
    [1]Fleming JC,Norenberg MD,Ramsay DA,et al.The cellular inflammatory response inhuman spinal cords after injury[J].Brain,2006,129(12):3249-3269
    [2]Ankeny DP,Popovich PG,Mechanisms and implications of adaptive immuneresponses after traumatic spinal cord injury[J].Neuroscience,2009,158(3):1112-1121
    [3]Beril GH,Solaroglu I,Okutan O,et al.Metoprolol treatment decreases tissuemyeloperoxidase activity after spinal cord injury in rats[J].J ClinNeurosci,2007,14(2):138-142
    [4]Plata Salaman CR.Immunoregulators in the nervous system.Neurosci BiobehavRev,1991Summer,15(2):185-215
    [5]Licinio J,Wong ML,Gold PW.Neutrophil-activating peptide-1/interleukin-8mRNA islocalized in rat hypothalamus and hippocampus.Neuroreport,1992,3(9);753-756
    [6]Rothwell NJ,Luheshi G,Toulmond S.Cytokines and their receptors in the centralnervous system:physiology,pharmacology,and pathology.PharmacolTher,1996,69:85-95
    [7]Chen F,Castranova V,Shi X,et al.New insights into the role of nuclearfactor-kappaB,a ubiquitous transcription factor in the initiation of diseases.ClinChem,1999,Jan,45(1):7-17
    [8]Karin M,Ben-Neriah Y.Phosphorylation meets ubiquitination:the control ofNF-[kappa]B activity.Annu Rev Immunol,2000,18:621-663
    [9]May MJ,Ghosh S.IkappaB kinases:kinsmen with differentcrafts.Science,1999,284(5412):271-273
    [10]Nanaka M,Chen XH,Pierce JE,et al.Prolonged activation of NF-kappa B followingtraumatic brain injury in rats.J Neurotrauma,1999,16:1023-1034
    [11]Conti A,Cardali S,Genovese T,et al.Role of inflammation in the secondary injuryfollowing experimental spinal cord trauma.Neurosurg Sci,2003,47(89-94)
    [12]Waldner H.The role of innate immune responses in autoimmune diseasedevelopment[J].Autoimmune Rev,2009,8(5):400-404
    [13]Jimi E,Phillips RJ,Rincon M,et al.Identification of a novel blocker of1kB kinasethat enhances cellular apoptosis and inhibits cellular invasion through suppressionof NF-kB regulated gene products.J Immunol,2005,174(11):7383-7392
    [14]Beathea JR,Castro M,Keane RW,et al.Traumatic spinal cord injury induces nuclearfactor-KappaB activation[J].J Neurosci,1998,18(9):3251-3260
    [15]Lloyd E,Somera-Molina K,Van Eldik LJ,et al.Suppression of acuteproinflammatory cytokine and chemokine upregulation by post-injuryadministration of a novel small molecule improves long-term neurologic outcomein a mouse model of traumatic brain injury[J].J Neuroinflammation,2008,5(1):28
    [16]Mukaino M,Nakamura M,Yamada O,et al.Anti-IL-6-receptor antibody promotesrepair of spinal cord injury by inducing microglia-dominant inflammation[J].ExperNeurol,2010,224(2):403-414
    [17]Mukaino M,Nakamura M,Okada S,et al.Role of IL-6in regulation of inflammationand stem cell differentiation in CNS trauma[J].Nihon Rinsho Meneki Gakkaikaishi,2008,31(2):93-98
    [18]Fitch MT,Silver J.CNS injury,glial scars,and inflammation:Inhibitory extracellurmatrices and regeneration failure[J].Experim Neurol,2008,209(2):294-301
    [19]Laskowitz DT,Goel S,Bennett ER,et al.Apolipoprotein E suppresses glial cellsecretion of TNF-α.J Neuroimmunol,1997,76:70-74
    [20]Genovese T,Mazzon E,Crisafulli C,et al.TNF-α blockage in a mouse model ofSCI:evidence for improved outcome[J].Shock,2008,29(1):23-41
    [21]Chi LY,Yu J,Zhu H,et al.The dual role of TNF-α in the pathophysiology of spinalcord injury.Neurosci Lett,2008,438(2):174-179
