用户名: 密码: 验证码:
浅海航道淤积位置和高度实时监测技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
浅海航道底部在风、浪、流等天气水文情况下淤积严重,由于缺乏实时的监测手段,经常出现因船舶装载量过少造成经济上的损失或装载量过多导致船舶搁浅、港口全面阻塞等问题。本文根据浅海航道的特点分析了航道中声传播特性及衰减特性,在此基础上提出了一种适合对浅海航道淤泥淤积位置和高度进行实时监测的技术。论文所进行的主要研究工作如下:
     基于水声学领域描述声波传播规律的射线声学理论,在简化声速分布的基础上,分析研究了浅海航道中小掠射角声传播特性,结果表明:航道中小掠射角声波声线轨迹近似直线传播。基于Snell定律和能量守恒定律研究了海面对声波的反射和透射特性,由研究结果可知:声波传播到海面时会发生反射和透射,但透射的能量远远小于反射能量,声波在海面传播时可以看作全反射。声波在浅海航道淤泥层进行传播时,通过比较散射和透射系数得出:高频声波在海底传播时,绝大部分声能都透射到了沉积层中,散射声能可以忽略。
     基于Bouguer-Lambert-Beer-Law理论,建立了多分散颗粒悬浊液声传播衰减损失模型,在实验室利用配制的不同粒径的超细玻璃微珠和二氧化钛的水悬浊液对五个频率的超声进行了声衰减测量,验证了该模型是有效的。以该模型为基础,结合声波在海水中的扩展损失和吸收损失,建立了浑浊海域中声传播衰减模型,通过在渤海某航道中的声传播衰减测量,结果表明浅海航道浑浊海域中声传播衰减损失与颗粒粒径、颗粒体积浓度以及声频率有关。
     根据现在浅海航道淤积测量或预报方法不能够实时监测的问题,在浅海航道声传播规律的基础上结合地震CT层析结构特点,提出了一种对浅海航道淤积位置和淤积高度进行实时监测的方法——基于换能器阵列的航道侧面多传感器淤积监测法,并设计了相应的系统原理样机。该方法是在航道一侧安放一条发射换能器阵列,另一侧安放一条接收阵列,监测时依次开启发射换能器发射声波信号,同时接收阵列中的所有换能器均接收信号,淤积位置和淤积高度不同时相应接收声纳信号的功率谱峰值与传输时间也不同,根据这个差异就可以判别监测区域的淤积情况。通过无线数传模块将监测数据传输到岸上的监控中心,应用客户端即可利用Internet实现对浅海航道淤积位置和淤积高度的实时监测。
     在判别浅海航道的淤积位置和淤积高度时,提出了基于决策导向无环图支持向量机(Decision Directed Acyclic Graph Support Vector Machine,简称DDAGSVM)算法的多类问题的航道淤积位置判别法和基于支持向量机回归的航道淤积高度判别法。利用离散K-L(Karhunen-Loeve)变换提取的航道淤积特征向量与实际淤积位置和淤积高度分别组成淤积位置训练样本和淤积高度训练样本,在淤积位置判别时,将航道宽度方向平分成若干区域,并将每个区域作为一类淤积,每两类之间各构造一个分类器,利用淤积位置训练样本对分类器进行训练,将淤积特征向量带入训练好的分类器结合DDAGSVM算法,判别出淤积位置;在淤积高度判别时,利用淤积高度训练样本对淤积高度回归模型进行训练,将淤积特征向量带入训练好的淤积高度回归模型,判别出航道的淤积高度。通过消声水池和浅海航道的淤积判别实验可知:在消声水池中的淤积位置判别精度达到了3m,在航道的淤积位置判别精度达到了实际航道的需求;对航道淤积高度判别的精度可达到60 mm。与传统的神经网络方法判别结果相比,该方法具有判别效果好、判别速度快、通用性强等优点。
Generally, shallow sea channel has the severe deposition under the weather and hydrology conditions of wind, wave, flow etc. Because of lacking real-time siltation monitoring method, it often appears the economical loss caused by less load or ship grounding and port obstruction caused by excess load. In the paper, a new technology of real-time channel siltation monitoring is presented based on the analysis of characteristics of the shallow sea channel, acoustic propagation and attenuation in the channel. Main contents of this paper are as follows:
     Based on Ray Theory describing acoustic propagation law in underwater acoustics field, the characteristics of the small grazing angle acoustic propagation in the shallow sea channel is researched on the basis of simplified acoustic velocity distribution. The results show that the sound ray trace can be regarded as a straight line. According to the law of Snell and Conservation of Energy, the characteristics of acoustic wave scattering and transmission on sea surface is studied. The acoustic wave will scatter and transmit when it propagates to the sea surface and the energy of transmission is far less than that of scattering. By comparing scattering coefficient with transmission coefficient, when the high-frequency acoustic wave propagates on the bottom, most of the acoustic energy transmits into the deposition layer and the scattering acoustic energy can be neglected.
