用户名: 密码: 验证码:
纳米CeO_(2p)/Zn-4.5%Al-RE-Mg-Ti复合材料的高能超声制备及耐蚀性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为钢铁材料保护镀层的纳米CeO2/Zn-4.5%Al-RE-Mg-Ti(ZA)复合材料(ZACs),具有优良的耐蚀性及良好的可镀性等优点。本文首先介绍了颗粒增强金属基纳米复合材料(PRMMNCs)的研究方法及现状,并设计了一套高能超声搅拌制备装置,然后用SEM、EDS、TEM、XRD、DSC、TG、AES、XPS和EIS等多种现代分析和测试手段,着重研究了纳米CeO2的表面改性工艺、CeO2/ZA体系的润湿特性,进而较系统地研究了纳米CeO2p/ZA复合材料的机械搅拌与高能超声搅拌的复合制备工艺、凝固特征、力学性能和耐蚀性能及机理,最后探讨了复合材料在热镀方面的应用。
     试验结果表明所设计的高能超声搅拌装置具有防氧化、控温准确、超声搅拌效果佳的特点,能够制备MMNCs。计算结果表明Ti制带过渡段阶梯形超声变幅杆在熔体中的振幅为53.41μm,声强达到了1.30×106 W/m2,声压幅值为7.58 MPa。
     TEM和AES分析结果表明,超声表面活性剂包覆改性在纳米CeO2表面形成了一层厚度约为20 nm的物理包覆层,显著提高了微粒的分散性;TG分析结果表明CeO2表面的包覆层在ZACs制备过程中能够完全炭化,热力学分析证实该炭化层能与包裹在CeO2表面的氧化膜(主要成分为ZnO)反应,消除氧化膜对CeO2/ZA体系润湿的不利影响,提高体系的润湿性。
     两相润湿过程力学和动力学判据的讨论结果表明,在高能超声作用下纳米CeO2粒子很难直接进入到ZA熔体中。因而采用卷入能力强、分散能力差的机械搅拌法制备复合材料的初步混合体,然后再用高能超声对卷入的CeO2颗粒团进行分散,从而得到名义质量分数1~6%的ZACs。FE-SEM和TEM观察的结果表明,用该法制备的ZACs中纳米分散较均匀。
     OM和XRD结果表明,ZACs的室温金相组织主要包括呈小岛状分布的α(Al)+β(Zn)共析组织和呈层片状分布的α+β组织。TEM的研究结果表明,纳米CeO2与基体界面清晰、光滑,无反应产物;纳米CeO2分布在初生和共晶β相中,且与基体无明显位向关系,复合材料中的CeO2颗粒是在初生相长大过程中被捕获的。
     力学性能测试结果表明,适量纳米CeO2的加入改善了ZACs的力学性能。与基体合金相比,的抗拉强度和弹性模量明显提高,延伸率降低。但当纳米CeO2质量分数大于3%时,使ZACs的抗拉强度比3%时略有下降。ZACs的断裂机制为脆性断裂。
     腐蚀试验研究结果表明,ZACs的耐蚀性能明显优于基体合金的,主要是由于加入的纳米CeO2通过提供氧空位和变价作用来耗氧,阻碍了腐蚀过程的进行,从而提高复合材料的耐蚀性。
     热镀工艺的初步探讨结果表明,在本研究的热镀工艺条件下,纳米CeO2含量为2%的ZACs的热镀质量好,表面平整,没有漏镀、微裂、鼓包等表面缺陷,镀层厚度约为30μm,而且与基体的结合力较好。
The steel protective covering materials nano-CeO2p/Zn-4.5%Al-RE-Mg-Ti (ZA) nanocomposites (ZACs), whose fabrication process has become one of the hot spots in metal matrix composites research, feature with good corrosion resistance, adhesion and excellent processing performance. In present study, the fabrication techniques of nano-particles reinforced metal matrix composites (PRMMNCs) were firstly introduced and compared. The high-intensity ultrasonic stirring technique, which could refine the molten alloy, disperse reinforcement particulates and enhance the wettability of the particulate/molten alloy couple, was selected to fabricate nano-CeO2 particulates reinforced Zn-based composites. Then, a suit of high-intensity ultrasonic stirring device was assembled. Moreover, the surface modification to nano-CeO2 particulates, wetting processes between particles and molten ZA alloy, mechanical-high intensity ultrasonic combination stirring processes, solidification characteristics, mechanical properties, as well as corrosion resistance and corrosion mechanism of the ZACs were systematically investigated by the help of SEM, EDS, TEM, XRD, DSC, TG, AES, XPS and EIS. Finally, the application of the ZACs in hot dipping is discussed.
     The tests show that the designed ultrasonic stirring device, which has the functions of antioxidation for molten metal and accurate temperature control, as well as a good stirring effect, can be used to fabricate MMNCs. The calculation results also exhibite that the vibration amplitude, ultrasonic intensity and pressure amplitude of the titanium stepped ultrasonic transformer with a transition section in molten are 53.41μm, 1.30×106 W/m2, 7.58 MPa, respectively.
     The TEM, FTIR and AES investigations show that nano-CeO2 particles are covered by a physical surface covering with its thickness about 20 nm by the help of ultrasonic agitation, and the distribution of the nano-particles is obviously improved. Besides, the TG result indicates that the carbonization of this covering layer can take place in the fabrication of ZACs. From classical thermodynamic point of view, reactions between the carbonization layer and zinc oxide may carry out at the interface, which promotes the wetting via getting rid of the block of the zinc oxide.
     According to the mechanics and dynamics discussion of the system’s wetting process, it is very difficult for nano-CeO2 particulates to be directly dispersed into ZA melt by high-intensity ultrasonic. Thus, nano-CeO2 particulates are mechanically engulfed into ZA by machine stirring process, and subsequently dispersed by high-intensity ultrasonic stirring technique. By doing this, the ZACs with the nominal mass fractions of 1, 2, 3, 4, 5 and 6%, were obtained. Based on the FE-SEM and TEM observations, nano-CeO2 particles could be homogeneously distributed in the ZACs.