    [22]Conti P,Kempuraj D,Kandere K,et al.IL-10,an inflammatory inhibitory cytokine,butnot always[J].Immunol Lett,2003,86(2):123-129
    [23]Zhou Z,Peng X,Insolera R,ey al.IL-10promotes neuronal survival following spinalcord injury[J].Exper Neurol,2009,220(1):183-190
    [24]Genovese T,Esposito E,Mazzon E,et al.Absence of endogenous interleukin-10enhances secondary inflammatory process after spinal cord compression injury inmice[J].J Neurochem,2009,108(6):1360-1372
    [25]Bethea JR,Nagashima H,Acosta MC,et al.Systemically administered interleukin-10reduces TNF-α production and significantly improves functional recoveryfollowing traumatic spinal cord injury in rats.J Neurotrauma.1999,16(10):851-863
    [26]Koedel U,Bernatowicz A,Frei K,et al.Systemically(but not intrathecally)administered IL-10attenuates pathophysiologic alterations in experimentalpneumococcal meningitis,J Immunol,1996,157:5185-5191
    [27]Plunkett JA,Yu CG,Eaton MJ,et al.Effects of interleukin-10on pain behavior andgene expression following excitotoxic spinal cord injury in the rat.ExpNeurol,2001,168:155-154
    [28]Takami T,Oudega M,Bethea JR,et al.Methylprednisolone and interleukin-10reducegray matter damage in the contused Fischer rat thoracic spinal cord but do notimprove function outcome.J neurotrauma,2002,19(5):653-666
    [29]Abraham KE,McMillen D,Brewer KL.The effects of endogenous interleukin-10ongray matter damage and the development of pain behaviors following excitotoxicspinal cord injury in the mouse.Neuroscience,2004,124(4):945-952
    [30]Bachis A,Colangelo AM,Vicini S,et al.Interleukin-10prevents glutamate-mediatedcerebellar granule cell death by blocking caspase-3-like activity.JNeurosci,2001,21:3104-3112
    [31]Brodie C.Differential effects of Th1and Th2derived cytokines on NGF synthesisby mouse astrocytes.FEBS Lett,1996,394:117-120
    [32]Fukaya C,Katayama Y,Kasai M,et al.Evaluation of time-dependent spread of tissuedamage in experiment spinal cord injury by killed-end evoked potential:effect ofhigh-dose methylprednsolone.J Neurosurg2003,98(1Suppl):56-62
    [33]Saganova K,Orendacova J,Sulla I,et al.Effects of long-term FK-506administrationon functional and histopathological outcome after spinal cord injury in adultrat[J].Cell Mol Neurobiol,2009,29(6):1045-1051
    [34]Wu CJ,Wang YH,Lin CJ,et al.Tetrandrine down-regulates ERK/NF-kB signalingand inhibits activation of mesangial cells[J].Toxicol in Vitro,2011,25(8):1834-1840
    [35]He FQ,Qin BY,Li TK,et al. Tetrandrine suppresses amyloid-β-induced inflammatorycytokines by inhibiting NF-kB pathway in murine BV2Microglial cells[J].IntImmunopharmacol,2011,11(9):1220-1225
    [36]He FQ,Qin BY,,Zhang XH,et al. Tetrandrine attenuates spatial memory impairmentand hippocampal neuroinflammation via inhibiting NF-kB activation in a rat modelAlzheimer’s disease induced by amyloid-β(1-42)[J].Brain Res,2011,1384:89-96
    [37]Chen J,Liu J,Wang T,et al.Effects of tetandrine on cAMP and cGMP levels in rabbitcorpus cavernosum in vitro[J].Nat Prod Res,2010,24(12):1095-1103
    [38]王中峰,薛春生,周岐新.汉防己碱对大鼠皮层神经元钙通道的阻滞作用[J].重庆医科大学学报,2000,25(1):18-19
    [1]Lu P, Jones L, Snyder E, Tuszynski M. Neural stem cells constitutively secreteneurotrophic factors and promote extensive host axonal growth after spinal cordinjury. Experimental neurology.2003;181:115-129.
