用户名: 密码: 验证码:
莱茵衣藻与根瘤菌共培养提高产氢及其生理生态学机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物质能源技术是解决当今世界能源危机、环境危机和粮食危机的重要途径之一。光合微藻制氢技术是未来清洁能源可持续生产的重要组成部分。莱茵衣藻(以下简称衣藻)因为氢化酶活性高、生长速度快、适应力强、培养成本低、遗传背景清晰和分子操作系统成熟,成为研究微藻光合制氢的模式物种。衣藻氢化酶对氧气极其敏感导致其产氢效率极低是制约衣藻产氢技术应用的瓶颈问题。目前国际上提高衣藻产氢效率的策略主要有:(1)抑制PSⅡ光解水放氧活性;(2)改造氢化酶结构提高耐氧性;(3)快速降低培养系统细胞内氧气;(4)基因工程手段构建高效产氢藻株;(5)调控培养条件;(6)以藻类作为有机底物与产氢细菌和光合细菌共培养。其中利用藻菌相互作用产氢的策略是一种环境友好的、且具有良好发展前景的清洁能源生产的新思路。
     本课题组的前期工作曾发现将衣藻与环境中易污染细菌共培养可以加快共培养体系内的氧气消耗速度、提高产氢量;进一步将衣藻与日本慢生大豆根瘤菌(以下简称根瘤菌)混合共培养,发现可以显著提高衣藻产氢效率达3.5~17.0倍。为了深入了解根瘤菌促进衣藻产氢代谢的原因,本研究将不同的衣藻藻株与根瘤菌混合共培养,对培养条件进行了优化,对最佳产氢状态下共培养体系中藻菌分布格局、产氢量、耗氧量、氢化酶活性、细胞内外碳水化合物和有机酸等的动态变化进行了检测,取得的主要结果如下:
     1.不同衣藻藻株与根瘤菌混合共培养,产氢量都明显提高,最大产氢量提高到约为200μmol·mg-1Chl~278μmol·mg-1Chl;但藻株不同,其最佳产氢条件并不相同:根瘤菌与转基因藻hemHc-lbac最优的产氢条件为30μE·m-2·s-1光照,菌藻体积比为1:80,氢气产量为最大值278μmol·mg-1Chl,是纯藻培养体系80μmol·mg-1Chl的3.5倍;根瘤菌与衣藻cc124共培养的最优条件为200μE·m-2·s-1光照,菌藻体积比为1:80,氢气产量最大值为272μmol·mg-1Chl,是纯藻培养体系16μmol·mg-1Chl的17.0倍;根瘤菌与衣藻cc503共培养的最优条件为200μE·m-2·s-1光照,菌藻体积比为1:20,氢气产量最大值为302μmol·mg-1Chl,是纯藻培养体系69μmol·mg-1Chl的4.4倍。
     2.通过设置不同的对照组实验,揭示了根瘤菌与衣藻共培养系统中产氢的是衣藻,而根瘤菌不产生氢气。
     3.根瘤菌与衣藻在共培养开始至产氢高峰期,根瘤菌聚集在衣藻细胞周围,有“团聚”现象,而且衣藻的细胞数与叶绿素含量和根瘤菌的细胞数都比未混合培养的对照组明显增加;在共培养的后期,衣藻细胞解体。表明在共培养过程中根瘤菌与衣藻之间产生了阶段性互惠共生。但在产氢高峰期之后,衣藻的生存受到严重胁迫,衣藻开始逐渐解体。
     4.藻菌共培养体系中,其呼吸速率和氧气消耗速度都明显比未混合培养的对照组高,这是衣藻产氢量提高的直接原因。转基因藻hemHc-lbac与根瘤菌共培养产氢后的第4天呼吸速率为5.04μmolO2·mgChl-1·h-1,是纯衣藻体系3.0μmolO2·mgChl-1·h-1的1.4倍;转基因藻hemHc-lbac加入根瘤菌产氢后的溶氧值最小为0.57mg/L,而纯藻体系为3.16mg/L,是藻菌体系的5.5倍;衣藻cc124与根瘤菌共培养产氢后第2天呼吸速率为6.05μmolO2·mgChl-1·h-1,是纯衣藻体系5.12μmolO2·mgChl-1·h-1的1.2倍;衣藻cc124加入根瘤菌产氢后的溶氧值最小值为2.18mg/L,而纯藻体系为5.08mg/L,是藻菌体系的2.3倍;衣藻cc503与根瘤菌共培养产氢后第5天的呼吸速率为3.34μmolO2·mgChl-1·h-1,是纯衣藻体系1.26μmolO2·mgChl-1·h-1的2.6倍;衣藻cc503加入根瘤菌产氢后的溶氧值最小为0.47mg/L,而纯藻体系为7.34mg/L,是藻菌体系的15.6倍。
     5.在藻菌共培养产氢体系中,衣藻氢化酶活性明显增加,佐证了混合培养体系中氧气消耗速度快是衣藻产氢量提高的重要原因之一。转基因藻hemHc-lbac与根瘤菌共培养产氢后体外氢化酶最高活性约为57.9nmo H2μgChl-1·h-1比未加入根瘤菌的体系提高1.1倍,体内氢化酶最高活性约为25.3nmol H2μgChl-1·h-1,是纯藻培养的1.5倍;衣藻cc124与根瘤菌共培养产氢后,体外氢化酶最高活性约为51.0nmol H2μgChl-1·h-1,比未加入根瘤菌的体系提高1.0倍,体内氢化酶最高活性约为13.0nmol H2μgChl-1·h-1,是纯藻培养体系的3.8倍;衣藻cc503与根瘤菌共培养产氢后,体外氢化酶最高活性约为62.8nmol H2μgChl-1·h-1,比未加入根瘤菌的体系提高2.4倍,体内氢化酶最高活性约为21.9nmol H2μgChl-1·h-1,是纯藻培养体系的2.1倍。
     6.在藻菌共培养产氢体系中,衣藻细胞内淀粉含量明显增加,这是导致藻菌共培养后衣藻产氢量提高的另一个原因:转基因藻hemHc-lbac与根瘤菌共培养产氢后,淀粉最高含量为7.23μg/ml,是纯衣藻体系淀粉含量0.87μg/ml的8.3倍;衣藻cc124与根瘤菌共培养产氢后,淀粉最高含量为13.01gg/ml,是纯衣藻体系淀粉含量1.55μg/ml的8.4倍;衣藻cc503与根瘤菌共培养产氢后,淀粉最高含量为13.99μg/ml,是纯衣藻体系淀粉含量3.18μg/ml的4.4倍。
