用户名: 密码: 验证码:
淫羊藿苷联用三七总皂苷对AD模型鼠学习记忆的影响及其作用机制探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的在前期研究工作中,根据中药复方益智健脑颗粒的组方,从其主要组成药物中筛选出治疗阿尔茨海默病(Alzheimer's disease,AD)的有效成分组合—淫羊藿苷(Icariin, ICA)与三七总皂苷(Panax Notoginseng Saponins, PNS),本次研究以ICA联用PNS对AD模型小鼠—P8系快速老化小鼠(senescence-accelerated prone mice8, SAMP8)进行干预,检测干预后SAMP8的行为学改变,并应用从蛋白质组学技术分析ICA联用PNS治疗AD的潜在作用靶点,探讨其防治AD的作用机制。
     方法将50只6月龄雄性SAMP8随机分为低剂量治疗组、中剂量治疗组、高剂量治疗组、模型组和西药对照组,每组10只;另设10只R1系抗快速老化小鼠(senescence accelerated resistant mouse1, SAMR1)为正常对照组。低、中、高剂量治疗组均以ICA+PNS灌胃(剂量依次为2.5+20mg/kg,5+40mg/kg,10+80mg/kg),西药对照组以多奈哌齐灌胃(剂量为1mg/kg),模型组和正常对照组以等剂量双蒸水灌胃。8周后,以Morris水迷宫对各组小鼠进行行为学测试,分析其学习记忆能力的变化;同时,从低、中、高剂量治疗组之中筛选出最佳剂量组,作为后续实验中的治疗组;行为学测试结束后,应用双向凝胶电泳技术分别分离治疗组和模型组SAMP8海马组织总蛋白,以胶体考马斯亮蓝染色,Image Scanner图像扫描仪及Image Master双向凝胶电泳软件对图像进行扫描分析,以模型组图像为参照对象,选取治疗组中部分差异蛋白质点进行基质辅助激光解吸电离飞行时间质谱分析,得到肽质量指纹图谱,经MSDB和NCBInr数据库查询,鉴定差异表达蛋白质;采用Western blot和逆转录-聚合酶链反应(Reverse transcription-Polymerase chain reaction, RT-PCR)技术对部分差异表达蛋白质进行验证,同时检测这些差异表达蛋白在正常对照组SAMR1海马组织中的表达水平。
     结果1.行为学测试结果显示,模型组小鼠的逃避潜伏期较正常对照组明显延长(P<0.05),且停留在原平台象限的时间和跨平台象限次数较正常对照组明显减少(P<0.05);与模型组小鼠相比,中剂量治疗组、高剂量治疗组及西药对照组小鼠的逃避潜伏期明显缩短(P<0.05),而停留在原平台象限的时间和跨平台象限次数明显增加(P<0.05);中剂量治疗组、高剂量治疗组与西药对照组小鼠之间的逃避潜伏期及停留在原平台象限的时间和跨平台象限次数均无明显差异(P>0.05),据此认为中剂量组为最佳剂量组。2.以模型组的双向凝胶电泳图谱为参照,发现治疗组与模型组存在23个差异点,其中12个在治疗组表达上调,11个表达下调。选取变化较为明显、边界较为清晰、无明显拖尾现象的差异蛋白质点进行鉴定:最终得到鉴定的有12个点,其中有7个在治疗组表达上调,5个表达下调。根据蛋白质数据库中提供的信息,发现这些差异表达蛋白治疗的AD作用机制涉及调节Ap代谢、抑制tau蛋白异常磷酸化、抗氧化应激、减轻脑内炎症反应、改善线粒体能量代谢障碍、抑制神经细胞凋亡等方面。3.差异蛋白验证结果:(1) Western blot验证结果:本次实验采用western blot技术检测flotillin-1和HMGB1在治疗组、模型组、西药对照组SAMP8及正常对照组SAMR1海马组织中的表达水平。结果显示:与模型组相比,flotillin-1和HMGB1在治疗组、西药对照组、正常对照组的表达明显下降(P<0.05),而二者在治疗组与西药对照组之间的表达水平无明显差异(P>0.05)。上述结果与蛋白质组学实验结果相符。(2)RT-PCR验证结果:本次实验同时采用RT-PCR技术检钡HMGB1和Ngb在治疗组、模型组、西药对照组SAMP8及正常对照组SAMR1海马组织中的表达水平。结果显示:HMGB1在治疗组、西药对照组及正常对照组的表达较模型组明显下降(P<0.05);Ngb在治疗组、西药对照组及正常对照组的表达较模型组明显增高(P<0.05);而二者在治疗组与西药对照组之间的表达水平均无明显差异(P>0.05)。上述结果与western blot的结果一致,亦与蛋白质组学实验的结果相符。
     结论1.ICA联用PNS能显著改善AD模型小鼠SAMP8的学习能力及记忆巩固、再现能力。2.ICA联用PNS可调节AD模型小鼠SAMP8海马组织的多种蛋白质表达,对AD的治疗是多靶点、多途径的。3.ICA联用PNS可能通过调节flotillin-1、HMGB1、Ngb等蛋白质的表达水平来发挥其治疗作用,而这些蛋白质可能是防治AD的潜在靶点蛋白。
OBJECTIVE To explore the effect of Icariin(ICA) combined with Panax notoginseng saponins (PNS), under the guideline of Kidney-reinforcen and Blood-activating therapy method, on the behavior of senescence-accelerated mice P8(SAMP8), which is considered as an generally accepted mouse model of Alzheimer's disease (AD), thus to elucidate the therapeutic effect of ICA combined with PNS on SAMP8and the practicability of this method in the prevention and treatment of AD; To probe the potential remedial protein targets of AD by analyzing the differential expression of hippocampus proteins in SAMP8with the intervention of ICA combined with PNS, thus to analyze the therapeutic mechanicsm of the relevant target proteins from the angle of Multi-target treatment strategies in complex disease.
     METHODS50six-month-old male SAMP8were randomly divided into3groups, which are the follows:combination group (n=30), model group (n=10) and medicine control group (n=10). Another10six-month-old male SAMR1were prepared as normal control group (n=10). Mice in combination group were individually ig administrated with ICA combined with PNS [(2.5+20),(5+40), and (10+80) mg/kg], Mice in medicine control group were treated with Donepezil HCL, and mice in model group and normal control group were administered intragastrically with the same dose of Double-distilled water. After8weeks, using Morris water maze for mice in each group to analyze their behavior to detect changes in learning and memory ability. After behavioral experiments, the total proteins of hippocampus tissue of SAMP8in treatment group (optimal dose group in behavioral experiments), model group and medicine control group were separated by two-dimensional gel electrophoresis respectively. The gels of the three groups were stained by Coomassie brilliant blue, scanned by ImageScanner and analyzed in PDQuest software. Taking the gel of model group as reference object, part of differential expression protein spots in treatment group and medicine control group were identified by peptide mass fingerprint based on the technology of matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS) and MSDB or NCBInr database searching. Using Western blot and Reverse transcription-Polymerase chain reaction (RT-PCR.) techniques to testify the expression differences of some identified protein spots. In the meanwhile, we also detected the expression levels of these proteins in the hippocampus tissue of SAMR1in mormal control group.
     RESULTS:1. In Morris water maze test, SAMP8in the model group had longer escape latency compared with SAMR1in the normal control group (P<0.05); For SAMP8in the model group, the stay time in the former platform quadrant and former platform crossing times were much less than SAMR1mice in the normal control group (P<0.05); With the intervention of ICA with PNS combined, we can significantly shorten the escape latency and increase the stay time in the former platform quadrant and former platform crossing times for SAMP8in the treatment group (P<0.05); There was no significant diffenrence between the combination group (ICA+PNS5+40mg/kg, ig) and the combination group (10+80mg/kg, ig)(P>0.05).2. Taking the2-DE map of model group as reference object, we compared the map of treatment group with it of model group to obtain the differentially expressed protein spots. We found that there were23diferentialy expressed protein spots in the treatment group, of which12proteins were up-regulated and11proteins were down-regulated; For identification, we selected12diferentialy expressed protein spots in the treatment group and finally identified7points were identified;15diferentialy expressed protein spots in the model group were selected and finally9protein points were identified. According to the information provided in the protein database, we made analysis of these proteins as potential remedial targets for its direct or indirect remedial effects in the treatment of AD and found that the therapeutic mechanism of these proteins in AD involved in regulating Aβ metabolism, regulating phosphorylation of tau protein, anti-oxidative stress, inhibiting neuroin-flammation, regulation of mitochondrial energy metabolism and decreasing the neuron apoptosis, etc.3. Validation of some differentially expressed proteins:(1) The results of western blot:we detected the expression levels of flotillin-1and HMGB1in western blot experiment, and found that the expression levels of flotillin-1and HMGB1significantly increased in SAMP8in the model group compared with SAMR1in the normal control group (P<0.05); both flotillin-1and HMGB1significantly decreased in SAMP8in treatment group and medicine control treatment group compared with SAMR1in model control group (P<0.05), which is in accordance with the results in the proteomic experiment.(2) The results of RT-PCR:we also detected HMGB1and Ngb in RT-PCR experiment, and found that the expression levels of HMGB1significantly increased in SAMP8in the model group compared with SAMR1in the normal control group(P<0.05), the results consistent with the research in the western blot experiment; the expression levels of Ngb significantly decreased in SAMP8in the model control group compared with SAMR1in the normal control group (P<0.05); and found that the expression levels of Ngb can be significantly enhanced with the intervention of ICA combined with PNS (P<0.05), which is consistent with the results in the proteomic experiment.