    [2]wanami A, Kaneko S, Nakamura M, et al. Transplantation of human neural stem cellsfor spinal cord injury in primates. Journal of neuroscience research.2005;80:182-190.
    [3]Cummings BJ, Uchida N, Tamaki SJ, et al. Human neural stem cells differentiate andpromote locomotor recovery in spinal cord-injured mice. Proceedings of the NationalAcademy of Sciences of the United States of America.2005;102:14069-1476.
    [4]Kim DE, Tsuji K, Kim YR, et al. Neural Stem Cell Transplant Survival in Brains ofMice: Assessing the Effect of Immunity and Ischemia by using Real-timeBioluminescent Imaging1. Radiology.2006;241:822-830.
    [5]Svendsen CN, Caldwell MA, Shen J, et al. Long-term survival of human centralnervous system progenitor cells transplanted into a rat model of Parkinson's disease.Experimental neurology.1997;148:135-146.
    [6]Nakamura M,Houghtling RA,MacArthur L,et al.Differences in cytokine geneexpression profile between acute and secondary injury in adult rat spinal cord.Expneurol,2003,184:313-325
    [7]McLaren A. Ethical and social considerations of stem cell research.NATURE-LONDON-.2001:129-131.
    [8]Fischbach GD,Fischbach RL. Stem cells: science, policy, and ethics. Journal ofClinical Investigation.2004;114:1364-1371.
    [9]Clarke DL, Johansson CB, Wilbertz J, et al. Generalized potential of adult neuralstem cells. Science.2000;288:1660-1663.
    [10]Lim DA, Huang YC, Alvarez-Buylla A. The adult neural stem cell niche: lessonsfor future neural cell replacement strategies. Neurosurg Clin N Am.2007;18:81-92.
    [11]Johansson CB,Momma S,Clarke DL,et al.Identification of a neural stem cell in theadult mammalian central nervous system[J].Cell,1999,96(1):25-34
    [12]Zai LJ,Wrathall JR.Cell proliferation and replacement following contusive spinalcord injury[J].Glia,2005,50:247-257
    [13]Colucci‐D'Amato L, di Porzio U. Neurogenesis in adult CNS: From denial toopportunities and challenges for therapy. Bioessays.2008;30:135-145.
    [14]Picard-Riera N,Nait-Oumesmar B,Baron-Van Evercooren A.Endogenous adultneural stem cells:limits and potential to repair the injured central nervoussystem[J].J Neurosci Res,2004,76(2):223-231
    [15]Sergent-Tanguy S,Michel DCI.Long-lasting coexpression of nestin and glialfibrillary acidic protein in primary cultures of astroglial cells with a majorparticipation of nestin(+)/GFAP(-) cell proliferation[J].Neurosci Res,2006,83(8):1515-1524
    [16]Shihabuddin Ls,Horner PJ,Ray J,et al.Adult spinal cord stem cells generate neuronsafter transplantation in the adult dentate gyrus[J].Neurosci,2000,20:8727-8735
    [17]Kim JB,Zaehres H, Wu G, et al. Pluripotent stem cells induced from adult neuralstem cells by reprogramming with two factors. Nature.2008;454:646-650.