     Sound attenuation model of the polydisperse particle suspension liquid acoustic propagation attenuation loss is derived from Bouguer-Lambert-Beer Law. In the laboratory, the prepared aqueous suspension of ultrafine glass beads and aqueous titanium dioxide of different particle diameters are applied to measure the acoustic attenuation of five ultrasonic frequencies. The result shows that the model is effective. Based on the model and combined with the empirical formula of spreading loss and absorption loss of the acoustic wave in the sea , the acoustic propagation attenuation model in the turbidity sea area is established. The measurement results of the acoustic propagation attenuation in one Bohai sea channel show that the acoustic propagation attenuation loss in shall sea channel relates to particle diameter, particle volume concentration and the acoustic frequency.
     According to the problems that present siltaion measuring methods and forecasting method in the shallow sea channel can’t realize real-time monitoring, a new siltation real-time monitoring method in the shallow sea channel is proposed based on the research results of acoustic propagation in the shallow sea channel and seismic CT structure. It is called Multi-Sensor siltation monitoring method in the sides of channel based on transducer arrays. At the same time, a set of monitoring system is designed. In the method, one set of transmitting transducer array is fixed on one side of the channel and one set of receiving transducer array is fixed on the other side. On monitoring, the transmitting transducer is opened to transmit acoustic wave in turn and receiving transducers are always working. And when the siltation position and the height are different, the power spectrum’s peak and the transmission time of the sonar signal are different too. In terms of the difference, the siltation situation in the monitoring area can be judged. Through wireless data transmission module, the monitoring data can be transmitted to the monitoring center in the shore. And applying the Internet, the client can realize real-time monitoring on the siltaion position and height in the shallow sea channel.
     In order to judging the siltaion position and height, the multi-class problem method of judging the channel siltaion position based on Decision Directed Acyclic Graph Support Vector Machine(DDAGSVM) algorithm and the method of judging the channel height based on support vector machine regression are put forward. Firstly, applying discrete K-L transform, the siltation features vector is extracted. And it can compose siltation location training samples and height training samples respectively with the siltation location and height in the monitoring area. When judging the siltation location, the channel is bisected into some areas along channel width direction, and each area is one type siltation. Between every two classes, one classifier is constructed. With the siltation location training samples, the classifiers are trained. And when the siltation feature vectors are brought in the well trained classifiers and combined with DDAGSVM Algorithm, the siltation location is judged. When judging the siltation height, with the siltation height training samples, the siltation height regression model is trained. And when the siltation feature vectors are brought in the well trained model, the siltation height is judged. The experiment results in anechoic tank and Dalian channel show that in anechoic tank, the judging siltation position precision can reach 3m, and in Dalian channel, it is attained the actual demand of the channel. And in Dalian channel, the judging siltaion height precision can reach 60 mm. Compared with conventional methods of neural network, the methods have better effect, stronger generalization ability and fast decision speed.