     The optical microscope and SEM observations clarify that the microstructure of ZACs at room temperature consists of island-like eutectoid structure ofα(Al)+β(Zn) and lamellar structure ofα+β. The investigation of the solidification process of the ZACs indicates that no reaction production exists on the clear and smooth interface between CeO2 and the matrix. Furthermore, nano-CeO2 are dispered in primary and eutecticβ(Zn), but no ctystallographic orientation relations are found amongβ(Zn),α(Al) and CeO2. Thereby nano-CeO2 particulates in ZACs are arrested by growingβgrains.
     An optimized amount of nano-CeO2 addition could improve the mechanical properties of ZA matrix. Compared with the matrix alloy, the tensile strength and elastic modulus of the composites increase obviously with the increment of mass fraction of nano-CeO2 particles, while the elongation decreases. However, the increased large mass fraction deteriorates the distribution of CeO2 particles in matrix alloy, which leads to the decrease of mechanical properties of ZACs. The tensile fracture also shows that the damage mechanism of the composites vary into a brittle fracture pattern.
     Furthermore, the corrosion tests results display that the ZACs exhibits better corrosion resistance than the ZA alloy. The mainly reason is that the oxygen, which is crucial for the corrosion process of ZACs, is consumed by nano-CeO2 particulates via the storage and release capacity (OSRC) and redox properties.And by doing so, the ZACs’s corrosion resistance is improved.
     Finally, primary exploring works on of the ZAC layer with its mass fraction 2% reveal that hot dip quality is qualified in the condition of this study. The hot dip coating, which exhibits good adhesion with steel matrix, is about 30μm and almost has little surface defects, such as pretermission of plating, micro-cracks, and bubbles.
引文
[1] Arridge R G C, Baker A A, Cratchley D. Metal coated fibres and fibre reinforced metals [J]. Journal of Scientific Instruments, 1964, 41(5): 259~261.
    [2] Kang C G, Yun K S. Fabrication of metal-matrix composites by the die-casting technique and the evaluation of their mechanical properties [J]. Composite Science and Technology, 1996, 62(1-3): 116~123.
    [3] Davis L C, Andres C, Allison J E. Microstructure and strengthening of metal matrix composites [J]. Materials Science and Engineering A, 1999, 249(1-2): 40~45.
    [4] Kaczmar J W, Pietrzak K. The production and application of metal matrix composite materials [J]. Journal of Materials Processing Technology, 2000, 106: 58~67.
    [5] Hashim J, Looney L, Hashmi M S J. Particle distribution in cast metal matrix composites-Part I [J]. Journal of Materials Processing Technology, 2002, 123 (2): 251~257.
    [6] Rosso M. Ceramic and metal matrix composites: Routes and properties [J]. Journal of Materials Processing Technology, 2006, 175 (1): 364~375.
    [7]郝斌,王洪斌,蔡元华,等.颗粒增强金属基复合材料制备工艺评述[J].热加工工艺, 2005, 4: 62~66.
    [8]郝斌,崔华,李永兵,等.锌基复合材料制备工艺研究进展[J].铸造, 2005, 54(12): 1179~1182.
    [9] Gu J, Zhang X, Gu M. Effect of surface coating of particulate on the overall damping of particulate-reinforced metal matrix composites [J]. Computational Materials Science, 2006, 36(3): 338~344.
    [10] Murato?lu M, Yilmaz O, Aksoy M. Investigation on diffusion bonding characteristics of aluminum metal matrix composites (Al/SiCp) with pure aluminum for different heat treatments [J]. Journal of Materials Processing Technology, 2006, 178(1-3): 211~217.
    [11] Li Ziquan, Zhou Hengzhi, Luo Xinyi, et al. Aging microstructural characteristics of ZA-27 alloy and SiCp/ZA-27 composite [J]. Transactions of Nonferrous Metals Society of China, 2006, (16): 98~104.
    [12]牛玉超,边秀房,耿浩然. Al2O3p/ZA35锌基复合材料的制备及其磨擦性能[J].中国有色金属学报, 2004, 14(4): 602~606.
    [13] Gu Jinhai, Zhang Xiaonong, Gu Mingyuan. Effect of fiber coating on the longitudinal damping capacity of fiber-reinforced metal matrix composites [J]. Materials Letters, 2005, 59(2~3): 180~184.
    [14] Mizumoto M, Ohgai T, Kagawa A. Characterization of fiber-reinforced metal matrix composites fabricated by low-pressure infiltration process [J]. Materials Science and Engineering A, 2005, 413: 521~526.
    [15] Vijayaram T R, Sulaiman S, Hamouda A M S, et al. Fabrication of fiber reinforced metal matrix composites by squeeze casting technology [J]. Journal of Materials Processing Tech., 2006, 178 (1): 34~38.
    [16]徐金城,邓小燕,夏龙,等.炭纤维增强铜锡锌基复合材料的摩擦磨损性能研究[J].摩擦学学报, 2005, 25(6): 588~592.
    [17] Kang C G, Youn S W. Mechanical properties of particulate reinforced metal matrix composites by electromagnetic and mechanical stirring and reheating process for thixoforming [J]. Journal of Materials Processing Technology, 2004, 147(1): 10~22.
    [18] Lee Kon Bae, Kwon, Hoon. Interracial reaction in SiCp/A1 composite fabricated by pressureless infiltration [J]. Scripta Materialia, 1997, 36(8): 847~852.
    [19] Choi Seong-Min, Awaji Hideo. Nanocomposites-a new material design concept [J]. Science and Technology of Advanced Materials, 2005, 6(1): 2~10.
    [20] Zhang Z, Chen D L. Consideration of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites: a model for predicting their yield strength [J]. Scripta Materialia, 2006, 54(7): 1321~1326.
    [21] Shi L, Sun C, Gao P, et al. Mechanical properties and wear and corrosion resistance of electrodeposited Ni-Co/SiC nanocomposite coating [J]. Applied Surface Science, 2006, 252(10): 3591~3599.