    [18]Nakashima K,Takizawa T,Ochiai W,et al.BMP2-mediated alteration in thedevelopmental pathway of fetal mouse brain cells from neurogenesis toastrocytogenesis.Proc Natl Acad Sci USA,2001,98(10):5868-5873
    [19]Horky LL,Galimi F,Gage FH,et al.Fate of endogenous stem/progenitor cellsfollowing spinal cord injury.J Comp Neurol,2006,498(4):525-538
    [20]Bambakidis NC,Horn EM,Nakaji P,et al.Endogenous stem cell proliferationinduced by intravenous hedgehog agonist administration after contusion in theadult rat spinal cord.J Neurosurg Spine,2009,10(2):171-176
    [21]Hayashi K,Ohta S,Kawakami Y,et al.Activation of dendritic-like cells and neuralstem/progenitor cells in injured spinal cord by GM-CSF.Neurosci Res,2009,64(1):96-103
    [22]Wrathall JR,Lytle JM.Stem cells in spinal cord injury.Dis Markers,2008,24(4-5):239-250
    [23]Barnable-Heider F,Frisen J.Stem cells for spinal cord repair.Cell StemCell,2008,3(1):16-24
    [24]Lu D,Mahmood A,Zhang R,et al.Upregulation of neurogenesis and reduction infunctional deficits following administration of DetA/NONOate,a nitric oxidedonor,after traumatic brain injury in rats[J].Neurosurg,2003,99(2):351-361
    [25]Zhang RL,Zhang ZG,Wang L,et al.Activated neural stem cells contribute to strokeinduced neurogenesis and neuroblast migration toward the infarct boundary inadult rats[J].J Cereb Blood Flow Metab,2004,24(4):441-448
    [26]Lendahl U,Zimmerman LB,Mckay RD.CNS stem cells express a new dass ofintermediate filament protein.Cell1990,60:585-595.
    [27]Pekny M,Johansson CB,Eliasson C,et al.Abnormal reaction to central nervoussystem injury in mice lacking glial fibrillary acidic protein and vimentin[J].J CellBoil,1999,145(3):503-514
    [28]Liu J,Sharp FR.Ischemia induced neurogenesis in the dentate gyrus:an injurydependent neuroplasticity[J].J Cereb Blood Flow Metab,1999,19(3):614-619
    [29]安荣泽,罗春山.汉防己甲素治疗急性脊髓损伤的实验研究.中国骨伤,2003,16(1):26-28
    [30]罗春山,安荣泽,田晓滨.汉防己甲素对大鼠急性脊髓损伤的作用及意义.中国脊柱脊髓杂志,2003,13(3):160-163
    [1]Kirshblum S C,Groah S L,Mckinley W O,et al.Spinalcord injury medicine.1.Etiology,classification,and acute medical management.Arch Phys MedRehabil.2002;83(3suppl1):S50-7,S90-8.Review.
    [2]Albert T,Ravaud J F.Rehabilitation of spinal cord injury in France:a nationwidemulticentre study of incidence and regional disparities.Spinal cord.2005;43(6):357-365
    [3]张强、贾连顺.脊髓损伤的临床统计学资料分析[J].第二军医大学学报,2003,24(6):684-686
    [4]Sullivan PG,Krishnamurthy S,Patel SP,et al.Temporal characterization ofmitochon-drial bioenergetics after spinal cord injury[J].Neurotrauma,2007,24(6):991-999
    [5]Dohmen C,Kumura E,Rosner G,et al.Ext racellular correlates of glutamate toxicity inshort-term cerebral ischemia and reperfusion:a direct in vivo comparison betweenwhite and gray matter[J].Brain Res,2005,1037(122):43-51
    [6]Sekhon L H,Fehlings M G.Epidemiology,demographics,and pathophysiology of acutespinal cord injury.Spine2001;26(24Suppl):S2-I2
    [7]Profyris C,Cheema S S,Zang D,et al.Degenerative and regenerative mechanismsgoverning spinal cord injury.Neurobiol Dis2004;15(3):415-436
    [8]Moissonn ier P, Reviron T, Ye JH, et al. Motoneurons of the injured spinal cord ofthe adult dog can grow lengthy axons into an au to logous peripheral nerve graft; aretrograde axonal tracing study [J]. Spinal Cord,1996,34(6):320-3251
    [9]Lu P, Jones L, Snyder E, Tuszynski M. Neural stem cells constitutively secreteneurotrophic factors and promote extensive host axonal growth after spinal cordinjury. Experimental neurology.2003;181:115-129.