     CONCLUSIONS:1. The intervention of ICA combined with PNS can significantly improve the learning and memory ability as well as the ability of memory consolidation and reproduction in AD model mice SAMP8.2. Hippocampus tissue protein expression profiles of SAMP8can be regulated by ICA combined with PNS, showing which has multitarget mechanism of AD.3. ICA combined with PNS may have therapeutial effect on AD via regulating the protein expression such as flotillin-1, HMGB1and Ngb, which may be the target proteins against AD.
引文
[1]Perrin RJ, Fagan AM, Holtzman DM. Multimodal techniques for diagnosis and prognosis of Alzheimer's disease [J]. Nature,2009,461 (7266):916-922.
    [2]Ferri CP, Prince M, Brayne C, et al. Global prevalence of dementia:a Delphi consensus study [J]. Lancet,2005,366(9503):2112-2117.
    [3]Zhang ZX, Zahner GE P, Roman GC, et al. Dementia Subtypes in China: Prevalence in Beijing, Xi'an, Shanghai, and Chengdu [J]. Arch Neurol,2005,62(3): 447-453.
    [4]Alzheimer's Disease International. alz. co. uk/research/statistics [M]. html accessed on 2007-5-16.
    [5]Tian J. Dementia in Asian Context. In:The Cambridge Handbook of Age and Ageing, eds. Malcolm Johnson [J]. Cambridge University Press,2005,261-274.
    [6]Pimplikar SW. Reassessing the amyloid cascade hypothesis of Alzheimer's disease [J]. Int J Biochem Cell Biol,2009,41 (6):1261-1268.
    [7]Pratico D. Oxidative stress hypothesis in Alzheimer's disease:a reappraisal-[J]. Trends Pharmacol Sci,2008,29(12):609-615.
    [8]Rojo LE, Fermandez JA, Maccioni AA, et al. Neuroinflammation:Implicat-ions for the Pathogenesis and Molecular Diagnosis of Alzheimer's Disease [J]. Arch Med Res,2008,39(1):1-16.
    [9]Carlo B, Virginia ML, John QT. Tau-mediated neurodegeneration in Alzheimer's disease and related disorders[J]. Nature,2007,8 (9):663-672.
    [10]Elliot JM, Scott EC, Sylvua EC, et al. Cholinergic system during the progre-ssion of Alzheimer's disease:therapeutic implications. Expert Rev[J]. Neurother, 2008,8 (11):1703-1718.
    [11]Alizadeh BZ, Njajou OT, Millan MR, et al. HFE variants, APOE and Alzheimer's disease:Findings from the population-based Rotterdam study [J]. Neurobiol Aging,2009,30(2):330-332.
    [12]Palop JJ, Chin J, Mucke L. A network dysfunction perspective on neurode-genera tive diseases. Nature,2006,443 (19):768-773.
    [13]Castellani RJ, Zhu XW, Lee HG. Molecular Pathogenesis of Alzheimer Disease:Reductionist Versus Expansionist Approaches [J]. Int J Mol Sci,2009,10 (3):1386-1406.
    [14]Noorbakhsh F, Overal CM, Power C. Deciphering complex mechanisms in neuro-degenerative diseases:the advent of systems biology [J]. Trends Neurosci, 2009,32 (2):88-100.
    [15]Villoslada P, Steinman L, Baranzini SE. Systems Biology and Its Application to the Understanding of Neurological Diseases [J]. Ann Neurol,2009, 65(2):124-139.
    [16]孙治坤,陈生弟.阿尔茨海默病的治疗[J].上海交通大学学报医学版,2008,28(5):596-599.
    [17]Csermely P, Agoston V, Pongor S. The efficency of multi-target drugs:the network approach might help drug design [J]. Trends in Pharmaco-logical Science,2005,26(4):178-182.
    [18]Yuan R, Lin Y. Traditional Chinese medicine:an approach to scientific proof and clinical validation [J]. Pharmacol Ther,2000,86(2):191-198.
    [19]Wang M, Lamers RJ, Korthout HA, et al. Metabolomics in the context of systems biology:bridging traditional Chinese medicine and molecular pharmacology [J]. Phytother Res,2005,19(3):173-182.
    [20]Kitano H. A robustness-based approach to systems-oriented drug design [J]. Nature Rev Drug Discov,2007,6(3):202-210.
    [21]王治宽,王发渭.从气虚血瘀论治老年病[J].中国医药学报,2004,19(6):359—361.
    [22]张勉之.应用补肾活血法延缓衰老的研究与探讨[M].中国中医药学会年会论文专辑,1999,264-268.
    [23]吴岳,张婷.董克礼教授运用补肾活血法治疗中老年疾病经验介绍[J].中医药导报,2007,13(2):23-24.
    [24]张婷,董克礼.益智健脑颗粒对阿尔茨海默病患者脑脊液p淀粉样蛋白含量的影响[J].中国老年学杂志,2007,27(11):1080-1081.
    [25]杨聘,董克礼,曾望远.益智健脑颗粒对快速老化鼠SAMP8学习记忆的改善作用[J].中国行为医学科学,2005,14(7):601-602.
    [26]杨聘,董克礼,曾望远.益智健脑颗粒对快速老化小鼠SAMP8行为学及神经元凋亡的影响[J].中南大学学报(医学版),2006,31(1):56-59.
    [27]董克礼,宋炜熙.益智健脑颗粒对老年性痴呆大鼠学习记忆和细胞因子的影响[J].中国现代医学杂志,2000,10(3):45-48.
    [28]王慧玲,董克礼,李广诚等.益智健脑颗粒对快速老化小鼠SAMP8海马Pin1和HMGB1 mRNA表达的影响[J].中南大学学报(医学版),2009,34(1):63-66.
    [29]龚翠兰,董克礼.益智健脑颗粒对AD大鼠学习记忆及海马CA1区ChAT和TrkA表达的影响[J].湖南中医杂志,2009,25(3):109-110.
    [30]刘佩,董克礼.益智健脑颗粒对阿尔茨海默病患者外周血清中IL-1β与TNF-α表达的影响[J].湖南中医杂志,2010,26(5):1-3.
    [31]张婷,董克礼,李广诚.益智健脑颗粒水提浓缩液对P8系快速老化小鼠内嗅区组织差异蛋白质表达的影响[J].中国中西医结合杂志,2010,30(5):504-508.
    [32]Ting Zhang, Zhanwei Zhang, Keli Dong, et al. Yizhijiannao Granule and a combination of its effective monomers, icariin and Panax notoginseng saponins, inhibit early PC 12 cell apoptosis induced by beta-amyloid (25-35) [J]. Neural Regen Res,2012,7 (24):1845-1850.
    [33]成绍武.中医对动脉粥样硬化的认识及防治研究进展[J].湖南中医药导报,2003,9(7):66-68.
    [34]郭宝林,肖培根.中药淫羊藿主要种类评述[J].中国中药杂志,2003,28(4):303-307.
    [35]李梨,周岐新,杨俊,等.淫羊藿苷对脑缺血再灌损伤小鼠的保护作用[J].四川生理科学杂志,2004,26(4):173.
    [36]韩冰,杨峻山.淫羊藿药理作用概况[J].中草药,2000,31(11):873-875.
    [37]Wang Z, Zhang X, Wang H, et al. Neuroprotective effects of icaritin against beta amyloid-induced neurotoxicity in primary cultured rat neuronal cells via estrogen-dependent pathway [J]. Neuroscience,2007,145:911-922.
    [38]Luo Y, Nie J, Gong QH, et al. Protective effects of icariin against learning and memory deficits induced by aluminium in rats [J]. Clin Exp Pharmacol Physiol, 2007,34:792-795.
    [39]楚晋.淫羊藿黄酮及淫羊藿苷对APP转基因痴呆小鼠模型的药效学影响及作用机制研究[D].北京:首都医科大学,2007.
    [40]Urano T, Tohda C. Icariin improves memory impairment in Alzheimer's disease model mice (5xFAD) and attenuates amyloid β-induced neurite atrophy [J]. Phytother Res,2010,24(11):1658-1663.
    [41]Zeng KW, Ko H, Yang HO, et al. Icariin attenuates β-amyloid-induced neurotoxicity by inhibition of tau protein hyperphosphorylation in PC12 cells [J]. Neuropharmacology,2010,59(6):542-550.
    [42]He XL, Zhou WQ, Bi MG, et al. Neuroprotective effects of icariin on memory impairment and neurochemical deficits in senescence-accelerated mouse prone 8 (SAMP8) mice [J]. Brain Res,2010,2 (1334):73-83.
    [43]甘雨,徐惠波,孙晓波.三七总皂苷的药理作用研究进展[J].时珍国医国药,2007,18(5):1251.
    [44]Zhou Y, Song H, Ning Z, et al. Effects of Panax notoginseng saponins on long-term potentiation in the CA1 region of the rat hippocampus [J]. Yao Xue Xue Bao,2007,42(11):1137-1141.
    [45]Wang YH, Du GH. Ginsenoside Rgl inhibits beta-secretase activity in vitro and protects against Abeta-induced cytotoxicity in PC 12 cells [J]. J Asian Nat Prod Res,2009,11 (7):604-612.
    [46]Zhong ZG, Wu DP, Wang JS, et al. Inhibitive effects of Panax notoginseng saponins on expression of Abeta(1-40), Abeta(1-42) protein in SAMP8's brain [J]. Zhong Yao Cai,2009,32(1):82-85.
    [47]LV L, Zhong ZG, Wu DP, et al. Effect of Panax notoginseng saponins on syp and tau gene expression in brain of senescence accelerated mouse [J]. Zhongguo Zhong Yao Za Zhi,2009,34(10):1261-1263.
    [48]Wan JB, Lee SM, Wang JD, et al. Panax notoginseng reduces atherosclerotic lesions in ApoE-deficient mice and inhibits TNF-alpha-induced endothelial adhesion molecule expression and monocyte adhesion [J]. J Aqric Food Chem,2009,57 (15): 6692-6697.