    [22]魏霖,陈哲,严有为.块体金属基纳米复合材料的制备技术[J].特种铸造及有色合金, 2006, 26(7): 420~423.
    [23] Mo C B, Cha S I., Kim K T, et al. Fabrication of carbon nanotube reinforced alumina matrix nanocomposite by sol-gel process [J]. Materials Science & Engineering A, 2005, 395(1): 124~128.
    [24]龚荣洲,沈翔,张磊,等.金属基纳米复合材料的研究现状和展望[J].中国有色金属学报, 2003, 13 (5): 1311~1320.
    [25]席生岐,周敬恩,朱蕊花.高能球磨制备Al3Ti/Al块体纳米晶复合材料[J].中国有色金属学报, 2002, 12 (1): 115~119.
    [26] Joardar J, Pabi S K, Murty B S. Milling criteria for the synthesis of nanocrystalline NiAl by mechanical alloying [J]. Journal of Alloys and Compounds, 2007, 429(1-2): 204~210.
    [27]骆心怡,朱正吼,卢翔,等.高能球磨制备纳米CeO2/Al复合粉末[J].热加工工艺, 2003, 2: 14~16.
    [28] Marques M T, Livramento V, Correia J B, et al. Production of copper–niobium carbide nanocomposite powders via mechanical alloying [J]. Materials Science and Engineering A, 2005, 399 (1-2): 382~386.
    [29]李建林,江东亮,谭寿洪.原位生成TiC/Ti5Si3纳米复合材料的显微结构研究[J].无机材料学报, 2000, 15 (2): 336~340.
    [30] Valiev R Z, Islamgaliev R K, A lexandrov IV. Bulk nano-structured materials from severe plastic deformation [J]. P rogress Materials Science, 2000, 45 (2): 103~189.
    [31] Lee Z, Zhou B F, Valiev R Z, et al. Microstructure and microhardness of cryomilled bulk nanocrystalline Al-7.5Mg alloy consolidated by high pressure torsion [J]. Scripta Materialia, 2004, 51: 209~214.
    [32] Sabirov I, Pippan R. Formation of a W-25Cu nanocomposite during high pressure torsion [J]. Scripta Materialia, 2005, 52: 1293~1298.
    [33] Islamgaliev R K, Buchgraber W, Kolobov Y R, et al. Deformation behavior of Cu-based nanocomposite processed by severe plastic deformation [J]. Materials Science and Engineering A, 2001, 319~321: 872~876.
    [34]何春年,赵乃勤.纳米相增强铝基复合材料制备技术的研究进展[J].兵器材料科学与工程, 2005, 28(3): 53~57.
    [35]丁俭,赵乃勤,师春生,等.纳米相增强铜基复合材料制备技术的研究进展[J].兵器材料科学与工程, 2005, 28(5): 65~68.
    [36] Alexandrov I V, Zhu Y T, Lowe T C, et al. Microstrctures and properties of.nanocomposites obtained through SPTS consolidation of powders [J]. Metallurgical and Materials Transactions A, 1998, 29 A(9): 2253~2260.
    [37]郭强,严红革,陈振华,等.多向锻造技术研究进展[J].材料导报, 2007, 21(2): 106~108.
    [38] Srinivasan D, Chattopadhyay K. Hardness of high strength nanocomposite Al-X-Zr (X=Si, Cu, Ni) alloys [J]. Materials Science and Engineering A, 2004, 375-377(15): 1228~1234.
    [39] Hirosawa S, Kanekiyo H, Miyoshi T. Unusual effects of Ti and C additions on structural and magnetic properties of Nd–Fe–B nanocomposite magnets in a B-rich and Nd-poor composition range [J]. Journal of Magnetism and Magnetic Materials, 2004, 281(1): 58~67.
    [40] Li X H, Guan Y, Li W, et al. Study of the formation of crystal texture inα-Fe/Nd2Fe14B nanocomposite magnets prepared by controlled melt-spinning [J]. Materials Letters, 2007, 61(13): 2728~2730.
    [41]李周,肖柱,郭明星,等.双熔体混合-快速凝固原位生成TiB2/Cu复合材料的研究[J].材料热处理学报, 2006, 27(5): 6~10.
    [42] Laha T, Kuchibhatla S, Seal S, et al. Interfacial phenomena in thermally sprayed multiwalled carbon nanotube reinforced aluminum nanocomposite [J]. Acta Materialia, 2007, 55(3): 1059~1066.
    [43] Morks M F, Fahim N F, Francis A A, et al. Fabrication and characterization of electro-codeposited Ni/Zr-silicate composite coating [J]. Surface and Coatings Technology, 2006, 201(1-2): 282~286.
    [44] Shibli S M A, Beenakumari K S, Suma N D. Nano nickel oxide/nickel incorporated nickel composite coating for sensing and estimation of acetylcholine [J]. Biosensors and Bioelectronics, 2006, 22(5): 633~638.
    [45] Shi L, Sun C F, Zhou F, et al. Electrodeposited nickel–cobalt composite coating containing nano-sized Si3N4 [J]. Materials Science and Engineering A, 2005, 397(1-2): 190~194.
    [46]夏法锋,吴蒙华,贾振元,等.纳米Ni-SiC非晶态复合镀层的制备工艺及性能研究[J].功能材料, 2007, 38(1): 127~134.
    [47]姚素薇,姚颖悟,张卫国,等. Ni-W/ZrO2纳米复合镀层耐高温氧化性能分析[J].天津大学学报, 2007, 40(3): 308~311.
    [48]黄新民,吴玉程,谢跃勤,等. Ni-P-纳米TiO2化学复合镀层[J].中国表面工程, 2001, 3: 30~32.
    [49] Luo Xinyi, He Jianping, Li Shunlin. CeO2/Zn nanacomposite coating by electrodeposition [J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2002, 19(2): 161~165.
    [50]贾嘉.溅射法制备纳米薄膜材料及进展[J].半导体技术, 2004, 29(7): 70~73.
    [51] Pei Y T, Galvan D, Hosson J Th M De, et al. Advanced TiC/a-C:H nanocomposite coatings deposited by magnetron sputtering [J]. Journal of the European Ceramic Society, 2006, 26(4-5): 565~570.