    [10]Iwanami A, Kaneko S, Nakamura M, et al. Transplantation of human neural stemcells for spinal cord injury in primates. Journal of neuroscience research.2005;80:182-190.
    [11]Cummings BJ, Uchida N, Tamaki SJ, et al. Human neural stem cells differentiateand promote locomotor recovery in spinal cord-injured mice. Proceedings of theNational Academy of Sciences of the United States of America.2005;102:14069-1476.
    [12]Kim DE, Tsuji K, Kim YR, et al. Neural Stem Cell Transplant Survival in Brains ofMice: Assessing the Effect of Immunity and Ischemia by using Real-timeBioluminescent Imaging1. Radiology.2006;241:822-830.
    [13]Svendsen CN, Caldwell MA, Shen J, et al. Long-term survival of human centralnervous system progenitor cells transplanted into a rat model of Parkinson's disease.Experimental neurology.1997;148:135-146.
    [14]Nakamura M,Houghtling RA,MacArthur L,et al.Differences in cytokine geneexpression profile between acute and secondary injury in adult rat spinal cord.Expneurol,2003,184:313-325
    [15]McLaren A. Ethical and social considerations of stem cell research.NATURE-LONDON-.2001:129-131.
    [16]Fischbach GD,Fischbach RL. Stem cells: science, policy, and ethics. Journal ofClinical Investigation.2004;114:1364-1371.
    [17]Clarke DL, Johansson CB, Wilbertz J, et al. Generalized potential of adult neuralstem cells. Science.2000;288:1660-1663.
    [18]Lim DA, Huang YC, Alvarez-Buylla A. The adult neural stem cell niche: lessonsfor future neural cell replacement strategies. Neurosurg Clin N Am.2007;18:81-92.
    [19]Johansson CB,Momma S,Clarke DL,et al.Identification of a neural stem cell in theadult mammalian central nervous system[J].Cell,1999,96(1):25-34
    [20]Zai LJ,Wrathall JR.Cell proliferation and replacement following contusive spinalcord injury[J].Glia,2005,50:247-257
    [21]Colucci‐D'Amato L, di Porzio U. Neurogenesis in adult CNS: From denial toopportunities and challenges for therapy. Bioessays.2008;30:135-145.
    [22]Picard-Riera N,Nait-Oumesmar B,Baron-Van Evercooren A.Endogenous adultneural stem cells:limits and potential to repair the injured central nervoussystem[J].J Neurosci Res,2004,76(2):223-231
    [23]Sergent-Tanguy S,Michel DCI.Long-lasting coexpression of nestin and glialfibrillary acidic protein in primary cultures of astroglial cells with a majorparticipation of nestin(+)/GFAP(-) cell proliferation[J].Neurosci Res,2006,83(8):1515-1524
    [24]Horky LL,Galimi F,Gage FH,et al.Fate of endogenous stem/progenitor cellsfollowing spinal cord injury.J Comp Neurol,2006,498(4):525-538
    [25]Bambakidis NC,Horn EM,Nakaji P,et al.Endogenous stem cell proliferationinduced by intravenous hedgehog agonist administration after contusion in the adultrat spinal cord.J Neurosurg Spine,2009,10(2):171-176
    [26]Hayashi K,Ohta S,Kawakami Y,et al.Activation of dendritic-like cells and neuralstem/progenitor cells in injured spinal cord by GM-CSF.Neurosci Res,2009,64(1):96-103
    [27]Weiss S, Dunne C, Hewson J, et al. Multipotent CNS stem cells are present in theadult mammalian spinal cord and ventricular neuroaxis. The Journal ofNeuroscience.1996,16:7599-7609.
    [28]Meletis K, Barnabé-Heider F, Carlén M, et al. Spinal cord injury revealsmultilineage differentiation of ependymal cells. PLoS biology.2008;6:182.