    [49]Zhong ZG, LV L, Wu DP, et al. Effect of Panax notoginseng saponins on APP gene transcription in the brain tissue of SAMP8 [J]. Zhong Yao Cai,2011,34(1): 73-80.
    [50]Chen S, Liu J, Liu X, et al. Panax notoginseng saponins inhibit ischemia-induced apoptosis by activating PI3K/Akt pathway in cardiomyocytes [J]. J Ethnopharmacol,2011,37 (1):263-270.
    [51]邹节明,孟杰,颜正华,等.中药复方有效成分淫羊藿苷的药代动力学研究[J].中草药,2002,33(1):55-58.
    [52]Woodruff-pak DS. Animal Models of Alzheimer's disease:Theraputic Implications [J]. J Alzheimer's Dis,2008,15:507-521.
    [53]Takeda T. Senescence accelerated mouse (SAM):a biogerontological resource in aging research [J]. Neurobiol Aging,1999,20:105-110.
    [54]MiyamotoM. Characteristics of age-related behavioral changes in senescence-accelerated mouse SAMP8 and SAMP10 [J]. Exp Gerontol,1997,32(1-2):139-148.
    [55]Tomobe K, Nomura Y. Neurochemistry, neuropathology, and heredity in SAMP8:a mouse model of senescence [J]. Exp Gerontol,2009,34 (4):660-669.
    [56]NomuraY, OkumaY. Age-elated defects in life span and learning ability in SAMP8 mice [J]. Neurobiol Aging,1999,20 (2):111-115.
    [57]Morris RGM. Spatial localizationg does not require the presence of local cues [J].1981,12:239-260.
    [58]韩太真,吴馥梅.学习与记忆的神经生物学[M].北京医科大学中国协和医科大学联合出版社,1998:61.
    [59]叶翠飞,张丽,艾厚喜,等.两种水迷宫实验对拟痴呆模型动物学习记忆功能测试的比较[J].中国行为医学科学,2004,13(3):252-253.
    [60]项平,陈士文,高国全,等.老年学习记忆减退大鼠模型的研究[J].蚌埠医学院学报,2000,25(4):235-236.
    [61]D'Hooge R, De Deyn PP. Applications of the Morris water maze in the study of learning and Memory [J]. Brain Res Brain Res Rev,2001,36(1):60-90.
    [62]Patil SS, Sunyer B, Hoger H, et al. Evaluation of spatial memory of C57BL/6J and CD1 mice in the Barnes maze, the Multiple T-maze and in the Morris water maze [J]. Behav Brain Res,2009,198 (1):58-68.
    [63]Berkelman TT, Stenstedt D.2D Electrophoresis using immobilized Pgradients Principles and Methods [M].1998:Amersham Pharmacia Biotech Inc.
    [64]Li WH, Miao XH, Qi ZT, et al. Proteomic analysis of differently expressed proteins in human hepatocellular carcinoma cell lines HepG2 with transfecting hepatitis B virus X gene [J]. Chin Med J (Engl),2009,122 (1):15-23.
    [65]Turroni S, Vitali B, Candela M, et al. Antibiotics and probiotics in chronic pouchitis:a comparative proteomic approach [J]. World J Gastroenterol,2010,16-(1):30-41.
    [66]Gemer C, Frohwein U, Gotzrnann J, et al.The Fas-induced apoptosis analyzed by high throughput proteome analysis[J]. J Biol Chem,2000,275 (50): 39018-39026.
    [67]Yeatman TJ. The future of cancer management translating the genome, transcfip Rome, and proteome [J]. Ann surg oncol,2003,10(1):7-14.
    [68]Odle TG. Alzheimer's disease and other dementias [J]. Radiol Techol,2003, 75(2):111-135.
    [69]Hideko KJ, Bernd H, Yoshiko OI. Ultrastructural localization of flotillin-1 to cholesterol-rich membrane microdomains rafts in rat brain tissue [J]. Brain Res, 2003,965:83-90.
    [70]Girardot N, Allinquant B, Langui D, et al. Accumulation of flotillin-1 in tangle-bearing neurones of Alzheimer's disease [J]. Neuropathology and Applied Neurobiology,2003,29:451-461.
    [71]Hideko K, Cynthia AL, Haruyasu Y. Localization of flotillins in human brain and their accumulation with the progression of Alzheimer's disease pathology [J]. Neuroscience Letters,2000,290:93-96.
    [72]Schonberger ST, Edgar PF, Kydd R, et al. Proteomic analysis of the brain in Alzheimer's disease:Molecular phenotype of a complex disease process [J]. Proteomics,2001,1 (12):1519-1528.
    [73]杨国锋,王鲁宁,纪建国,等.Tau蛋白病的蛋白质研究[J].中华内科杂志,2005,44(5):374-377.
    [74]Gong CX, Wegiel J, Lidsky T, et al. Regulation of phosphorylation ofNeuronalmicrotubule-associated proteins MAPlb and MAP2 by protein phosphatase 22A and 22B in rat brain [J]. Brain Res,2000,853 (2):299-309.
    [75]Daly NL, Hoffmann R, Otvos LJ, et al. Role of phosphorylation in theconformation oftpeptides implicated in Alzheimer's disease [J]. Biochemistry, 2000,39 (30):903-924.
    [76]AhlijanianMK, Barrezueta NX, Williams RD, et al. Hyperphosphory-lated tau and neurofilament and cytoskeletal disrup tions in mice overexpressing human p25, anactivator of cdk5 [J]. Proc Natl Acad Sci USA,2000,97 (6):291-298.
    [77]Lu PJ, Wulf G, Zhou XZ, et al. The prolyl isomerase Pinl restores the function of Alzheimer-associated phosphorylated tau protein [J]. Nature,1999,399: 784-788.
    [78]JEONG WP,ARK SJ, CHANG TS, et al. Molecular mechanism of the reduction of cysteine sulfinic acid of peroxiredoxin to cysteine by mammalian sulfiredoxin [J]. Journal of Biological Chemistry,2006,281 (20):14400-14407.
    [79]Sun Y, Jin K, Mao XO, et al. Neuroglobin is up-regulated by and protects neurons from hypoxic-ischemic injury [J]. Proc Natl Acad Sci USA,2001,98:15306-15311.
    [80]Greenberg DA, Jin K, Khan AA. Neuroglobin:an endogenous neuropro-tectant [J]. Curr Opin Pharmacol,2008,8(1):20-24.
    [81]Yu Z, Fan X, Lo EH, et al. Neuroprotective roles and mechanisms of neuroglobin [J]. Neurol Res,2009,31 (2):122-127.
    [82]Scaffidi P, Misteli T, Bianchi ME. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation [J]. Nature,2002,418(6894):191-195.
    [83]Erlandsson Harris H, Andersson U. The nuclear protein HMGB1 as a proinflammatory mediator [J]. Eur J Immunol,2004,34 (6):1503-1512.
    [84]Voll RE, Urbonaviciute V, Herrmann M. et al. High mobility group box 1 in the pathogenesis of inflammatory and autoimmune diseases [J]. Isr Med Assoc J,2008,10(1):26-28.
    [85]Andersson U, Wang H, Palmblad K, et al. High mobility group 1 protein (HMGB1) stimulates proinflammatory cytokine synthesis inhuman monocytes [J]. Exp Med,2000,192 (4):565-570.
    [86]Park JS, Arcaroli J, Yum HK, et al. Activation of gene expression inhuman neutrophils by high mobility group box 1 protein [J]. Am J Physiol Cell Physiol, 2003,284(4):C870-879.
    [87]MessmerD, Yang H, Telusma G, et al. High mobility group box proteinl:an endogenous signal for dendritic cell maturation and the polarization [J]. J Immunol, 2004,173(1):307-313.
    [88]Pasinetti GM. Inflammatory mechanisms in neurodegeneration and Alzheimer's disease:the role of the complement system [J]. Neurobiol Aging,1996, 17(5):707-716.
    [89]Moreira PI, Cardoso SM, Santos MS, et al. The key role of mitochondria in Alzheimer's disease [J]. Alzheimers Dis,2006,9 (2):101-110.
    [90]Moreira PI, Santos MS, Oliveira CR. Alzheimer's disease:a lesson from mitochondrial dysfunction [J]. Antioxid Redox Signal,2007,9 (10):1621-1630.
    [91]Moreira PI, Carvalho C, Zhu X, et al. Mitochondrial dysfunction is a trigger of Alzheimer's disease pathophysiology [J]. Biochim Biophys Acta,2010,1802 (1): 2-10.
    [92]Choe LH, Dut MJ, Relkin N, et al. Studies of potential cerebrospinal fluid, molecular markers for Alzheimer's disease [J]. Electrophoresis,2002,23-(14):2247-2251.
    [93]Bubber P, Haroutunian V, Fisch G, et al. Mitochondrial abnormalities in Alzheimer brain:mechanistic implications [J]. Ann Neurol,2005,57(5):695-703.
    [94]Rinne JO, Nagren K. Positron emission tomography in at risk patients and in the progression of mild cognitive impairment to Alzheimer's disease [J]. J Alzheimer's Dis,2010,19(1):291-300.
    [95]Askanas V, McFerrin J, Baque S, et al. Transfer of p-amyloid precursor protein gene using adenovirus vector causes mitochondrial abnormalities in cultured normal human muscle [J]. Proc Natl Acad Sci USA,1996,93:1314-1319.
    [96]Casley CS, Canevari L, Land J M, et al. β-amyloid inhibits integrated mitochondrial respiration and key enzyme activities [J]. J Neurochem,2002,80:91-100.
    [97]Nagy Z. The dysregulation of the cell cycle and the diagnosis of Alzheimer's disease [J]. Biochim Biophys Acta,2007,1772 (4):402-408.
    [98]Yang Y, Varvel NH, Lamb BT, et al. Ectopic Cell Cycle Events LinkHuman Alzheimer's Disease and Amyloid Precursor Protein TransgenicMouseModels [J]. J Neurosci,2006,26(3):775-784.