    [52] Klostermann H, B?cher B, Fietzke F, et al. Nanocomposite oxide and nitride hard coatings produced by pulse magnetron sputtering [J]. Surface and Coatings Technology, 2005, 200(1-4): 760~764.
    [53] Birkholz M, Albers U, Jung T. Nanocomposite layers of ceramic oxides and metals prepared by reactive gas-flow sputtering [J]. Surface and Coatings Technology, 2004, 179(2-3): 279~285.
    [54]陈彦,马书懿. Au/锗/氧化硅纳米多层膜/p-Si结构的电致发光机制研究[J].功能材料, 2007, 38(1): 142~147.
    [55] Zeman P, Cerstvy R, Mayrhofer P H, et al. Structure and properties of hard and superhardZr-Cu-N nanocomposite coatings [J]. Materials Science and Engineering A, 2000, 289: 189~197.
    [56] Moussatov A, Granger C, Dubus B. Ultrasonic cavitation in thin liquid layers [J]. Ultrasonics-Sonochemistry, 2005, 12(6): 415~422.
    [57] Amari M, Gusev V, Joly N. Transient unidirectional acoustic streaming in annular resonators [J]. Ultrasonics, 2004, 42 (1): 573~578.
    [58] Eskin G I, Eskin D G. Production of natural and synthesized aluminum-based composite materials with the aid of ultrasonic (cavitation) treatment of the melt [J]. Ultrasonics Sonochemistry, 2003, 10 (4~5): 297~301.
    [59] Koval, Yu N. Effect of ultrasonic vibrations on interface strength in composites of shape memory alloy with metallic matrix [J]. Journal De Physique, 2003, 112: 1159~1162.
    [60]潘蕾,陈锋,吴申庆,等.高能超声作用下金属基复合材料的制备[J].机械工程材料, 2003, 27 (7) : 12~15.
    [61] Yang Y, Lan J, Li X C. Study on bulk aluminum matrix nano-composite fabricated by ultrasonic dispersion of nano-sized SiC particles in molten aluminum alloy [J]. Materials Science and Engineering A, 2004, 380: 378~383.
    [62] Lan Jie, Yong Yang, Li Xiaochun. Microstructure and microhardness of SiC nanoparticles reinforced magnesium composites fabricated by ultrasonic method [J]. Materials Science and Engineering A, 2004, 386: 284~290.
    [63]潘蕾,吴申庆,陈锋.高能超声作用下复合材料的制备及性能[J].铸造, 2003, 52(4): 235~238.
    [64] Fan C, Inoue A. Ti-containing Zr based bulk amor-phous/nanocrystalline composite alloys [J]. Materials Transactions of Jpn Inst Met, 2000, 41 (11): 1467~1470.
    [65] Iwama S, Fukaya T, Tanaka K, et al. Nanocomposite powders of Fe-C system produced by the flowing gas plasma processing [J]. Nanostruct Materials, 1999, 12 (1): 241~244.
    [66] Branagan D J, Swank W D, Haggard D C, et al. Wear-resistant amorphous and nanocomposite steel coatings [J]. Metallurgical and Materials Transactions A, 2001, 32 A: 2615~2621.
    [67] Carpenter E E, Kumbhar A, W iemann J A, et al. Synthesis and magnetic properties of go ld-iron-gold nanocomposites [J]. Materials Science and Engineering A, 2000, 286: 81~86.
    [68]王浪云,涂江平,杨友志,等.多壁纳米碳管/Cu基复合材料的摩擦磨损特性[J].中国有色金属学报, 2001, 11 (3): 367~371.
    [69] Laurent V, Rado C, Eustathopoulos N. Wetting kinetics and bonding of Al and Al alloys onα–SiC [J]. Materials Science and Engineering A, 1996, 205: 1~8.
    [70] Haieh S H, Yang T J. Study of the composite coating of SiC particles dispersed in an electroless nickel matrix [J]. Key Engineering Materials, 2003, 249: 195~198.
    [71] Srikanth Narasimalu, Hassan Syed Fida. Energy dissipation studies of Mg-based nanocomposites using an innovative circle-fit approach [J]. Journal of Composite Materials, 2004, 38(22): 2037~2047.
    [72] Wu Zhonghua, Robert E Benfield, Guo Lin, et al. Cerium oxide nanoparticles coated by surfactant sodium bis (2-ethylhexyl) sulphosuccinate (ATO): local atomic structures and X-ray absorption spectroscopic studies [J]. Journal of Physics: Condensed Matter, 2001, 13: 5269.
    [73]彭华湘,陈彦模,朱美芳,等.纳米CeO2的表面改性及其在聚丙烯中的团聚性研究[J].中国稀土学报, 2004, 22(6): 791~794.
    [74]吴崇浩,王世敏.纳米微粒表面修饰的研究进展[J].化工新型材料, 2002, 30(7): 1.
    [75]宿辉,曹茂盛,王正平,等. SiC颗粒的表面修饰及结构表征[J].材料工程, 2005, 2: 37~40.
    [76]王世兴,王命泰,雷勇,等.纳米TiO2的高分子“锚定位”包覆[J].无机材料学报, 2000, 15(1): 45~49.
    [77] Triantafyllidis D, Li L, Stott F H. The effects of laser-induced modification of surface roughness of Al2O3-based caramics on fluid contact angle [J]. Materials Science and Engineering A, 2005, 390: 271~277.
    [78] Swiler T P, Loehman R E. Molecular dynamics simulations of reactive wetting in metal-ceramic systems [J]. Acta Materialia 2000, 48: 4419~4424.
    [79] Bahramian Alireza, Danesh Ali. Prediction of solid-fluid interfacial tension and contact angle [J]. Journal of Colloid and Interface Science, 2004, 27(9): 206~212.
    [80]王大勇,冯吉才.杨氏方程的能量求解法及润湿角计算模型[J].焊接学报, 2002, 23(6): 59~61.
    [81] Eustathopoulos N. Dynamics of wetting in reactive metal/ceramic systems [J]. Acta Materials, 1998, 46(7): 2319~2327.