    [29]Johanson CB,Momma S, Clarke DL, et al. Identification of a neural stem cell inthe adult mammalian central nervous system[J].Cell,1999,96:25-34
    [30]Yamamoto S, Yamamoto N, Kitamura T, et al. Proliferation of parenchymalneural progenitors in response to injury in the adult rat spinal cord [J]. Exp Neural,2001,172:115-127
    [31]Horner PJ, Power AE,Kempermann G, et al.Proliferation and differentiation ofprogenitor cells throughout the intact adult rat spinal cord [J].J Neurosci,2000,20:2218-2228
    [32]Frisén J, Johansson CB, T r k C,et al. Rapid, widespread, and longlasting inductionof nestin contributes to the generation of glial scar tissue after CNS injury. TheJournal of cell biology.1995;131:453-464.
    [33]Shihabuddin LS, Horner PJ, Ray J,et al. Adult spinal cord stem cells generateneurons after transplantation in the adult dentate gyrus [J]. J Neurosci,2000,20:8727-8735
    [34]Mothe A, Tator C. Proliferation, migration, and differentiation of endogenousependymal region stem/progenitor cells following minimal spinal cord injury in theadult rat. Neuroscience.2005;131:177-187.
    [35]Faulkner JR,Herrmann JE,Woo,MJ,et al.Reactive astrocytes protect tissue andpreserve function after spinal cord injury [J].J Neurosci,2004,24(9):2143-55.
    [36]Emsley JG, Mitchell BD, Kempermann G, Macklis JD. Adult neurogenesis andrepair of the adult CNS with neural progenitors, precursors, and stem cells. Progressin neurobiology.2005;75:321-341.
    [37]Lim DA, Huang YC, Alvarez-Buylla A. The adult neural stem cell niche: lessonsfor future neural cell replacement strategies. Neurosurg Clin N Am.2007;18:81-92.
    [38]Pallini R, Vitiani LR, Bez A, et al. Homologous transplantation of neural stem cellsto the injured spinal cord of mice. Neurosurgery.2005;57:1014-1019.
    [39]Ke Y,Chi L,Xu R,et al.Early response of endogenous adult neural progenitor cells toacute spinal cord injury in mice[J].Stem Cells,2006,24(4):1011-1019
    [40]Armstrong RJ,Barker RA.Neurodegeneration:a failure of neuroregeneration[J].Lancet,2001,358(9288):1174-1176
    [41]Beattie M, Bresnahan J, Komon J, et al. Endogenous repair after spinal cordcontusion injuries in the rat. Experimental neurology.1997;148:453-463.
    [42]Widera D,Kaus A,kaltschmidt C,et al.Neural stem cells,inflammation andNF-kB:basic principle of maintenance and repair or origin of brain tumours[J].J CellMol Med,2008,12(2):459-470
    [43]Iosif RE,Ekdahil CT,Ahlenius H,et al. Tumor necrosis factor receptor is a negativeregulator of progenitor proliferation in adult hippocampal neurogenesis [J]. JNeruosci,2006,36(38):9703-9712.
    [44]Okada S,Nakamura M,Mikani Y,et al.Blockade of interleukin-6receptor suppressesreactive astrogliosis and ameliorates functional recovery in experimental spinal cordinjury[J]. J neurosci Res,2004,76(2):265-276.
    [45]Butovsky O, Ziv Y,Schwartz A,et al.Microglia activated by IL-4orIFN-γdifferentially induce neurongnesis and oligodendrogenesis from adultstem/progenitor cells[J]. Mol Cell Neurosci.2006,31(1):149-160.