    [99]Never RL, McPhie DL. Dysfunction of amyloid precursor protein signaling in neurons leads to DNA synthesis and apoptosis [J]. Biochim Biophys Acta,2007, 1772(4):430-437.
    [100]Calissano P, Matrone C, AmadoroG. Apoptosis and in vitro Alzheimer disease neuronal models [J]. Commun Integr Bio,2009,2 (2):163-169.
    [101]Gerke V, Moss SE. Annexins and membrane dynamics [J]. Biochim Biophys Acta,1997,1357(2):129-154.
    [102]Hawkins TE, Das D, Young B, et al. DT40 cells lacking the Ca2+binding protein annexin 5 are resistant to Ca2+ dependent apoptosis [J]. PNAS,2002,99(12): 8054-8059.
    [103]Monceaua V, Belikovaa Y, Kratassiouka G, et al. Externalization of endogenous annexin A5 participates in apoptosis of rat cardiomyocytes [J]. Cardiovascular Research,2004,64(3):496-506.
    [104]Shoshan-Barmatz V, Keinan N, Zaid H. Uncovering the role of VDAC in the regulation of cell life and death [J]. J Bioenerg Biomembr,2008,40 (3): 183-191.
    [105]Cheng EH, Sheiko TV, Fisher JK, et al. VDAC2 inhibits BAK activation and mitochondrial apoptosis [J]. Science,2003,301:513-517.
    [106]Lafont F, Verkade P, Galli T,et al.Raft association of SNAP receptors acting in apical trafficking In Madin-Darby canine kidney cells [J]. Proc Natl Acad Sci USA,1999,96:3734-3738.
    [107]Simons K, Ikonen E. Functional rafts in cell membranes [J]. Nature,1997, 387:569-572.
    [108]TAVERNARAKIS N, DRISEOLL M, KYPRIDES NC. The SPFH domain: implicated in regulating targeted protein turnover in stomatins and other membrane-associated proteins [J]. Trends Biochem Sci,1999,24(3):496-506.
    [109]Hideko KJ, Bernd H, Yoshiko OI. Ultrastructural localization of flotillin-1 to cholesterol-rich membrane microdomains rafts in rat brain tissue [J]. Brain Res, 2003,965:83-90.
    [110]Girardot N, Allinquant B, Langui D, et al. Accumulation of flotillin-1 in tangle-bearing neurones of Alzheimer's disease [J]. Neuropathology and Applied Neurobiology,2003,29:451-461.
    [111]Ehehalt R, Keller P, Haass C, et al. Amyloidogenic processing of the Alzheimer β-amyloid precursor protein depends on lipid rafts [J]. Cell Biol,2003, 160:113-123.
    [112]Hideko K, Cynthia AL, Haruyasu Y. Localization of flotillins in human brain and their accumulation with the progression of Alzheimer's disease pathology [J]. Neuroscience Letters,2000,290:93-96.
    [113]Girardot N, Alinquant B, Duyckaerts C. Lipid rafts, flotillin-1 and Alzheimer disease [J]. Jsoc Biol,2003,197 (3):223-229.
    [114]Chen TY, Liu PH, Ruan CT, et al. The intracellular domain of amyloid precursor protein interacts with flotillin-1, a lipid raft protein [J]. Biochem Biophys Res Commun,2006,342 (1):266-272.
    [115]Hattori C, Asai M, Onishi H, et al. BACE1 interacts with lipid raft proteins[J]. Neurosci Res,2006,84(4):912-917.
    [116]Basu R.Man CD, Campioni M, et al. Effects of age and sex on postprandial glucose metabolism:differences in glucose turnover, insulin secretion, insulin action, and hepatic insulin ext raction [J]. Diabetes,2006,55:2001-2014.
    [117]Kroner Z. The relationship between Alzheimer's disease and diabetes:Type 3 diabetes? [J]. Altern Med Rev,2009,14(4):373-379.
    [118]Jiang M, Ding Y, Su Y, et al. Arginase-flotillin interaction brings arginase to red blood cell membrane [J]. FEBS Lett,2006,580:6561-6564.
    [119]Johansson E, Jonson I, Bosaeus M. Identification of flotillin-1 as an interacting protein for antisecretory factor [J]. Regul Pept,2008,146:303-309.
    [120]Takata K, Kitamura Y, Tsuchiva D, et al. High mobility group box protein-1 inhibits microglial Aβ clearance and enhances Aβ neurotoxicity [J]. Neurosic Res,2004,78 (6):880-891.
    [121]Takata K, Kitamura Y, Kakimura J, et al. Role of high mobility group box protein-1 (HMGB1) in amyloid-beta homeo stasis [J]. Biophys RES Commun, 2003,301 (3):669-703.
    [122]Kitamura Y, Takata k, Taniguchi T. Stress proteins and regulation of microglial amyloid-beta phagocytosis [J]. Nippon Yakurigaku Zasshi,2004,124(6): 407-413.
    [123]McGeer EG, McGeer PL. The importance of inflammatory mechanisms in Alzheimer's disease [J]. Exp Gerontol,1998, (33):371-378.
    [124]Federico L. Increased plasma levels of interleukin-1, interleukin-6 and alpha-1-antichymotrypsin in patients with Alzheimer's disease:peripheral inflamma-tion or signals from the brain? [J]. Neuroimmunol,2000,103 (1):97-102.
    [125]Andersson U, Wang H, Palmblad K, et al. High mobility group 1 protein (HMGB1) stimulates pro in flammatory cytokine synthesis inhuman monocytes [J]. J Exp Med,2000,192 (4):565-570.
    [126]Park JS, Arcaroli J, Yum HK, et al. Activation of gene expression inhuman neutrophils by high mobility group box 1 protein [J]. Am J Physiol Cell Physiol, 2003,284(4):C870-879.
    [127]MessmerD, Yang H, Telusma G, et al. High mobility group box protein:an endogenous signal for dendritic cell maturation and the polarization [J]. J Immunol, 2004,173(1):307-313.
    [128]Alvarez XA, Franco A, Fernandez-Novoa L, et al. Blood levels of histamine, IL-1 beta, and TNF-alpha in patients with mild to moderate Alzheimer disease [J]. Mol Chem Neuropathol,1996,29(2-3):237-252.
    [129]Pasinetti GM. Inflammatory mechanisms in neurodegeneration and Alzheimer's disease:the role of the complement system [J]. Neurobiol Aging,1996, (5):707-716.
    [130]Smith MA. Oxidative stress in Alzheimer's disease [J]. Biochim Biophys Acta,2000,1502:139-144.
    [131]Nunomura A, Castellani RJ, Zhu XW. et al. Involement of oxidative stress in Alzheimer Disease [J]. J Neuropathol Exp Neurol,2006,65 (7):631-641.
    [132]Querfurth HW, LaFerla FM. Alzheimer's disease [J]. N Engl J Med,2010, 362(4):329-344.
    [133]Ansari MA, Scheff SW. Oxidative stress in the progression of Alzheimer disease in the frontal cortex [J]. J Neuropathol Exp Neurol,2010,69 (2):155-167.
    [134]Burmester T, Weich B, Reinhardt S, et al. A vertebrate globin expressed in the brain [J]. Nature,2000,407 (6803):520-523.
    [135]Pesce A, Dewilde S.Nardini M, et al. The human brain hexacoordinated neuro-globin three-dimensional structure [J]. Micron,2004,35 (1-2):63-65.
    [136]Reuss S, Saaler-Reinhardt S, Burmester T, et al. Expression analysis of neuroglobin mRNA in rodent tissues [J]. Neuroscience,2002,115:645-656.
    [137]邓美玉,张成岗,李林,等.用免疫组化方法检测脑红蛋白在大鼠中枢神经系统的分布[J].中国组织化学与细胞化学杂志,2003,11(3):271-274.
    [138]邓美玉,张成岗,王航雁,等.脑红蛋白mRNA在大鼠脑内的原位杂交定位[J].解剖学报,2003,34:85-89.
    [139]秦豪杰,张录顺,武娜,等.脑红蛋白在人体组织细胞的定位分布及意义[J].四川大学学报(医学版),2008,39(4):609-611.
    [140]Sun Y, Jin K, Mao XO, et al.Neuroglobin is up-regulated by and protects neurons from hypoxic-ischemic injury [J]. Proc NatlAcad Sci USA,2001,98:15306-15311.
    [141]Hankeln T, Ebner B, FuchsC, et al. Neuroglobin and cytoglobin in search of their role in the vertebrate globin family [J]. J Inorg Biochem,2005,99(1): 110-119.
    [142]Wakasugi K, Nakano T, Morishima I. Association of human neuroglobin with cystatin C, a cysteine proteinase inhibitor [J]. Biochemistry,2004,43 (18):5119-5125.
    [143]Li RC, Pouranfar F, Lee SK, et al. Neuroglobin protects PC12 cells against beta amyloid induced cell injury [J]. Neurobiol Aging,2008,29 (12):1815-1822.
    [144]Adil AK, Xiao OM, Surita B, et al. Neuroglobin attenuates (3-amyloid neurotoxicity in vitro and transgenic Alzheimer phenotype in vivo [J]. Proc Natl Acad Sci USA,2007,104(48):19114-19119.
    [1]Cummings JL, Cole G. Alzheimer disease [J]. Jama-Journal of the American Medical Association,2002,287(18):2335-2338.
    [2]Anderson RN, Smith BL. Deaths:leading causes for 2001 [J]. Natl Vital Stat Rep,2003,52 (9):81-85.
    [3]王华丽,于欣.中国阿尔茨海默病的流行病学现状[J].中华全科医师杂志,2006,5(6):358-360.