     7.加入根瘤菌后,三种衣藻藻株培养体系内的产氢代谢物的变化是不同的,表明不同藻株的产氢代谢有所差别,也是不同藻株与根瘤菌混合培养的最佳产氢条件不同的原因之一。如:三种衣藻藻株培养体系加入根瘤菌后,与未加入根瘤菌的纯衣藻对照体系相比,培养基中的乙酸含量都逐渐降低;但在转基因藻hemHc-lbac和衣藻cc503的体系中加入根瘤菌后,葡萄糖含量随着时间的增加而降低,最后达到最低值,分别为55μg/ml和119μg/ml,而在衣藻cc124的体系内加入根瘤菌后,葡萄糖含量却逐渐增加,最后达到最高值340μg/ml;在加入根瘤菌后,上述三种衣藻藻株的培养体系内的甲酸和乙醇含量都增加,最后甲酸达到最高值依次分别为261.16μg/ml.307.12μg/ml和393.80μg/ml,乙醇的最高值分别为281μg/ml.213μg/ml和150μg/ml。
     综上所述:根瘤菌与不同衣藻藻株共培养都能显著促进衣藻产氢,表明衣藻与根瘤菌共培养提高产氢的现象具有普遍性;从共培养的开始至产氢高峰阶段,根瘤菌向衣藻聚集生长、形成“团聚物”,且二者的生长都得到促进,细胞内淀粉含量也增加,表明二者间存在阶段性互惠共生现象;本研究还揭示了在根瘤菌与衣藻共培养系统中,只有衣藻产氢,而根瘤菌不产氢;二者共培养使得体系内耗氧速度加快,是根瘤菌促进衣藻产氢的主要原因;其次,共培养体系内二者细胞数增加和淀粉含量增加是导致衣藻产氢增加的另一个重要原因。本研究首次从生理生态学角度揭示了根瘤菌与衣藻共培养过程中二者的相互作用关系和产氢量提高的原因,为进一步深入开展衣藻产氢的代谢调控、拓展根瘤菌的寄主范围以及利用基因工程手段构建高效产氢藻株等研究奠定了理论和实验基础。
Biomass energy technology is one of the most important ways to solve the crises of energy, environment and food of the world. Photosynthetic microalgae hydrogen technology is an important component of sustainable production of clean energy in the future. Chlamydomonas reinhardtii, with high activity of hydrogenase, quick growth, strong adaptability, low cost in cultivation, clear molecular genetic background and mature molecular operation system, has been considered as the most potential and model algal species for development of biological hydrogen production. The low hydrogen production efficiency of C. reinhardtii resulted from the extreme sensitivity of its hydrogenase to oxygen is the bottleneck constraining its application in hydrogen production. Nowadays, there are several methods to improve hydrogen yield of C. reinhardtii:(1) inhibiting the activity of PSII for retarding the process of water photolysis;(2) modifying the structure of hydrogenase to increase its tolerance to oxygen;(3) quickly reducing both intracellular and cultivation medium's oxygen concentration;(4) constructing high-hydrogen-yield algal strains by genetic engineering technology;(5) optimizing cultivation conditions;(6) co-culturing photosynthetic bacteria and hydrogen-producing bacteria by using algae as organic substrates, among which the strategy of hydrogen production through algae-bacteria interaction is a promising and environment friendly way for clean energy production.