    [46]Mikami Y,Okano H,Sakaquch M,et al.Implantation of dendretic cells in injuriedadult spinal cord results in activation of endogenous neural stem/progenitor cellsleading to denovo neurogenesis and functional recovery[J].J Neurosci Res,2004,746(4):453-465
    [47]Machold R,Hayashi S,Rutlin M,et al.Sonic hedgehogis required for progenitor cellmaintenance in telecephalic stem cell niches[J].Neuron,2003,39(6):937-950
    [48]Bambakidis NC,Theodore N,Nakaji P,et al.Endogenous stem cell prolifieration aftercentral nervous system injury:alternative therapeutic options[J].Neurosurg Focus,2005,19(3):E1
    [49]Shingo T, Sorokan ST, Shimazaki T,et al. Erythropoietin regulates the in vitro and invivo production of neuronal progenitors by mammalian forebrain neural stem cells.The Journal of Neuroscience.2001;21:9733-9743.
    [50]Myckaty TM,Mackinnon SE,McDonald JW.Stem cell transplantation and othernovel techniques for promoting recovery from spinal cord injury[J].TransplImmunol,2004,12(3-4):343-358
    [51]Ahn S,Joyner AL.In vivo analysis of quiescent adult neural stem cells responding toSonic hedgehog[J].Nature,2005,437(7060):894-897
    [52]Obermair FJ, Schr ter A, Thallmair M. Endogenous neural progenitor cells astherapeutic target after spinal cord injury. Physiology.2008;23:296-304.
    [53]Martino G, Pluchino S. The therapeutic potential of neural stem cells. NatureReviews Neuroscience.2006;7:395-406.
    [54].Kim JB,Zaehres H, Wu G, et al. Pluripotent stem cells induced from adult neuralstem cells by reprogramming with two factors. Nature.2008;454:646-650.
    [55]Nakamura M,Houghtling RA,MacArthur L,et al.Differences in cytokine geneexpression profile between acute and secondary injury in adult rat spinal cord.ExpNeurol,2003,184(1):313-325
    [56]Setoguchi T,Yone K,Matsuoka E,et al.Traumatic injury-induced BMP-7expressionin the adult rat spinal cord.Brain Res,2001,921:219-225
    [57]Nakashima K,Takizawa T,Ochiai W,et al.BMP2-mediated alteration in thedevelopment pathway of fetal mouse brain cells from neurogenesis toastrocytogenesis.Proc Natl Acad Sci USA,2001,98:5868-5873
    [58]Hsieh J,Aimone JB,Kaspar BK,et al.IGF-1instructs multipotent adult neuralprogenitor cells to become oligodendrocytes[J].J Cell Biol,2004,164(1):111-122
    [59]Chmielnicki E,Benrasis A,Economides AN,et al.A denovirally expressed nogginand brain-derived neurotrophic factor cooperate to induce new medium spinalneurons from resident progenitor cells in the adult striatal ventricular zone[J].JNeurosci,2004,24:2133-2142
    [60]Pineaul,Lacroix S.Proinflammatory cytokine synthesis in the injured mouse spinalcord:multiphasic expression pattern and identification of the cell types involved[J].JComp,2007,500(2):267-285
    [61]Belmadani A, Tran PB, Ren D,et al. Chemokines regulate the migration of neuralprogenitors to sites of neuroinflammation. The Journal of Neuroscience.2006;26:3182-3191.