    [4]Gandy S. The role of cerebral amyloid beta accumulation in common forms of Alzheimer disease [J]. Journal of Clinical Investigation,2005,115(5):1121-1129.
    [5]Glenner GG, Wong CW. Alzheimer's disease and Down's syndrome:sharing of a Unique cerebrovascular amyloid fibril protein [J]. Biochem Biophys Res Commun,1984,122(3):1131-1135.
    [6]Glenner GG, Wong CW. Alzheimer's disease:initial report of the purification and Characterization of a novel cerebrovascular amyloid protein [J]. Biochem Biophys Res Commun,1984,120:885-890.
    [7]Masters CL, Simms G, Weinman NA, et al. Amyloid plaque core protein in Alzheimer disease and Down syndrome [J]. Proc Natl Acad Sci USA,1985,82:4245-4249.
    [8]Yan R, Bienkowski MJ, Shuck ME, et al. Membraneanchored aspartyl protease with Alzheimer's disease beta-secretase activity [J]. Nature,1999,402 (6761):533-537.
    [9]Lambert MP, Barlow AK, Chromy BA, et al. Diffusible, nonfibrillar ligands derived from Aβ1-42 are potent central nervous system neurotoxins [J]. Proc Natl Acad Sci USA,1998,95(11):6448-6453.
    [10]郁向静,何俊民.p-淀粉样蛋白在阿尔茨海默病中的病因学作用[J].临床和实验医学杂志,2007,6(2):147-148.
    [11]Duyckaerts C, Delatour B, Potier MC. Classification and basic pathology of Alzheimer disease [J]. Acta Neuropathol,2009,118(1):5-36.
    [12]Funderburk SF, Marcellino BK, Yue Z. Cell "self-eating" (autophagy) mechanicsm in Alzheimer's disease [J]. Mt Sinai J Med,2010,77(1):59-68.
    [13]He C, Levine B. The Beclin 1 interactome [J]. Curr Opin Cell Biol,2010,22 (2):140-149.
    [14]Pickford F, Masliah E, Britschgi M, et al. The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid beta accumulation in mice [J]. J Clin Invest,2008,118 (6):2190-2199.
    [15]Shibata M, Yamada S, Kumar SR, et al. Clearance of Alzheimer's amyloid1-4o peptide from brain by LDL receptor-related protein-1 at the blood-brain barrier [J]. J Clin Invest,2000,106 (12):1489-1499.
    [16]Cirrito JR, Deane R, Fagan AM, et al. P-glycoprotein deficiency at the blood-brain barrier increases amyloid-beta deposition in an Alzheimer disease mouse model [J]. J Clin Invest,2005,115 (11):3285-3290.
    [17]Deane R, Du Yan S, Submamaryan RK, et al. RAGE mediates amyloid-beta peptide transport across the blood-brain barrier and accumulation in brain [J].Nat Med,2003,9(7):907-913.
    [18]Alvira-Botero X, Cairo EM. Clearance of Amyloid-β Peptide Across the Choroid Plexus in Alzheimer's Disease [J]. Curr Aging Sci,2010,3 (3):219-229.
    [19]Fisher Y. T cells specifically targeted to amyloid plaques enhance plaque clearance in a mouse model of Alzheimer's disease [J].P LoS One,2010,5(5): 10830.
    [20]Walsh DM, Selkoe DJ. A beta oligomers—a decade of discovery [J]. J Neurochem,2007,101 (5):1172-1184.
    [21]Gearing M, Tigges J, Mori H, et al. A beta40 is a major form of beta-amyloid in nonhuman primates [J]. Neurobiol Aging,1996,17(6):903-908.
    [22]Selkoe DJ, Yamazaki T, Citron M, et al. The role of APP processing and trafficking pathways in the formation of amyloid beta-protein [J]. Ann N Y Acad Sci, 1996,777:57-64.
    [23]Walsh DM, Tseng BP, Rydel RE, et al. The oligomerization of amyloid beta-protein begins intracellularly in cells derived from human brain [J]. Biochemistry,2000,39(35):10831-10839.
    [24]Cuello AC. Intracellular and extracellular Abeta, a tale of two neuropathologies [J]. Brain Pathol,2005,15 (1):66-71.
    [25]Pleckaityte M. Alzheimer's disease:a molecular mechanism, new hypotheses, and therapeutic strategies [J]. Medicina (Kaunas),2010,46 (1):70-76.
    [26]Smith DG, Cappai R, Barnham KJ. The redox chemistry of the Alzheimer's disease amyloid beta peptide [J]. Biochim Biophys Acta,2007,1768(8):1976-1990.
    [27]Bitan G, Kirkitadze MD, Lomakin A, et al. Amyloid beta-protein (Abeta) assembly:Abeta43 is more frequent than Abeta40 in amyloid plaque cores from Alzheimer disease brains [J]. J Neurochem,2009,110 (2):697-706.
    [28]Sarsoza F, Saing T, Kayed R, et al. A fibril-specific, conformation-dependent antibody recognizes a subset of Abeta plaques in Alzheimer disease, Down syndrome and Tg2576 transgenic mouse brain [J]. Acta Neuropathol,2009,118(4): 505-517.
    [29]Hartig W, Kacza J, Paulke BR, et al. In vivo labelling of hippocampal beta-amyloid in triple-transgenic mice with a fluorescent acetylcholinesterase inhibitor released from nanoparticles [J]. Eur J Neurosci,2010,31 (1):99-109.
    [30]Portelius E, Bogdanovic N, Gustavsson MK, et al. Mass spectrometric characterization of brain amyloid beta isoform signatures in familial and sporadic Alzheimer's disease [J]. Acta Neuropathol,2010,120(2):185-193.
    [31]Van Helmond Z, Miners JS, Kehoe PG, et al. Higher soluble amyloid beta concentration in frontal cortex of young adults than in normal elderly or Alzheimer's disease [J]. Brain Pathol,2010,20(4):787-793.
    [32]Dickson TC, V JC. The morphological phenotype of beta-amyloid plaques and associated neuritic changes in Alzheimer's disease [J]. Neuroscience,2001,105 (1):99-107.
    [33]Thal DR, Capetillo-Zarate E, Del Tredici K, et al. The development of amyloid beta protein deposits in the aged brain [J]. Sci Aging Knowledge Environ, 2006,(6):rel.
    [34]Busciglio J, Lorenzo A, Y BA. Methodological variables in the assessment of beta amyloid neurotoxicity [J].Neurobiol Aging,1992,13(5):609-612.
    [35]Katzman R. Clinical, pathological, and neurochemical changes in dementia: a subgroup with preserved mental status and numerous neocortical plaques [J]. Ann Neurol,1988,23 (2):138-144.
    [36]Terry RD. Neuropathological changes in Alzheimer disease [J]. Prog Brain Res,1994,101:383-390.
    [37]Lambert MP, Barlow AK, Chromy BA, et al. Diffusible, nonfibrillar ligands derived from Abeta1-42 are potent central nervous system neurotoxins [J]. Proc Natl Acad Sci USA,1998,95 (11):6448-6453.
    [38]Dodart JC, Bales KR, Gannon KS, et al. Immunization reverses memory deficits without reducing brain Abeta burden in Alzheimer's disease model [J]. Nat Neurosci,2002,5(5):452-457.
    [39]Oddo S, Vasilevko V, Caccamo A, et al. Reduction of soluble Abeta and tau, but not soluble Abeta alone, ameliorates cognitive decline in transgenic mice with plaques and tangles [J]. J Biol Chem,2006,281 (51):39413-39423.
    [40]Lesne S, Koh MT, Kotilinek L, et al. A specific amyloid-beta protein assembly in the brain impairs memory [J]. Nature,2006,440 (7082):352-357.
    [41]Xia W. Brain amyloid β protein and memory disruption in Alzheimer's disease [J]. Neuropsychiatr Dis Treat,2010,6:605-611.
    [42]Walsh DM, S DJ. Oligomers on the brain:the emerging role of soluble protein aggregates in neurodegeneration [J]. Protein Pept Lett,2004,11 (3):213-228.
    [43]Townsend M, Shankar GM, Mehta T, et al. Effects of secreted oligomers of amyloid beta-protein on hippocampal synaptic plasticity:a potent role for trimers [J]. J Physiol,2006,572 (2):477-492.
    [44]Selkoe DJ. Soluble oligomers of the amyloid beta-protein impair synaptic plasticity and behavior [J]. Behav Brain Res,2008,192 (1):106-113.
    [45]Klyubin I, Betts V, Welzel AT, et al. Amyloid beta protein dimer-containing human CSF disrupts synaptic plasticity:prevention by systemic passive immunization [J]. J Neurosci,2008,28 (16):4231-4237.
    [46]Ono K, Condron MM, T DB. Structure-neurotoxicity relationships of amyloid beta-protein oligomers [J]. Proc Natl Acad Sci USA,2009,106(35):14745-14750.
    [47]孔繁军,韩晓涛,张茁,等.p-淀粉样蛋白与阿尔茨海默病神经元退变的研究现状[J].神经疾病与精神卫生,2007,7(6):459-460.
    [48]Cirrito JR, May PC, O'Dell MA, et al. In vivo assessment of brain interstitial fluid with microdialysis reveals plaque-associated changes in amyloid-beta metabolism and half-life [J]. J Neurosci,2003,23 (26):8844-8853.
    [49]Yankner BA, Duffy LK, Kirschner DA. Neurotrophic and neurotoxic effects of amyloid beta protein:reversal by tachykinin neuropeptides [J]. Science,1990,250 (4978):279-282.
    [50]Plant LD, Boyle JP, Smith IF, et al. The production of amyloid beta peptide is a critical requirement for the viability of central neurons [J]. J Neurosci,2003, 23(13):5531-5535.
    [51]Lopez-Toledano MA, Shelanski ML. Neurogenic effect of beta-amyloid peptide in the development of neural stem cells [J]. J Neurosci,2004,24(23):5439-5444.