    [82] Cees W M van der Geld. Prediction of dynamic contact angle histories of a bubble growing at a wall [J]. International Journal of Heat and Fluid Flow, 2004 (25): 74~80.
    [83] Cantin S, Bouteau M, Benhabib F, et al. Surface free energy evaluation of well-ordered Langmuir–Blodgett surfaces comparison of different approaches [J]. Colloids and Surfaces A: Physicochem. Engineering Aspects, 2006, 276:107~115.
    [84] Emil Chibowski, Rafael Perea-Carpio. Problems of contact angle and solid surface free energy determination [J]. Advances in Colloid and Interface Science, 2002, (98): 245~264.
    [85] Bardos D C. Contact angle dependence of solid probe-liquid drop forces in AFM measurements [J]. Surface Science, 2002, 517: 157~176.
    [86] Rodrigues Joao Filipe, Saramago Benilde, Fortes Manuel Amaral. Apparent Contact Angle and Triple-Line Tension of a Soap Bubble on a Substrate [J]. Journal of Colloid and Interface Science 2001, 239: 577~580.
    [87]李戈扬,中江秀雄,汪磊,等.液态铝的润湿性测量[J].理化检验—物理分册, 1999, 35(5): 212~214.
    [88] Eick J D, Good R J, Neumann A W. Thermodynamics of contact angles. II. Rough solid surfaces [J]. Journal of Colloid and Interface Science, 1975, 53(2): 235~238.
    [89] Mykhaylyk T A, Evans S D, Fernyhough C M, et al. Surface energy of ethylene-co-1-butene copolymers determined by contact angle methods [J]. Journal of Colloid and Interface Science, 2003, 260(1): 234~239.
    [90] Van Oss C J, Roberts M J, Good R J, et al. Determination of the apolar component of the surface tension of water by contact angle measurements on gels [J]. Advance in Collids and Science, 1987, 23(4): 369~373.
    [91] Kacar A S, Rana F, Stefanescu D M. Kinetics of gas to liquid transfer of particles in metal matrix composites [J]. Materials Science and Engineering A, 1991, 135: 95~100.
    [92] Mortensen A, Jin I. Solidification processing of metal matrix composites [J]. International Materials Reviews, 1992, 37(2): 101~105.
    [93]李昊,桂满昌,周彼得.搅拌铸造金属基复合材料的热力学和动力学机制[J].中国空间技术, 1997(1): 9~11.
    [94]郝斌,崔华,蔡元华,等.搅拌铸造法制备金属基复合材料的热力学和动力学机制[J].稀有金属快报, 2005, 24(6): 22~25.
    [95] Liu Hanlian, Huang Chuanzhen, Wang Jun, et al. Fabrication and mechanical properties of Al2O3/Ti (C0.7N0.3) nanocomposites [J]. Materials Research Bulletin, 2006, 41(7): 1215~1224.
    [96] Goh C S, Wei J, Lee L C, et al. Development of novel carbon nanotube reinforced magnesium nanocomposites using the powder metallurgy technique [J]. Nanotechnology, 2006, 17: 7~12.
    [97] Zhang Rui, Gao Lian, Guo Jingkun. Effect of Cu2O on the fabrication of SiCp/Cu nanocomposites using coated particles and conventional sintering [J]. Composites Part A: Applied Science and Manufacturing, 2004, 35(11): 1301~1305.
    [98] Ari-Gur P, Sariel J, Vemuganti S. Residual stresses and texture in Ni/SiC nanocomposite coatings [J]. Journal of Alloys and Compounds, 2007, 434: 704~706.
    [99] Groh S, Devincre B, Kubin L P, et al. Size effects in metal matrix composites [J]. Materials Science and Engineering A, 2005, 400-401: 279~282.
    [100] Vovchenko L, Matzui L, Zakharenko M, et al. Thermoexfoliated graphite as support for production of metal-graphite nanocomposites [J]. Journal of Physics and Chemistry of Solids, 2004, 65(2-3): 171~175.
    [101] Tavoosi M, Karimzadeh F, Enayati M H. Fabrication of Al-Zn/α-Al2O3 nanocomposite by mechanical alloying [J]. Materials Letters, 2008, 62(2): 282~285.
    [102] Praveen B M, Venkatesha T V, Arthoba Naik Y, et al. Corrosion studies of carbon nanotubes-Zn composite coating [J]. Surface & Coatings Technology, 2007, 201(12): 5836~5842.
    [103] Dashtbayazi M R, Shokuhfar A. Statistical modeling of the mechanical alloying process for producing of Al/SiC nanocomposite powders [J]. Computational Materials Science, 2007, 40(4): 466~479.
    [104]王乾,盛雪莲.纳米CeO2/Zn金属基复合材料的制备[J].内江科技, 2006, 7: 141.
    [105]王乾,汤小东.纳米CeO2/Zn金属基复合材料在锌镀层中的应用[J].大众科技, 2006, 3: 61~62.
    [106]陈永来,吕宏军,张宇玮,等.纳米级SiCp/6066Al复合材料的制备与力学性能研究[J].宇航材料工艺, 2005, 2: 57~58.
    [107]王淼,李振华,鲁阳,等.纳米材料应用技术的新进展[J].材料科学与工程, 2000, 18(1): 103~105.
    [108]贺春林,刘常升,孙旭东,等.纳米SiC颗粒增强铝基复合材料的拉伸性能[J].东北大学学报, 2005, 26(6): 554~557.
    [109]田晓风,肖伯律,樊建中,等.纳米SiC颗粒增强2024铝基复合材料的力学性能研究[J].稀有金属, 2005, 29(4): 521~525.
    [110]王旭东,周伟峰,孙东柏. SiC纳米粒子增强锌基耐蚀涂层的制备及性能研究[J].现代表面技术研究与应用, 2005, 10: 54~55.
    [111]郭永春,李高宏.纳米AlN颗粒增强Al基复合材料的制备与力学性能研究[J].热加工工艺, 2002, 3: 43~44.