引文
1朱晓华,查勇.江苏淤泥质海岸海岸线分形机理研究.海洋科学. 2002, 26(9):70~73
    2袁西龙,孙芳林,董洪.黄河三角洲海岸线动态变化规律与预测研究.海岸工程. 2007, 26(4): 1~10
    3 J. Wtrwy. Reducing harbor siltation. II: case study of Parkhafen in Hamburg. Port, Coast. and Oc. Engrg. 2005, 131(6):267~276
    4 J. Hydr. Sediment transport modeling review—current and future developments. Engrg. 2008, 134(1):1~14
    5 J. Wtrwy. Analytical solutions for desiccation of fine-grained dredged sediments. Port, Coast. and Oc. Engrg. 2007, 133(4):268~274
    6 Mirmosadegh Jamali and Gregory A. Lawrence. Viscous wave interaction due to motion of a surface wave over a sediment bed. Journal of Offshore Mechanics and Arctic Engineering. 2006, 128(4):276~279
    7杨树森,韩西军,阎勇.巴基斯坦瓜达尔港泥沙淤积规律研究.水道港口. 2005, 26(3):134~138
    8禹雪中,钟德钰,李锦秀等.水环境中泥沙作用研究进展及分析.泥沙研究. 2004, (06):74~80
    9 P. V. Tkalitch, W. Chenand J. H. Tay. Modeling of heavy metals in a reservoir with diffusive bottom layer .Wat. Sci.Tech. 1996, 34(78):117~123
    10 Wang Chao, Liu De-fu. Undefined analysis of selecting design wave factors. ACTA Ceanologica Sinica. 1991, 13(4):874~881
    11赵会滨,徐新盛,吴英姿.多波束条带测深技术发展动态展望.哈尔滨工程大学学报. 2001, 22(2): 41~45
    12 SATRINOJ H. Wide swath bathymetry from multi-beam systems. IEEE. 1991, (3):733~736
    13 Zhu Weiqing, Liu Xiaodong, Zhu Min, Differential phase estimation of bathymetric side scan sonar. Acta acoustic. 2003, 28(6):481~485
    14 Van der Meulen, A., De Kok, J.M., Wang, Z.B. Modeling the siltation in the Rotterdam harbour area. Oceans Conference Record. 1998, (3):1531~1534
    15 Mirmosadegh Jamali and Gregory A. Lawrence. Sediment models for the EastCoast based on a priori information, geological data, and sediment inversions. The Journal of the Acoustical Society of America. 2006, 119(5):3226~3234.
    16刘如广,唐健.数字航道建设的探讨.水运工程. 2006, (6):71~74
    17 Liu Z, Todini E. Towards a comprehensive physically based rainfall-runoff model. Hydrology and Earth System Sciences. 2002, 6(5):859~881
    18于定勇,曾渊,柳枝.青岛港外航道开挖区海床演变趋势分析.中国海洋大学学报. 2007, 37(1):141~146
    19 Cao Zude, Kong Lingshuang, Liu Defu. Sediment movement in periodic alternating current. Journal of Ocean University of Qingdao. 2002, 1(2):201~205
    20王炳和,李宏昌.声纳技术的应用及最新进展.物理. 2001, 30(8):491~495
    21 Ma Li. Three different directions of sound propagation in the China South Sea. The Journal of the Acoustical Society of America. 2005, 117(4):2549~2556
    22张仁和.中国海洋声学研究进展.中国科学(物理). 1996, .23(9):513~518
    23 J. X. Zhou, X. Z. Zhang and P. H. Rogers. Resonant interaction of sound wave with internal solitons in the coastal zone. J. Acoust. Soc. Am. 1991, (90): 2042~2054
    24 F.E. Fox and G. D. Rock. Ultrasonic Absorption in Water. JASA. 1941, 12:502~507
    25 L. Hall. The origin of Ultrasonic Absorption in Water. Phys. Rev. 1948, 73:773~778
    26 Xin-Fang Qiu. A cylindrical resonator method for the investigation of low-frequency sound absorption in sea water. The Journal of the Acoustical Society of America. 1991, 90(6):3263~3270
    27 Guicking D, Karcher K, Rollwage M. Active control of the acoustic reflection coefficient at low frequencies. Inter-Noise, 1983, 83:419~422
    28苏明旭,蔡小舒,徐峰等.超声衰减法测量悬浊液种颗粒粒度和浓度.声学学报. 2004, 29(5):440~444