    [52]Puzzo D, Privitera L, Leznik E, et al. Picomolar amyloid-beta positively modulates synaptic plasticity and memory in hippocampus [J]. J Neurosci,2008,28 (53):14537-14545.
    [53]Haass C, Selkoe DJ. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer's amyloid beta-peptide [J]. Nat Rev Mol Cell Biol,2007, 8(2):101-112.
    [54]Sayre LM, Zagorski MG, Surewicz WK, et al. Mechanisms of neurotoxicity associated with amyloid bera deposition and the role of free radicals in the pathogenesis of Alzheimer's disease:a critical appraisal [J]. Chem Res Toxicol, 1997,10:518-526.
    [55]Yan SD, Chen X, Fu J, et al. RAGE and amyloid-beta peptide neurotoxicity in Alzheimer's disease [J]. Nature,1996,382:685-691.
    [56]Harris ME, Hensley K, Butterfield A, et al. Direct evidence of oxidative injury produced by the Alzheimer's b-amyloid peptide (1-40) in cultured hippocampal neurons [J]. Exp Neurol,1995,131:193.
    [57]Cafe C, Torri C, Bertorelli L, et al. Oxidative stress after acute and chronic application of β-amyloid fragment 25-35 in cortical cultures [J]. Neurosci Lett, 1996,203(1):61-65.
    [58]Bales KR, Du Y, Dodel RC, et al. The NF-kappaB/Rel family of proteins mediates Abeta-induced neurotoxicity and glial activation [J]. Brain Res Mol Brain Res,1998,57:63-72.
    [59]Meda L, Cassatella MA, Szendrei GI, et al. Activation of Microglial cells by beta-amyloid protein and interferon-gamma [J]. Nature,1995,374:647-650.
    [60]Ojala J, Alafuzoff I, Herukka SK, et al. Expression of interleukin-18 is increased in the brains of Alzheimer's disease patients [J]. Neurobiology of Aging, 2009,30:198-209.
    [61]Bales KR, Tzavara ET, Wu S, et al. Cholinergic dysfunction in a mouse model of Alzheimer disease is reversed by an anti-A beta antibody [J]. J Clin Invest,2006,116(3):825-832.
    [62]Jeyashekar NS, Sadana A, Vo-Dinh T. Protein amyloidose misfolding: mechanisms, detection, and pathological implications [J]. Methods Mol Biol,2005, 300:417-435.
    [63]Savage MJ, Lin YG, Ciallella JR, et al. Activation of c-Jun N-Terminal kinase and p38 in an Alzheimer's disease model is associated with amyloid deposition [J]. Neuroscience,2002,22(9):3376-3385.
    [64]Clementi ME, Pezzotti M, et al. Alzheimer's amyloid beta-peptide (1-42) induces cell death in human neuroblastoma via bax/bcl-2 ratio increase:an intriguing role for methionine 35 [J]. Biochem Biophys Res Commun,2006,342 (1):206-213.
    [65]Meda L, Bernasconi S, Bonaiuto C, et al. β-amyloid (25-35) peptide and IFN-9 synergistically induce the production of the chemotactic cytokine MCP-1/JE in monocytes and microglial cells [J]. J Immunol,1996,157(3):1213-1218.
    [66]Yao M, Ngnyen TV, Pike CJ. Beta-amyloid-induced neuronal apoptosis involves c-Jun N-terminal kinase-dependent dowmegnlation of Bcl-2 [J]. J Neuresci, 2005,25(5):1149-1152.
    [67]Jang JH, Surh YJ. Beta-amyloid-induced apoptosis is associated with cyclooxygenase-2 upregulation via the mitogen-activated protein kinase-NF-kB signaling pathway [J]. Free Radical Biology&Medicine,2005,38(12):1604-1613.
    [68]Hsu MJ, Hsu CY, Chen BC, et al. Apoptosis signal-regulating kinase 1 in amyloid β peptide-induced cerebral endothelial cell apoptosis [J]. J Neurosci,2007, 27(21):5719-5729.
    [69]Huang X, Atwood CS, Hartshorn MA, et al. The Abeta peptide of Alzheimer's disease directly produces hydrogen peroxide through metal ion reduction [J]. Biochemistry,1999,38(24):7609-7616.
    [70]Cuajungco MP, Faget KY. Zinc takes the center stage:its paradoxical role in Alzheimer's disease [J]. Brain Res Brain Res Rev,2003,41 (1):44-56.
    [71]Price JL, Davis PB, Morris JC, et al. The distribution of tangles, plaques and related immunohistochemical markers in healthy aging and Alzheimer's disease [J]. Neurobiol Aging,1991,12(4):295-312.
    [72]Luo YQ, Hirashima N, Li YH, et al. Physiological levels of beta-amyloid increase tyrosine phosphorylation and cytosolic calcium [J]. Brain Res,1995, 29:681(1-2):65-74.
    [73]Sennvik K, Benedikz E, Fastbom J, et al. Calcium ionophore A23187 specifically decreases the secretion of beta-secretase cleaved amyloid precursor protein during apoptosis in primary rat cortical cultures [J]. J Neurosci Res,2001, 63(5):429-437.
    [74]Kawahara M, Kuroda Y, Arispe N, et al. Alzheimer's beta-amyloid, human islet amylin, and prion protein fragment evoke intracellular free calcium elevations by a common mechanism in a hypothalamic GnRH neuronal cell line [J]. J Biol Chem, 2000,275(19):14077-14083.
    [75]Pigino G, Morfini G, Atagi Y, et al. Disruption of fast axonal transport is a pathogenic mechanism for intraneuronal amyloid beta [J]. Proc Natl Acad Sci USA, 2009,106(14):5907-5912.
    [76]Adalbert R, Nogradi A, Babetto E, et al. Severely dystrophic axons at amyloid plaques remain continuous and connected to viable cell bodies [J]. Brain, 2009,132 (2):402-416.
    [77]Cullen WK, Suh YH, Anwyl R, et al. Block of LTP in rat hippocampus in vivo by beta-amyloid precursor protein fragments [J]. NeuroReport,1997,8:3213-3217.
    [78]Balducci C, Beeg M, Stravalaci M, et al. Synthetic amyloid-beta oligomers impair long-term memory independently of cellular prion protein [J]. Proc Natl Acad Sci USA,2010,107(5):2295-2300.
    [79]Kim JH, Anwyl R, Suh YH, et al. Use-dependenteffectsofamyloidogenic fragments of (beta)-amyloid precursor protein on synaptic plasticity in rat hippoca-mpus in vivo [J]. Journal of Neuroscience,2001,21:1327-1333.
    [80]Walsh DM, Klyubin I, Fadeeva JV, et al. Naturally secreted oligomers of amyloid protein potently inhibit hippocampal long-term potentiation in vivo [J]. Nature,2002,416:535-539.
    [81]Hardy JA, Higgins GA. Alzheimer's disease:the amyloid cascade hypothesis [J]. Science,1992,256:184-185.
    [82]Terry RD, Masliah E, Salmon DP, et al. Physical basis of cognitive alterations in Alzheimer's disease:synapse loss is the major correlate of cognitive impairment [J]. Ann Neurol,1991,30:572-580.
    [83]Lesne S, Kotilinek L, Ashe KH. Plaque-bearing mice with reduced levels of Oligomeric amyloid-beta assemblies have intact memory function [J]. Neuroscien- ce,2008,151:745-749.
    [84]Villemagne VL, Fodero-Tavoletti MT, Pike KE, et al.The ART of loss: Abeta imaging in the evaluation of Alzheimer's disease and other dementias [J]. Mol Neuro biol,2008,38:1-15.
    [85]Nordberg A. Amyloid plaque imaging in vivo:current achievement and future prospects [J]. Eur J Nucl Med Mol Imag,2008,35 (Suppl.l):S46-50.
    [86]Younkin SG. Evidence that Abeta42 is the real culprit in Alzheimer's disease [J]. Ann Neurol,1995,37:287-288.
    [87]Bentahir M, Nyabi O, Verhamme J, et al. Presenilin clinical mutations can affect gamma-secretase activity by different mechanisms [J]. J Neurochem,2006,96: 732-742.
    [88]Lauren J, Gimbel DA, Nygaard HB, et al. Cellular prion protein mediates impairment of synaptic plasticity by amyloid-beta oligomers [J]. Nature,2009,457 (7233):1128-1132.
    [89]Shekhawat GS, Lambert MP, Sharma S, et al. Soluble state high resolution atomic force microscopy study of Alzheimer's beta-amyloid oligomers [J]. Appl Phys Lett,2009,95 (18):183701-183710.
    [90]Balducci C, Beeg M, Stravalaci M, et al. Synthetic amyloid-beta oligomers impair long-term memory independently of cellular prion protein [J]. Proc Natl Acad Sci USA,2010,107(5):2295-2300.
    [91]LaFerla FM, Green KN, Oddo S. Intracellular amyloid-beta in Alzheimer's disease [J]. Nat Rev Neurosci,2007,8:499-509.
    [92]Christensen DZ, Bayer TA, Wirths O. Formic acid is essential for immunohisto-chemical detection of aggregated intraneuronal Abeta peptides in mouse models of Alzheimer's disease [J]. Brain Res,2009,1301:116-125.
    [93]Rebeck GW, Hoe HS, Moussa CE. Beta-amyloidl-42 gene transfer model exhibits intraneuronal amyloid, gliosis, tau phosphorylation, and neuronal loss [J]. J Biol Chem,2010,285(10):7440-7446.
    [94]Nunomura A, Tamaoki T, Tanaka K, et al. Intraneuronal amyloid beta accumulation and oxidative damage to nucleic acids in Alzheimer disease [J]. Neurobiol Dis,2010,37(3):731-737.