    [112]张春华,杨洪刚,张松,等.氧化铈对搪瓷涂层组织及摩擦磨损性能的影响[J].摩擦学学报, 2005, 25(3): 198~202.
    [113] Hinton B R W. Corrosion inhibition with rare earth metal salts [J]. Journal of Alloys and Compounds, 1992, 180 (1-2): 15~25.
    [114] Hinton B R W, Arnott D R. The characteristics of corrosion inhibiting film formed in the presence of rare earth cations [J]. Microstructure Science, 1989, 17: 311~320.
    [115]常华,骆心怡,李顺林,等.高能球磨纳米CeO2/Zn复合粉末的热压烧结[J].材料工程, 2006, 7: 35~38, 42.
    [116] Luo X Y, Zuo D W, Wang M. Preparation and hot-dip galvanizing application of CeO2/Zn nanocomposite [J]. Transactions of Nonferrous Metals Society of China, 2005, 15(S3): 203~207.
    [117]何建平,骆心怡,李顺林.纳米氧化铈微粒对锌镀层结构和耐蚀性能的影响[J].稀土, 2003, 24(1): 24~27.
    [118] Zhang Xiyan, Wang Tongwen, Jiang Wenqing, et al. Preparation and characterization of three-dimensionally ordered crystalline macroporous CeO2 [J]. Chinese Chemical Letters, 2005, 16(8): 1109~1112.
    [119]王艳荣.纳米氧化铈的资源及应用[J].广州化工, 2005, 33(5): 24~26.
    [120]左晓菲,沈明,马桂林.纳米CeO2的形貌控制与表征[J].中国稀土学报, 2006, 24(2): 247~250.
    [121]郭广生,李铎,王志华,等.激光蒸凝法制备氧化铈纳米粒子[J].稀有金属材料与工程, 2005, 34(6): 928~931.
    [122]朱兆武,龙志奇,崔大立,等.超细CeO2粉体的制备及其紫外线吸收性能[J].中国有色金属学报, 2005, 15(3): 435~440.
    [123] Yoshimichi Namai. The dynamic behaviour of CH3OH and NO2 adsorbed on CeO2 (111) studied by noncontact atomic force microscopy [J]. Nanotechnology, 2004, 15(S): 49~54.
    [124] Henderson M A, Perkins C L, Engelhard M H, et al. Redox properties of water on the oxidized and reduced surfaces of CeO2(111) [J]. Surface Science, 2003, 526(1-2): 1~18.
    [125] Padeste Celestino, Cant Noel W, Trimm David L. The influence of water on the reduction and reoxidation of ceria [J]. Catalysis Letters, 1993, 18(3): 305~316.
    [126] Nunan J, Robota H, Cohn M, et al. Physicochemical properties of Ce-containing three-way catalysts and the effect of Ce on catalyst activity [J]. Journal of Catalysis, 1992, 133(2): 309~324.
    [127] Yao H C, Yao Y F. Ceria in automotive exhaust catalysts I oxygen storage [J]. Journal of Catalysis, 1984, 86(2): 254~265.
    [128]朱伟长,钱元英,许盘凤.二氧化铈纳米粒子的制备[J].安徽工业大学学报, 2004, 21(4): 282~284.
    [129]骆心怡,何建平,朱正吼,等.纳米氧化铈颗粒对电沉积锌层耐蚀性的影响[J].材料保护, 2003, 36(1): 1~4.
    [130] Otsuka Kiyoshi, Hatano Masaharu, Morikawa Akira. Hydrogen from water by reduced cerium oxide [J]. Journal of Catalysis, 1983, 79 (2): 493~496.
    [131] Otsuka Kiyoshi, Murakoshi Shigeyuki, Morikawa Akira. Potential metal oxides for the production of hydrogen from water by a reduction-oxidation cycle using carbon as a reductant [J]. Fuel Processing Technology, 1983, 7(3): 203~211.
    [132]朱利敏,彭晓. CeO2改性的渗铬涂层及氧化性能研究[J].腐蚀科学与防护技术, 2005, 17(2): 63~68.
    [133] Tagawa H, Gurel S. Application of steel channels as stiffeners in bolted moment connections [J]. Journal of Constructional Steel Research, 2005, 61(12): 1650~1671.
    [134]张晓云,马颐军,孙志华.部分钢铁材料在北京地区腐蚀规律研究[J].腐蚀与保护, 2004, 25(7): 277~280.
    [135] Zhong L, Xiao S, Hu J, et al. Application of polyaniline to galvanic anodic protection on stainless steel in H2SO4 solutions [J]. Corrosion Science, 2006, 48 (12): 3960~3968.
    [136]梁彩凤,侯文泰.碳钢、低合金钢16年大气暴露腐蚀研究[J].中国腐蚀与防护学报, 2005, 25(1): 1~6.
    [137]孙跃,胡津.金属腐蚀与控制[M].哈尔滨:哈尔滨工业大学出版社, 2003: 1~2.
    [138]林翠,李晓刚,王光雍.金属材料在污染大气环境中初期腐蚀行为和机理研究进展[J].腐蚀科学与防护技术, 2004, 16(2): 89~95.
    [139]曾荣昌,韩恩厚.材料的腐蚀与防护[M].北京:化学工业出版社, 2006, 5: 10.
    [140]顾春雷,张伟强,金花子,等.锌及锌铝合金研究及应用现状[J].有色金属, 2003, 55(4): 44~47.
    [141] Amadeh A, Pahlevani B, Heshmati-Manesh S. Effects of rare earth metal addition on surface morphology and corrosion resistance of hot-dipped zinc coatings [J]. Corrosion Science, 2002, 44: 2321~2331.
    [142] Abd El Aal E E. On the pitting corrosion currents of zinc by chloride anions [J]. Corrosion Science, 2004, 46: 37~49.
    [143]张启富,刘邦津,仲海峰,等.热镀锌技术的最新进展[J].钢铁研究学报, 2002, 14(4): 65~72.
    [144]陈冬,金向雷.中国热镀锌技术及发展动向[J].河北冶金, 2004, 5: 25~30.