     In our former work, we find that co-cultivating C. reinhardtii with bacteria which is polluted easily in algal environments can increase oxygen consumption and improve hydrogen production. We further co-cultivated C. reinhardtii and Bradyrhizobium japonicum and resulted in the improvement of hydrogen production by3.5~17.0times. In this study to investigate the mechanism of B. japonicum promoting hydrogen yield of C. reinhardtii, we co-cultivated different C. reinhardtii strains with B. japonicum, optimized cultivation conditions and detected the distribution pattern of algae-bacteria systems, as well as the dynamic changes of hydrogen yield, oxygen consumption, hydrogenase activity, intracellular and medium's carbohydrates and organic acids in the co-culture systems. The main results were as follows:
     1. Co-culturing different C. reinhardtii strains with B. japonicum all improved hydrogen yields to200μmol·mg-1Chl~278μmol·mg-1Chl; the optimal conditions of hydrogen production were different among different strains. When co-cultivating the transgenic alga hemHc-lbac with B. japonicum, the optimal hydrogen production condition was under30μE m-2s-1of light intensity and the algae-bacteria volume ratio at1:80, its maximal hydrogen yield was278μmol·mg-1Chl, approximately3.5times of that of the control,80μmolmg·Chl. When co-cultivating C. reinhardtii cc124with B. japonicum, the optimal hydrogen production condition was under200μE m-2s-1of light intensity and the algae-bacteria volume ratio at1:80, the maximal hydrogen yield was272μmol·mg-1Chl, approximately17.0times of that of the control,16μmol·mg-1Chl. When co-cultivating C. reinhardtii cc503with B. japonicum, the optimal hydrogen production condition was under200μE m-2s-1of light intensity and the algae-bacteria volume ratio at1:20, the maximal hydrogen yield was302μmol·mg-1Chl, approximately4.4times of that of the,69μmol·mg-1Chl.
     2. By setting various control experiments, we revealled that in the co-culture system, C. reinhardtii produced hydrogen but B. japonicum didn't produce hydrogen.
     3. From the beginning of the co-cultivation to the stage of maximal hydrogen production, B. japonicum gathered around C. reinhardtii and formed assembly phenomenon. Meanwhile both the cell numbers and chlorophyll contents of C. reinhardtii and the cell numbers of B. japonicum were all obviously more than those of the controls, indicating the mutualistic relationship of C. reinhardtii and B. japonicum happened during this stage. But after that stage, C. reinhardtii disintegrated gradually, showing that C. reinhardtii suffered severe stresses.