    [95]Holmes C, Boche D, Wilkinson D, et al. Long-term effects of Abeta (42) immunisation in Alzheimer's disease:follow-up of a randomised, placebo-control- edphase I trial [J]. Lancet,2008,372(9634):216-223.
    [96]Fath T, Eidenmuller J, Brandt R. Tau-mediated cytotoxicity in a pseudohyperph-osphorylation model of Alzheimer's disease [J]. Journal of Neuroscie-nce,2002,22(22):9733-9741.
    [97]Barghorn S, Zheng-Fischhofer Q, Ackmann M, et al. Structure, microtu-bule Interactions, and paired helical filament aggregation by tau mutants of frontotemporal dementias [J]. Biochemistry,2000,39(38):11714-11721.
    [98]Goedert M, Hasegawa M, Jakes R, et al. Phosphorylation of microtubule-associated protein tau by stress-activated protein kinases [J]. FEBS Lett.1997,409 (1):57-62.
    [99]Drewes G, Ebneth A, Preuss U, et al. MARK, a novel family of protein kinases that phosphorylate microtubule-associated proteins and trigger microtubule disruption [J]. Cell,1997,89(2):297-308.
    [100]Sadot E, Gurwitz D, Barg J, et al. Activationofinl muscarinic acetylcholine receptor regulates tau phosphorylation in transfected PC12 cells [J].J Neuroch-em,1996,66 (2):877-880.
    [101]Hetts SW. To die or not to die:an overview of apoptosis and its role in disease [J]. JAMA,1998,279 (4):300-307.
    [102]Often D, Elkon H, Melamed E. Apoptosis asa general cell death pathway in neurodegenerative diseases [J]. Journal of Neural Transmission-Supplement,2000, (58):153-166.
    [103]Smale G, Nichols NR, Brady DR, et al. Evidence for apoptotic cell death in Alzheimer's disease [J]. Exp Neurol,1995,133(2):225-230.
    [104]KitamuraY, Taniguchi T, Shimohama S. Apoptotic cell death inneurons and glial cells:implications for Alzheimer's disease [J]. Jpn J Pharmacol,1999,79 (0:1-5.
    [105]Migliore L, Fontana I, Colognato R, et al Searching for the role and the most suitable biomarkers of oxidative stress in Alzheimer's disease and in other neurodegenerative diseases [J]. Neurobiology of Aging,2005,26 (5):587-595.
    [106]Tortosa A, Lopez E, Ferrer I. Bcl-2 and Bax protein expression in Alzheimer's disease [J]. ActaNeuropathol,1998,95 (4):407-412.
    [107]Paradis E, Douillard H, Koutroumanis M, et al. Amyloid beta peptide of Alzheimer's disease downregulates Bcl-2 and upregulates bax expression in human neurons [J]. J Neurosci,1996,16(23):7533-7539.
    [108]McGeer PL, Schulzer M, McGeer EG. Arthritis and anti-inflammatory agents as possible protective factors for Alzheimer's disease:a review of 17 epidemiologic studies [J]. Neurology,1996,47(2):425-432.
    [109]Goto M, Kimura T, Hagio S, et al. Neuropathological analysis of dementiain a Japanese leprosarium [J]. Dementia,1995,6 (3):157-161.
    [110]Mandybur TI, Chuirazzi CC. Astrocytes and the plaques of Alzheimer's disease [J]. Neurology,1990,40(4):635-639.
    [111]Sutton ET, Thomas T, Bryant MW, et al. Amyloid-beta induced inflammatory reactionis mediated by the cytokines tulnornecrosis factor and interleukin-1 [J]. Submicrosc Cytol Pathol.1999,31 (3):313-323.
    [112]Licastro F, Pedrini S, Caputo L, et al. Increased plasma levels of interleukin-1, interleukin-6 and alpha-1-antichymotrypsin in patients with Alzheim-er's diseaseperipheral inflammation or signals from the brain?[J].J Neuroimm-unol,2000,103(1):97-102.
    [113]Tan J, Town T, Paris D, et al. Microglial activation resulting from CD40-CD40L interaction after beta-amyloid stimulation [J]. Science,1999,286(5448): 2352-2355.
    [114]Tan ZS, Beiser AS, Vasari RS, et al. Inflammatory markers and the risk of Alzheimer disease—The Framingham study [J]. Neurology,2007,68(22):1902-1908.
    [115]Lee RK, Knapp S, Wurtman RJ. Prostaglandin E2 stimulates amyloid precursor protein gene expression:inhibition by immunosuppressants [J]. J Neurosci, 1999,19(3):940-947.
    [116]Breitner JC, Welsh KA, Helms MJ, et al. Delayed onset of Alzheimer's disease with nonsteroidal anti-inflammatory and histamine H2 blocking drugs [J]. Neurobiol Aging,1995,16(4):523-530.
    [117]Breitner JC The role of anti-inflammatory drugs in the prevention and treatment of Alzheimer's disease [J]. Annual Review of Medicine,1996,47,401-411.
    [118]Hoozemans JJ,Veerhuis R, Rozemuller AJ, et al. Nonsteroidal anti-inflammatory drugs and cyclooxy-genase in Alzheimer's disease [J]. Current Drug Targets,2003,4,361-468.
    [119]Mahyar E, Gill S, Samii A. Effect of non-steroidal anti-inflammatory drugs on risk of Alzheimer's disease:systematic review and meta-analysis of observation-nal studies [J]. British Medical Journal,2003,327:128-131.
    [120]In'tVeld BA, Launer LJ, Breteler MMB, et al. Pharmacologic agents associated with a preventive effect on Alzheimer's disease:a review of the epidemiologic evidence [J]. Epidemiologic Reviews,2002,24:248-268.
    [121]Mackenzie IR. Postmortem studies of the effect of anti-inflammatory drugs on Alzheimer-type pathology and associated inflammation [J]. Neurobiol Aging, 2001,22 (6):819-822.
    [122]Netland EE, Newton JL, Majocha RE, et al. Indomethacin reverses the microglial response to amyloid β-protein [J]. Neurobiol Aging,1998,19:201-204.
    [123]Lim GP, Yang F, Chu T, et al. Ibuprofen suppresses plaque pathology and inflammation in a mouse model for Alzheimer's disease [J]. J Neurosci,2000, 20:5709-5714.
    [124]Soininen H, West C, Robbins J, et al. Long-term efficacy and safety of celecoxib in Alzheimer's disease [J]. Dement Geriat Cogn Disord,2007,23(1): 8-21.
    [125]Reines SA, Block GA, Morris JC, et al. Rofecoxib:no effect on Alzheimer's disease in a 12 year, randomized, blinded, controlled study [J]. Neurology,2004,62 (1):66-71.
    [126]Arvanitakis Z, Grodstein F, Bienias JL, et al. Relation of NSAIDs to incident AD, change in cognitive function, and AD pathology [J]. Neurology,2008, 70(23):2219-2225.
    [127]Rogers J, Strohmeyer R, Kovelowski CJ, et al. Microglia and inflammatory mechanisms in the clearance of amyloid beta peptide [J]. Glia,2002,40(2):260-269.
    [128]Schwab C, McGeer PL. Inflammatory aspects of Alzheimer disease and other neurodegenerative disorders [J]. J Alzheimers Dis,2008,13:359-369.
    [129]Farfara D, Lifshitz V, Frenkel D. Neuroprotective and neurotoxic properties of glial cells in the pathogenesis of Alzheimer's disease [J]. J Cell Mol Med,2008,12 (3):762-780.
    [130]Shulman RG, Rothman DL, Behar KL, et al. Energetic basis of brain activity implications for neuroimaging [J]. Trends in Neuroscience,2004,27:489- 495.
    [131]Cooper AJL. Glutathione in the brain:disorders of glutathione metabolism. In RN Rosenberg, SB Prusiner, S DiMauro, RL Barchi,&LM Kunk (Eds.), The Molecular and GeneticBasis of Neurological Disease [J]. Boston: Butterworth-Heinemann,1997,1195-1230.
    [132]Clarke DD, Sokoloff L. Circulation and energy metabolism of the brain. In G.J Sigel,BW Agranoff,RW Albers, SK Fisher,&MD Uhler(Eds.),Basic Neurochemistry:Molecular, Cellular and Medical Aspects [J]. Philadelphia: Lippincott-Raven,1999,637-669.
    [133]Smith MA, Rottkamp CA, Numomura A, et al. Oxidative stress in Alzheimer's disease [J]. Biochim Biophys Acta,2002,1502:139-144.
    [134]Nunomura A, Chiba S, Lippa CF, et al. Neuronal RNA oxidation is a prominent feature of familial Alzheimer's disease [J].Neurobiol Dis,2004,17: 108-113.
    [135]NunomuraA, Perry G, AlievG, et al. Oxidative damage is the earliest event in Alzheimer's disease [J]. J Neuropathol Exp Neurol,2001,60:759-767.
    [136]Nunomura A, Perry G, Pappolla MA, et al. Neuronal oxidative stress precedes amyloid-beta deposition in Down syndrome [J]. J Neuropathol Exp Neurol, 2000,59:1011-1017.
    [137]Kontush A, Berndt C, Weber W, et al. Amyloid-beta is an antioxidant for lipoproteins in cerebrospinal fluid and plasma [J]. Free Radic Biol Med,2001,30: 119-128.
    [138]Zou K, Gong JS, Yanagisawa K, et al. A novel function of monomeric amyloid beta-protein serving as an antioxidant molecule against metal-induced oxidative damage [J]. J Neurosci,2002,22:4833-4841.
    [139]Bishop GM, Robinson SR. Human Abeta1-42 reduces iron-induced toxicity in rat cerebral cortex [J]. J Neurosci Res,2003,73:316-323.
    [140]Lovell MA, Robertson JD, Teesdale WJ, et al. Copper,iron and zinc in Alzheimer's disease senile plaques [J]. J Neurol Sci,1998,158:47-52.