    29 Kaatze U, Wehrmann B, Pottel R. Acoustic absorption spectroscopy of liquids between 0.15 and 3000MHz. I. High Resolution Ultrasonic Resonantor Method. J. Phys. E., 1987, 13(20): 1035~1040
    30 Richards S D, Leighton, T G, Brown N R. Sound absorption by suspensions of nonspherical particles: Measurements compared with predictions using variousparticle sizing techniques. Journal of the Acoustical Society of America, 2003, 114(4):1841~1850
    31方兆宝,林珲,吴立新等.从水铊测深到海洋空间信息科学.中山大学学报. 2003, 42(6):176~179
    32李一达,李胜全.测深仪深水浅报现象的形成与自动纠正方法.海洋测绘. 2004, 24(15):62~64
    33王宝成,左训青,车兵.不同频率回声测深仪测量水库淤泥的初步研究.人民长江. 2006, 37(12):84~88
    34 Salous, S., Gokalp, H. Dual-frequency sounder for UMTS frequency-division duplex channels. Communications, 1999, 149(2):117~122
    35张正惕,杨世伦,谢文辉.热敏式双频测深仪在航道沙波研究中的应用.华东师范大学学报(自然科学版). 1999, (4):68~73
    36吕锵,吕美新.浅谈Hydrostar型双频测深仪的实验与应用.海洋测绘. 2006, 26(4):66~68
    37 William H Key. Side-scan sonar technology. IEEE. 2000 , (8):1029~1031
    38 Wen-Min Tian. The application of side-scan sonar system in monitoring enthic artificial reefs. IEEE. 1998, (9):312~316
    39 T. B. Reedlv, D. Hussong. Digital image processing techniques for enhancement and classification of Sea MARCll side-scan sonar imagery. J. Geophys. 1989, 1(94):7469~7490
    40 TIMO PEKKA JANTTI.. Trials and experimental results of the ECHOS XD multibeam echo sounder. IEEE Journal of Oceanic Engineering. 1989, 14(4):306~313
    41陈非凡.多波束条带测深仪研究发展动态.海洋技术. 1999, 18(2):26~32
    42 Sungman Lee , Yong Gi Kim , Byung Heon Cha et al . . A diode-pumped linear intracavity frequency doubled Nd:YAG rod laser with 40ns pulse width and 73W green output power. Optics & Laser Technology, 2004, 36(5):265~271
    43 Wang Tao, Yao Jianquan, Li Xifu et al. The study on quasi-CW Nd∶YAG intracavity frequency-doubled green lasers. Optoelectronics Laser, 2002, 13(6):575~577
    44李庆辉,陈良益,陈烽,邓年茂.机载蓝绿激光海洋测深.光子学报. 1996, 25(11):1008~1015
    45 Joon-Yong Yoon and Seung-Kyu Kang. A numerical model of sediment-ladenturbulent flow in an open channel. ASCE Journal of Hydraulic Engineering, 2005, 122(4):233~241
    46 Bechteler, W., and Schrimpf, W. Improved numerical model for sedimentation. ASCE Journal of Hydraulic Engineering, 1984, 110(3): 234~246
    47 Celik, I., and Rodi, W. Modeling suspended sediment transport in nonequilibrium situations. ASCE Journal of Hydraulic Engineering, 1988, 114(10):1157~1190
    48 Celik, I., and Rodi, W. Suspended sediment-transport capacity for open channel flow. ASCE Journal of Hydraulic Engineering, 1991, 117(2): 191~204
    49孔令双,曹祖德,李炎保.利用“有效风能”预报航道淤积.水道港口. 2004, 25(4):209~212.
    50张庆河,林全泓,秦崇仁等.黄骅港海域沿堤流现象遥感图像分析.中国港湾建设. 2004, (1):29~31
    51 Cellino, M., and Graf, W.H. Sediment-laden flow in open channels under noncapacity and capacity conditions. Journal of Hydraulic Engineering, 1999, 125(5): 455~462
    52 Gopu R. Potty and James H. Miller. Sediment models for the East Coast based on a priori information, geological data, and sediment inversions. J. Acoust. Soc. Am. 2006, 119(5):3226~3232
    53 Gopu Potty and James Miller. A preliminary sediment model for the Shallow-Water-2006 Experimental site on the New Jersey Coast. J. Acoust. Soc. Am. 2005, 118(3):2030~2042
    54李勇范,李从东,周宇辉.基于可拓原理的泊位淤积知识库建模方法研究.系统工程理论与实践. 2005, (9):126~130