    [145]杨斌,夏兰廷.锌铝合金的研究进展铸造设备研究[J].铸造设备研究, 2007, 5: 30~34.
    [146]陆伟,严彪.防腐锌铝合金的研究与应用[J].上海有色金属, 2002, 23(4): 153~156.
    [147]闫承俊,王吉岱.锌铝合金的研究现状及应用[J].中国铸造装备与技术, 2005, 4: 4~7.
    [148]周有福.极好的耐腐蚀Zn-Al-Mg-Si合金热浸镀锌薄钢板[J].武钢技, 2004, 42(2): 59~61.
    [149]陈冬,金向雷.稀土铝镁在锌基热镀合金中的应用[J].金属制品, 2000, 26(2): 6~9.
    [150]李衡.浅述国内热镀锌产品现状及发展趋势[J].有色矿冶, 2000, 16(3): 40~42.
    [151]仲海峰,刘邦津.国外钢板热镀锌技术进展[J].腐蚀与防护, 2002, 23(11): 474~478.
    [152] Hideloshis, Kazumin. Developments and properties of Zn-Mg galvanized steel-sheet“DYMAZINC”having excellent corrosion resistance [C]. Nippon Steel Technical Report, 1999, 79: 62~67.
    [153] Abou El-khair M T, Daoud A, Ismail A. Effect of different Al contents on the microstrcture, tensile and wear properties of Zn-based alloy [J]. Materials Letters, 2004, 58: 1754~1760.
    [154] Lopez G A, Mittemeijer E J, Straumal B B. Grain boundary wetting by a solid phase microstructural development in a Zn-5wt% Al alloy [J]. Acta Materialia, 2004, 52: 4537~4545.
    [155] Casolco Said R, Negrete-Sanchez J, Torres-Villasenor G. Influence of silver on the nechanical properties of Zn-Al eutectoid superplastic alloy [J]. Materials Letters, 2003, 51: 63~67.
    [156] Luo B H, Bai Z H, Xie Y Q. The effects of trace Sc and Zr on microstrcture and internal friction of Zn-Al eutectoid alloy [J]. Materials Science and Engineering A, 2004, 370: 172~176.
    [157]郝建民,陈宏,张荣军.添加Ni及Al元素改善热镀锌件表面质量及耐蚀性的研究[J].表面技术, 2004, 33(2): 38~42.
    [158]魏世丞,朱晓飞,魏绪钧.添加铝和钛对热镀锌层的影响[J].有色金属, 2003, 55(3): 843~845.
    [159]项长祥,陈冬,刘刚,等.锌-铝-镍-稀土合金对含硅钢热镀锌的影响[J].金属制品, 2002, 28(3): 13~15.
    [160]欧光清.钢丝镀锌层防锌锈渗Cr工艺研究[J].天津冶金, 2000, 2: 22~25.
    [161]罗兵辉,柏振海,谢佑卿.微量Sc和Zr对锌铝共析合金微观结构和阻尼性能的影响[J].中国有色金属学报, 2002, 12 (4): 725~728.
    [162]蒋冶鑫,李广龄. Zn-5%Al-RE合金(Galfan)镀层钢丝的开发应用[J].金属制品, 2001, 27(2): 4~7.
    [163]张莉,卢燕平.热浸镀Zn-0.2Al-Mg-RE合金镀层钢丝在NaCl溶液中的电化学行为[J].北京科技大学学报, 2004, 26(2): 148~151.
    [164]张翔.新型锌基热镀层材料及热镀工艺的研究[D].南京:南京航空航天大学硕士学位论文, 2005: 60.
    [165] Ali Gürten A, Kayak?r?lmaz Kadriye, Erbil Mehmet. The effect of thiosemicarbazide on corrosion resistance of steel reinforcement in concrete [J]. Construction and Building Materials, 2007, 21(3): 669~676.
    [166] Juzeliūnas Eimutis, Ramanauskas Rimantas, Lugauskas Albinas, et al. Influence of wildstrain Bacillus mycoides on metals from corrosion acceleration to environmentally friendly protection [J]. Electrochimica Acta, 2006, 51(27): 6085~6095.
    [167] Shifle David A. Understanding material interactions in marine environments to promote extended structural life [J]. Corrosion Science, 2005, 47(10): 2335~2352.
    [168] Amirudin A, Thierry D. Corrosion mechanisms of phosphated zinc layers on steel as substrates for automotive coatings [J]. Science Direct, 2002, 28(1): 59~79.
    [169]石焕荣,魏无际,丁毅,等.热镀锌和锌铝合金镀层的微观组织及盐雾腐蚀行为[J].材料保护, 2002, 35(3): 35~36.
    [170]郝建民,陈宏,张荣军.镍对热镀锌耐蚀性的影响[J].腐蚀与防护, 2002, 27(2): 365~366.
    [171]应崇福.超声学[M].北京:科技出版社, 1984: 507~511.
    [172] Ambraov O V. Action of high intensity ultrasound on solidifying metal [J]. Ultrasonics, 1987, 25(5): 73~82.
    [173]王爱玲,祝锡晶,吴秀玲.功率超声振动加工技术[M].北京:国防工业出版社, 2007: 17.
    [174] Oh S Y, Cornie, J H, Russell, K C. Wetting of ceramic particulates with liquid aluminum alloys (Part II. Study of wettability) [J]. Metallurgical Transactions A: Physical Metallurgy and Materials Science, 1989, 20 A(3): 533~541.
    [175]马立群.在超声场中微细颗粒增强MMCs的研制及有关理论探讨[J].材料导报, 1996, 6: 76.
    [176]王俊,陈锋,孙宝德,等.微细颗粒对熔体表观粘度的影响[J].复合材料学报, 2001, 18(8): 58~61.
    [177] Campbell J. Effect of vibration during solidifaction [J]. International Metals Reviews, 1981, (2): 71~104.
    [178]林仲茂.超声变幅杆的原理和设计[M].北京:科学出版社, 1987: 93.
    [179]贾杨,沈建中.带过渡段阶梯形变幅杆的有限元分析[J].声学技术, 2006, 25(1): 75~81.