    [141]Dong J, Atwood CS, Anderson VE, et al. Metal binding and oxidation of amyloid-beta within isolated senile plaque cores:Raman microscopic evidence [J]. Biochemistry,2003,42:2768-2773.
    [142]Lee HG, Perry G, Moreira PI, et al. Tau phosphorylation in Alzheimer's disease:Pathogen or protector? [J]. Trends Mol Med,2005,11:164-169.
    [143]Bartus RT, Dean RL, Beer B, et al. The cholinergic hypothesis of geriatric memory dysfunction [J]. Science,1982,217(4558):408-414.
    [144]HunterAJ, RobertsFF. The effect of pirenzepine on spatial learning in the Morris Water Maze [J]. Pharmacol Biochem Behav,1988,30:519-523.
    [145]Decker MW, McGaugh JL. The role of interactions between the cholinergic system and other neuromodulatory systems in learning and memory [J]. Synapse,1991,7:151-168.
    [146]Terry AV, Buccafusco JJ, Jackson WJ. Scopolamine reversal of nicotine enhanced delayed matching-to-sample performance in monkeys [J]. Pharmacol Biochem Behav,1993,45:925-929.
    [147]Contestabile A. The history of the cholinergic hypothesis [J]. Behav Brain Res,2010,6:112-129.
    [148]Davis KL, Mohs RC, MarinD, et al. Cholinergic markers in elderly patients with early signs of Alzheimer disease [J]. J Am Med Assoc,1999,281: 1401-1406.
    [149]DeKosky ST, Ikonomovic MD, Styren SD, et al. Up-regulation of cholineacetyl transferase activity in hippocampus and frontal cortex of elderly subjects with mild cognitive impairment [J]. Ann Neurol,2002,51:145-155.
    [150]Bucht G, Adolfsson R, Lithner F, et al. Changes in blood glucose and insulin secretionin patients with senilede mentia of Alzheimer type [J]. Acta Med Scand,1983,213 (5):387-392.
    [151]Sachon C, Grimaldi A, Digy JP, et al. Cognitive function, insulin-dependent diabetesand hypoglycaemia [J]. J InternMed.1992,231 (5):471-475.
    [152]Sharma M, Gupta YK. Intracerebroventricular injection of streptozotocin in rats produces both oxidativestress in the brain and cognitiveimpairment [J]. LifeSci, 2001,68(9):1021-1029.
    [153]Latmert H, Hoyer S. Intracerebroventricular administration of streptozoto-cin causes long-term diminutions in learning and memory abilities and incerebral energy Metabolisminadult rats [J]. Behav Neurosci,1998,112(5):1199-1208.
    [154]Gasparini L, Gouras GK, Wang R, et al. Stimulation of beta-amyloidprecursor protein trafficking by insulin reduces intraneuronal beta-amyloid and requires mitogen, activated protein kinase signaling [J]. J Neurosci,2001,21 (8): 2561-2570.
    [155]Watson GS, Craft S. The role of insulin resistance in the pathogenesis of Alzheimer's disease:implications for treatment [J]. CNS Drugs,2003,17(1):27-45.
    [156]Xie L, Helmerhorst E, Taddei K, et al. Alzheimer's beta-amyloid peptides compete for insulin binding to the insulin receptor [J]. J Neurosci,2002,22-(10):RC221.
    [157]Gaspafini L, Netzer WJ, Greengard Pelal. Does insulin dysfunction play a role in Alzheimer's disease? [J]. Trends Pharmacol Sci,2002,23 (6):288-293.
    [158]Hoyer S. The aging brain. Changes in the neuronal insulin/insulin receptor signal transductioncascade trigger late-onset sporadic Alzheimer's disease (SAD), A mini-review [J]. J Neural Transm,2002,109(7-8):991-1002.
    [159]屈秋民,乔晋,杨建波,等.西安地区中老年人的痴呆患病率调查[J].中华老年医学杂志,2001,20:284-386.
    [160]周盼,洪震,黄茂盛,等.上海城乡人群痴呆患病率的调查[J].中华流行病学杂志,2001,22:368-371.
    [161]Minly JJ, Merchant CA, Jacobs DM, et al. Endogenous estrogen levels and Alzheimer's disease among postmenopausal women [J]. Neurology,2000,54(4): 833-837.
    [162]Kawas C, Resnish S, Morruson A, et al. A prospective study of estrogen replacement therapy and the risk of developing Alzheimer's disease:the Baltimore Longitudinal Study of Aging [J]. Neurology,1997,48 (6):1517-1521.
    [163]Simpkins JW, Green PS, Gridiey KE, et al. Role of estrogen replacement therapy in memory enhancement and the prevention of neuronal loss associated with Alzheimer's disease [J]. Am J Med,1997,103 (3A):19S-25S.
    [164]Gibbs RB. Fluctuations in relative levels of choline acetyltransferase mRNA in different regions of the rat basal forebrain across the estrous cycle:effects of estrogen and progesterone [J]. J Neurosci,1996,16 (3):1049-1055.
    [165]Mcewen BS, Alves SE, Bulloch K, et al. Ovarian steroids and the brain: implications for cognition and aging [J]. Neurology,1997,48 (5 Suppl 7):S8-15.
    [166]Woolley CS, Gould E, Frankfurt M, et al. Naturally occurring fluctuation in dendritic spine density on adult hippocampal pyramidal neurons [J]. J Neurosci,1990,10 (12):4035-4039.
    [167]Toran-Allerand CD, Miranda RC, Bentham WD, et al. Estrogen receptors colocalize with low-affinity nerve growth factor receptors in cholinergic neurons of the basal forebrain [J]. Proc Natl Acad Sci USA,1992,89 (10):4668-4672.
    [168]Jaffe AB, Toran-Allerand CD, Greengard P, et al. Estrogen regulates metabolism of Alzheimer amyloid beta precursor protein [J]. J Biol Chem,1994,269 (18):13065-13068.
    [169]Miranda R, Sohrabji F, Singh M, et al. Nerve growth factor (NGF) regulation of estrogen receptors in explant cultures of the developing forebrain [J]. J Neurobiol,1996,31 (1):77-87.
    [170]Behl C, Widmann M, Trapp T, et al.17-beta estradiol protects neurons from oxidative stress-induced cell death in vitro [J]. Biochem Biophys Res Commun, 1995,216(2):473-82.
    [171]Green PS, Gridley KE, Simpkins JW, et al. Nuclear estrogen receptor-independent neuroprotection by estratrienes:a novel interaction with glutathione [J]. Neueoscience,1992,84(1):7-10.
    [172]Bonnefont AB, Munoz FJ, Inestrosa NC. Estrogen protects neuronal cells from the cytotoxicity induced by acetylcholinesterase-amyloid complexes [J]. FEBS Lett,1998,441 (2):220-224.
    [173]Lambert JC, Warrant De, Vrieze F, et al. Association at LRP gene locus with sporadic late-onset Alzheimer disease [J]. Lancet,1998,351 (9118):1787-1788.
    [174]Masliah E, Samuel W, Veibergs I, et al. Neurodegeneration and cognitive impairment in apoE deficient mice is ameliorated by infusion of recombinant apoE [J]. Society for Neuroscience Abstracts,1996,22:207.
    [175]Lon S, Martin R, Janice M, et al. Interaction of estrogen replacement therapy and apolipoprotein E genotype status on response to cholinesterase inhibitor therapy in Alzheimer's disease [A].in:Khalid Igbal, Bengt Winblad, Tsuyoshi Nishimura, eds. Alzheimer's Disease:Biology, Diagnosis and Therapeutics [M]. New York:John Wiley & Sons Ltd,1997,655-659.
    [176]房涛.神经生长因子受体信号研究进展[J].国外医学分子生物学分册,2000,22(2):69-71.
    [177]Miranda R, Sohrabji F, Singh M, et al. Nerve growth factor (NGF) regulation of estrogen receptors in explant cultures of the developing forebrain [J]. J Neurobiol,1996,31 (1):77-87.
    [178]陆林,黄明生,孙学礼.Alzheimer病动物模型的研究进展[J].国外医学·精神病学分册,1999,26(1):31-34.
    [179]黄诚.细胞因子与Alzheimer病[J].国外医学·老年医学分册,1998,19-(1):1-6.
    [180]Mermelstein PG, Becker JB, Surmeier DJ. Estradiol reduces calcium currents in rat neostriatal neurons via a membrane receptor [J]. J Neurosci,1996, 16(2):595-604.
    [181]Kesslak JP. Can estrogen play a significant role in the prevention of Alzheimer's disease? [J]. J Neural Transm Suppl,2002,84:227-239.
    [182]Zlokovic BV. Neurovascular mechanisms of Alzheimer's neurodegener-ation [J]. Trends Neurosci,2005,28 (4):202-208.
    [183]Zhu XW, Raina AK, Perry G, et al. Alzheimer's disease:the two-hit hypothesis [J]. Lancet Neurology,2004,3 (4):219-226.
    [184]Palop JJ, Chin J, Mucke L. A network dysfunction perspective on neurodegenerative diseases [J]. Nature,2006,443 (19):768-773.
    [185]Castellani RJ, Zhu XW, Lee HG. Molecular Pathogenesis of Alzheimer Disease:Reductionist Versus Expansionist Approaches [J]. Int J Mol Sci,2009, 10(3):1386-1406.
    [186]Noorbakhsh F, Overal CM, Power C. Deciphering complex mechanisms in neurondegenerative diseases:the advent of systems biology [J]. Trends Neurosci, 2009,32 (2):88-100.
    [187]Villoslada P, Steinman L, Baranzini SE. Systems Biology and Its Application to the Understanding of Neurological Diseases [J]. Ann Neurol,2009, 65(2):124-139.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700