    55陈一梅.沙质海岸河口航道回淤计算方法及其应用.河海大学学报. 2006, 28(6):82~84
    56 Patel, V.C., and Yoon, J.Y. Application of turbulence models to separated flow over rough surfaces. ASME Journal of Fluids Engineering, 1995, 117: 234~241
    57 Umeyama, M., and Gerritsen, F. Velocity distribution in uniform sediment-laden flows. ASCE Journal of Hydraulic Engineering, 1992, 118(2):229~45
    58 Woo, H.S., Julien, P.Y. and Rechardson, E.V. Suspension of large concentrations of sands. ASCE Journal of Hydraulic Engineering, 1988, 114(8): 888~898
    59 Yoon, J.Y., and Patel, V.C. Numerical model of turbulent flow over sand dune. ASCE Journal of Hydraulic Engineering, 1996, 122(1):10~17
    60 Yoon, J.Y., Patel, V.C., and Ettema, R. Numerical model of flow in ice-covered channel. ASCE Journal of Hydraulic Engineering, 1996, 122(1): 19~26
    61 De Kok J.M. A 3D finite difference model for the computation of near-and far-field transport of suspended sediment near a river mouth. Continental Shelf Research. 1992, 12(5/6): 625~642
    62林建恒,常道庆,马力等.海洋环境噪声预报建模与算法研究.舰船科学技术. 2004, 26(4):26~30
    63 CROUCH W W, BURT P J. The logarithmic dependence of surface-generated ambient-sea-noise spectrum level on wind speed. Journal of the Acoustical Society of America.1972, 51(3):1066~1072
    64许肖梅.浅海水声数据传输技术研究.厦门大学博士论文. 2002:62~63
    65朱锡清,李亚,孙红星.船舶螺旋桨叶片与艉部湍流场互作用噪声的预报研究.声学技术. 2006, 25(4):361~364
    66韩晶,黄建国,苏蔿.一种基于声线理论计算非相干平均声场的方法.系统仿真学报. 2007, (16):3653~3656
    67范敏毅,郭玉红,惠俊英.界面参数估计及传播损失的射线声学预报.声学学报. 2000, 25(6):528~531
    68陈小龙,范军,汤渭霖.分层浅海海洋环境噪声场的射线预报方法.声学技术. 2004, 23(2):79~83
    69李永平,毛卫宁.基于分层海洋射线传播模型的接收信号仿真.声学与电子工程. 2003, (69):12~15
    70 Del Grosso V A. New equation for the speed of sound in natural waters(with comparisons to other eauations). Acoust Soc Am. 1974, 56:1084~1091
    71 Yuch S H. West R. Wilson WJ, et al. Error sources and feasibility for microwave remote sensing of ocean surface salinity. IEEE Trans. Remote Sens. 2001, 39(5):1049~1059
    72张勐宁,刘金芳,毛可修等.中国海温度跃层分布特征概况.海洋预报. 2006, 23(4):51~58
    73张忠兵,马远良,杨坤德.浅海声速剖面的匹配波束反演方法.声学学报. 2005, 30(2):103~107
    74 Chapman, R. P. and Scott, H.D. Surface backscattering strengths measured overan extended range of frequencies and grazing angles. J. Acoust. Soc. Amer. 1964, 36:1735~1737
    75 McDaniel, S.T. Sea surface reverberation: a review. J. Acoust. Soc. Amer. 1993, 94:1905~1922
    76 Ogden, P.M. and Erskine, F.T. Surface scattering measurements using broadband explosive charges in the critical sea test experiments. J. Acoust. Soc. Amer.1994, 95:746~761
    77 Ogden, P.M. and Erskine, F.T. Surface and volume scattering measurements using broadband explosive charges in the critical sea test experiments. J. Acoust. Soc. Amer.1994, 96:2908~2920
    78 Thorsos, E.I. Acoustic scattering from a“Pierson-Moskowits”sea surface. J. Acoust. Soc. Amer.1990, 88:335~349
    79 Nicholas, M. Ogden, P.M. and Erskine, F.T. Improved empirical descriptions for acoustic surface backscatters in the ocean. IEEE J. Oceanic Eng.1998, 23:81~95
    80曹正良,张叔英,马在田. BICSQS模型与Biot-Stoll模型海底界面声波反射和散射的比较.声学学报. 2006, 31(5):299~398
    81 M.J. Buckingham. Wave propagation, stress relaxation, and grain-to-grain shearing in saturated, unconsolidated marine sediments. J. Acoust. Soc. Amer. 2000, 108(6):2796~2815