    [62]Ko J,Yun CY,Lee JS,et al.MARP and ERK activation by9-cis-retinoic acid induceschemokine receptors CCR1and CCR2expression in human monocytic THP-1cells[J].Exp Mol Med,2007,39:129-138
    [63]Balenci L,Saoudi Y, Grunwald D,et al.IQGAP1regulates adult neural progenitorsin vivo and vascular endothelial growth factor-triggered neural progenitor migrationin vitro[J].J Neurosci
    [64]Fallon J,Reid S,Kinyamu R,et al.In vivo induction of massive proliferation directedmigration and differentiation of neural cells in the adult mammalian brain[J].ProcNatl Acad Sci,2000,97:14686-14691
    [65]Winner B,couilland-Despres S,Geyer M,et al.Dopan inergic lesion enhances growthfactor induced striatal neuroblast igration[J].J Neuropathol Exp Neurol,2008,67:105-116
    [66]Bovetts S,Bovolin P,Perrotean I,et al.Subventricular zone-derived neuroblastmigration to the olfactory bulb is modulated by matrix rem odeling[J].Eur JNeurosci,2007,25(7):2021-2033
    [67]Aguirre A,Rizvi TA,Ratner N,et al.Overexpression of the epidermal growth factorreceptor confers migratory properties to nonmigratory postnatal neuralprogenitors[J].J Neurosci,2005,25(48):11092-11106
    [68]Tsai PT,Ohab JJ,Kertesz N,et al.A critical role of erythropoietin receptor inneurogenesis and post-stroke[J].J Neurosci,2006,26(4):1269-1274
    [69]Sun Y, Nadal-Vicens M, Misono S, et al.Neurogenin promotes neurogenesis andinhibits glial differentiation by independent mechanisms [J].Cell,2001,104(3):365-376
    [70]Parras CM,Schuumans C,Scardigli R, et al.Divergent functions of the proneuralgenes Mashl and Ngn2in the specification of neuronal subtype identity[J].GenesDev,2002,16:324-338
    [71]Torii M, Matsuzaki F, Osumi N, et al. Transcription factors Mash-1and Prox-1delineate early steps in differentiation of neural stem cells in the developing centralnervous system. Development.1999;126:443-456.
    [72]Ohtsuka T, Sakamoto M, Guillemot F,et al. Roles of the basic helix-loop-helixgenes Hes1and Hes5in expansion of neural stem cells of the developing brain.Journal of Biological Chemistry.
    [73]Jarriault S,Brou C,Logeat F,et al.Signalling downstream of activated mammallianNotch.Nature,1995,377(6547):355-358
    [74]Basak O,Taylor V.Identification of self-replicating multipotent progenitors in theembryonic nervous system by high Notch activity and Hes5expression.Eur JNeurosci,2007,25(4):1006-1022
    [75]Beatus P,Lendahl U.Notch and neurogenesis.J Neurosci Res,1998,54:125-136
    [76]Zhang J, Wang B, Xiao Z, et al. Olfactory ensheathing cells promote proliferationand inhibit neuronal differentiation of neural progenitor cells through activation ofNotch signaling. Neuroscience.2008;153(2):406-143.
    [77]Matsumoto A, Onoyama I, Sunabori T, et al. Fbxw7–dependent degradation ofNotch is required for control of "stemness" and neuronal-glial differentiation inneural stem cells. J Biol Chem.2011;286(15):13754-13764.
    [78]Kleber M,Lee HY,Wurddak H,et al.Neural crest stem cell maintenance bycombinatorial Wnt and BMP signaling.J Cell Biol,2005,169(2):309-320
    [79]Chenn A,Walsh CA.Increased neuronal production,enlarged forebrains anddyoarchitectural distortions in beta-catenin overexpresing transgenic mice[J].CerebCortex,2003,13(6):599-606
    [80]Yin ZS,Zhang H.Wnt-3a protein promote neuronal differentiation of neural stemcells derived from adult mouse spinal cord.Neurol Res,2007,29(8):847-854
    [81]Muroyama Y,Kondoh H,Takada S.Wnt proteins promote neuronal differentiation inneural stem cell culture[J].Biochem Biophys Res Commun,2004,313(4):915-921
    [82]Shimizu T,Kagawa T,Inoue T,et al.Stabilized beta-catenin functions throughTCF/LEF proteins and the Notch/RBP-Jkappa complex to promote proliferation andsuppress differentiation of neural precursor cells.Mol Cell Biol,2008,28(24):7427-7441
    [83]Kasai M,Satoh K,Akiyama T.Wnt signaling regulates the sequential onset ofneurogenesis and gliogenesis via induction of BMPs[J].Genes Cells,2005,10(8):777-783
    [84]Hirsch C,Campano LM,Wohrle,et al.canonical Wnt signaling transiently stimulatesproliferation and enhances neurogenesis in neonatal neural progenitor cultures[J].Exp Cell Res,2007,313(3):572-587

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700