    [180]马大猷.声学手册[M].北京:科学出版社, 1983: 56.
    [181]王俊.用高能超声法制备的MMCs及其细观力学行为[D].南京:东南大学, 1997: 28.
    [182]潘蕾.高能超声作用下ZA27基复合材料的制备及性能[D].南京:东南大学, 2004: 21.
    [183]钱祖文.非线性声学[M].北京:科学出版社, 1992: 231~233.
    [184] Gui F, Kelly R G. A study of performance of corrosion prevention compounds on Al2024-T3 with electrochemical impedance spectroscopy [J]. Electrochimica Acta, 2006, 51(8): 1797~1805.
    [185] Kissi M, Bouklah M, Hammouti B, et al. Establishment of equivalent circuits from electrochemical impedance spectroscopy study of corrosion inhibition of steel by pyrazine in sulphuric acidic solution [J]. Applied Surface Science, 2006, 252(12): 4190~4197.
    [186] Zidoune M, Grosjean M H, Roue L. Comparative study on the corrosion behavior of milled and unmilled magnesium by electrochemical impedance spectroscopy [J]. Corrosion Science, 2004, 46(12): 3041~3055.
    [187]余强,司云森,曾初升.交流阻抗技术及其在腐蚀科学中的应用[J].化学工程师, 2005, 120(9): 35~37.
    [188]陈小芹,谢志刚,张江涛.电化学方法在评价材料性能方面的应用[J].腐蚀科学与防护技术, 2007, 19(1): 42~44.
    [189] Bai X, Dexter S C, Luther G W. Application of EIS with Au-Hg microelectrode in determining electron transfer mechanisms [J]. Electrochimica Acta, 2006, 51(8): 1524~1533.
    [190] Liu L, Li Y, Zeng C, et al. Electrochemical impedance spectroscopy (EIS) studies of the corrosion of pure Fe and Cr at 600°C under solid NaCl deposit in water vapor [J]. Electrochimica Acta, 2006, 51(22): 4736~4743.
    [191] Olivier M G, Poelman M, Demuynck M, et al. EIS evaluation of the filiform corrosion of aluminium coated by a cataphoretic paint [J]. Progress in Organic Coatings, 2005, 52(4): 263~270.
    [192]沈广霞,陈艺聪. TiO2/316L不锈钢薄膜电极在NaCl溶液中的耐腐蚀性能[J].电化学, 2005, 11(1): 20~271.
    [193]王慧龙,辛剑. HCl介质中巯基三唑缓蚀吸附膜对碳钢的保护时间的研究[J].腐蚀科学与防护技术, 2004, 16 (5): 2845~2861.
    [194] Normand B, Takenouti H, Keddam M, et al. Electrochemical impedance spectroscopy and dielectric properties of polymer: application to PEEK thermally sprayed coating [J]. Electrochimica Acta, 2004, 49(17): 2981~2986.
    [195] Amirudin A, Thierry D. Corrosion mechanisms of phosphated zinc layers on steel as substrates for automotive coatings [J]. Science Direct, 2002, 28(1): 59~79.
    [196] Yin Q, Kelsall G H, Vaughan D J, et al. Mathematical models for time-dependent impedance of passive electrode [J]. Journal of Electrochemical Society, 2001, 148 (3): 200~208.
    [197]史美伦.交流阻抗谱原理及应用[M].北京:国防工业出版社, 2001: 34~38.
    [198] Xu Bin, Wu Feng, Cao Gaoping, et al. Effect of carbonization temperature on microstructure of PAN-based activated carbon fibers prepared by CO2 activation [J]. NewCarbon Materials, 2006, 21(1): 14~18.
    [199]尹敬执,申泮文.基础无机化学(下)[M].北京:人民教育出版社, 1980: 536.
    [200] Kwok D Y, Neumann A W. Contact angle measurement and contact angle interpretation [J]. Advances in Colloid and Interface Science, 81, 1999, 81(3): 167~249.
    [201] Landry K, Kalogeropoulou S, Eustathopoulos N, Naidich Y, Krasovsky V. Characteristic contact angles in the aluminium/vitreous carbon system [J]. Scripta Materialia, 1996, 34(6): 841~846.
    [202]黄诚,宋波,毛璟红,等.非均质行核润湿角数学模型研究[J].中国科学E辑工程科学材料科学, 2004, 34(7):737~742.
    [203] Han Yanfeng, Li Ke, Wang Jun, et al. Influence of high-intensity ultrasound on grain refining performance of Al-5Ti-1B master alloy on aluminium [J]. Materials Science and Engineering A, 2005, 405: 306~312.
    [204]王朝辉,康永林,赵鸿金,等.纳米SiC颗粒增强AM60镁合金组织性能的研究[J].特种铸造及有色合金, 2005, 25(11): 641~642.
    [205]贺春林,刘常升,孙旭东,等.纳米SiC颗粒增强铝基复合材料的拉伸性能[J].东北大学学报(自然科学版), 2005, 26(6): 554~557.
    [206]刘贵立,李荣德.稀土及杂质元素对ZA27合金晶间腐蚀的影响[J].化学物理学报, 2004, 17(5): 649~652.
    [207] Dafydd H, Worsley D A, McMurray H N. The kinetics and mechanism of cathodic oxygen reduction on zinc and zinc-aluminium alloy galvanized coatings [J]. Corrosion Science, 2005, 47 (12): 3006~3018.
    [208] Tada Eiji, Satoh Satomi, Kaneko Hiroyuki. The spatial distribution of Zn2+ during galvanic corrosion of a Zn/steel couple [J]. Electrochimica Acta, 2004, 49(14): 2279~2285.
    [209] Hori Carla E, Brennera Alan, Simon Ng K Y, et al. Studies of the oxygen release reaction in the platinum-ceria-zirconia system [J]. Catalysis Today, 1999, 50: 299~308.
    [210] Wang J, Guo Q X, Nishio M, et al. The Apparent viscosity of fine particle reinforced composite melt [J]. Journal of Materials Processing Technology, 2003, 136: 60~63.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700