    82彭临慧,郁高坤,王桂波.海底介质模型及其声能透入机理研究.船舶力学. 2007, 11(1):128~135
    83 Muir T G, Horton C W, Sr, Thompson L A. The penetration of highly directional acoustic beams into sediments. Journal of Sound and Vibration, 1979, 64(4):539~551
    84 Altenburg R A, Chotiros N P, Faulkner C M. Plane- wave analysis of acoustic signals in a sandy sediment. JASA. 1991,89(1):165~170
    85 Maguer A, Fox Warren L J, Schmidt H, Pouliquen E, Bovio E. Mechanisms for subcritical penetration into a sandy bottom: Experimental and modelling results. JASA. 2000, 107(3):1215~1225
    86 Thorsos Eric I, Jackson D R, Williams K L. Modeling of subcritical penetration to interface roughness. JASA. 2000,107(1):263~277
    87 Simpson H J, Houston B H. Synthetic array measurements acoustical wavespropagating into a water-saturated sandy bottom for a smoothed and a roughened interface. JASA. 2000, 107(5):2329~2337
    88苏明旭,蔡小舒.超细颗粒悬浊液中声衰减和声速的数值模拟-4种模型的比较.上海理工大学学报. 2002, 24(1):21~30
    89郑刚,蔡小舒,王乃宁. Mie散射的数值计算.应用激光. 1992, 12(5):220~222
    90封光寅,章厚玉,张孝军等.泥沙群体颗粒平均粒径及平均沉速计算方法的修正.南水北调与水利科技. 2003, 1(6):36~38
    91田坦,樊世斌,关浩.大动态范围水声脉冲信号的精确幅度测量及应答.声学学报, 1995, l20(1):42~48
    92李嘉,周鲁,李克锋.泥沙粒径分布函数的分形征与吸附性能.泥沙研究. 2003, (3):17~20
    93凌鸿烈,孙耀秋,杨挺.长江口和杭州湾浮泥声参数测量.声学技术. 1997, 16(4):194~197
    94 Clay S, Herman M. Acoustical oceanography principles and applications. 1977
    95汪敏,胡小方.衍射增强计算机断层技术研究.物理学报. 2007, 56(8):4989~4993
    96杨勤海.岩溶地质灾害勘察中井间地震波CT技术的应用.勘察科学技术. 2005, (2):59~61
    97李张明,练继建,戚蓝.地震波层析成像技术探测复杂岩体结构应用研究.岩石力学与工程学报. 2004, 23(1):107~111
    98 Asawaka, E. and Kawanaka, T. Seismic ray tracing using linear travel time interpolation. Geophysics, 1993, 57(2):326~333
    99郭业才,赵俊渭,郭燚.组合圆形活塞声源远场指向性的仿真研究.系统仿真学报, 2002, 14(2):522~524
    100栾桂冬,张金铎,王仁乾.压电换能器和换能器阵.北京大学出版社, 1990:297~312
    101张学工.关于统计学习理论与支持向量机.自动化学报. 2000, 26(1):32~42
    102石纯一.基于解释的机器学习方法.清华大学出版社, 1997:186~213
    103 Cortes C. and V. Vapnik. Support vector networks. Machine Learning. 1995, (20):273~297
    104 V N. Vapnik.著,许建华,张学工译.统计学习理论.电子工业出版社, 2004:253~259
    105邓乃扬,田英杰.数据挖掘中的新方法一支持向量机.科学出版社, 2004:49~164
    106 Chih Wei Hsu, Chih Jen Lin. A simple decomposition method for support vector machines .Machine Learning. 2002, 46(1):291~314
    107 Keerthi S S., Gilbert E. Convergence of a generalized SMO algorithm for SVM classifier design. Machine Learning. 2002, 46(13):351~360
    108王雷,张欣刚,王洪跃等.基于支持向量回归算法的汽轮机热耗率建模.动力工程. 2007, 27(1):19~23.
    109 Kulkarni A , Jayaraman V K, Kulkarni B D. Support vector classification with parameter tuning assisted by agent2based technique. Computers and Chemical Engineering. 2004, 28(3):311~318
    110 Meziane Yacoub, Younes Bennani. Features selection and architecture optimization in connectionist systems. International Journal of Neural Systems, 2000, 10(5):379~395
    111范劲松,方廷建.特征选择和提取要素的分析及其评价.计算机工程与应用. 2001(13):95~99
    112朱利民,钟秉林,贾民平.振动信号短时分析方法及在机械故障诊断中的应用.振动工程学报. 2000, 13(2):400~405
    113 Goodman S, HunterA. Feature extraction algorithms for pattern classification. IEEE Conference Publica tion on Artif icial Neura l Network.1999: 738~742
    114苟博,黄贤武.支持向量机多类分类方法.数据采集与处理. 2006, 21(3): 334~339
    115李潮锐.郑碧华实验误差分析中的概念及意义.中山大学学报. 2003, 42:150~153

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700