     4. The respiratory rates and oxygen consumption of alage-bacteria co-culture system were higher than those of controls, which should be the direct reason enhancing the hydrogen yields. The respiratory rate of the co-culture system of the transgenic alga hemHc-lbac with B. japonicum was5.04μmolO2·mgChl-1·h-1at the 4th day after co-cultivation, which was1.4times of the control,3.03μmolO2·mgChl-1·h-1. The minimal dissolved oxygen of the co-culture system of transgenic alga hemHc-lbac with B. japonicum after co-cultivation was0.57mg/L, while that of the pure transgenic algal system was3.16mg/L, which was5.5times of that of the co-culture system. The respiratory rate of co-culture system of C. reinhardtii cc124with B. japonicum was6.05μmolO2·mgChl-1·h-1at the2nd day after co-cultivation, which was1.2times of that of the control,5.12umolO2·mgChl-1·h-1. The minimal dissolved oxygen of the pure C. reinhardtii cc124system was5.08mg/L, which was2.3times of that of the co-culture system,2.18mg/L. The respiratory rate of the co-culture system of C. reinhardtii cc503with B. japonicum was3.34μmolO2·mgChl-1·h-1at the5th day after co-cultivation, which was2.6times of that of the control,1.26μmolO2·mgChl-1·h-1. The minimal dissolved oxygen of the pure C. reinhardtii cc503was7.34mg/L, which was15.6times of that of the co-culture system,0.47mg/L.
     5. The hydrogenase activity greatly improved in the algae-bacteria co-culture system, showing that the quick oxygen consumption was the most important reason for the enhancement of hydrogen production. In vitro and in vivo maximal hydrogenase activity of the transgenic alga hemHc-lbac system and its co-culturing system with B. japonicum were57.9nmol H2μgChl-1·h-1and25.3nmol H2μgChl-1·h-1, which were1.1times and1.5times higher than those of the controls, respectively. In vitro and in vivo maximal hydrogenase activity of C. reinhardtii cc124and its co-culturing system with B. japonicum were51.0nmol H2μgChl-1·h-1and13.0nmol H2μgChl-1·h-1, which were1.0times and3.8times higher than those of the controls, respectively. In vitro and in vivo maximal hydrogenase activity of C. reinhardtii cc503and its co-culturing system with B. japonicum were62.8nmol H2μgChl-1·h-1and21.9nmol H2μgChl-1·h-1, which were2.4times and2.1times higher than those of the controls, respectively.
     6. In the algae-bacteria co-culture system, the starch contents in algal cells increased greatly, which was another main reason for the improvement of hydrogen production. The maximal starch content of the co-culture system of the transgenic alga hemHc-lbac with B. japonicum was7.23μg/ml, which was8.3times of that of the control,0.87μg/ml. The maximal starch content of the co-culture system of C. reinhardtii cc124with B. japonicum was13.01μg/ml, which was8.4times of that of the control,1.55μg/ml. The maximal starch content of the co-culture system of C. reinhardtii cc124with B. japonicum was13.99μg/ml, which was4.4times of that of the control,3.18μg/ml.
     7. When B. japonicum being added into the culture systems of the three strains of C. reinhardtii, the metabolites of them were different, which could explain the reasons why the optimal hydrogen production conditions were different among duifferent algal strains. In the co-culture systems of the three strains of C. reinhardtii with B. japonicum, the acetic acid contents in the mediums were all lower than those of the controls. However in the co-culture systems of the transgenic alga hemHc-lbac and C. reinhardtii cc503with B. japonicum, the contents of glucose all decreased along with the extension of co-cultivating time, finally reaching the minimum values at55μg/ml and119μg/ml, respectively. Whereas, in the co-culture systems of C. reinhardtii cc124with B. japonicum, the content of glucose increased, finally reaching the maximal value at340μg/ml. In the co-culture systems of the three strains of C. reinhardtii and B. japonicum in the above orders, the contents of formic acid and ethanol in the mediums increased gradually, finally reached to the maximal vlevels at261.16μg/ml,307.12μg/ml and393.80μg/ml (for formic acid), as well as281μg/ml,213μg/ml and150μg/ml (for ethanol), respectively.
     In summary, in all the co-culture systems of different strains of C. reinhardtii with B. japonicum, the hydrogen production increased, indicating that the enhancement of hydrogen production is a common phenonmenon when co-culturing C. reinhardtii with B. japonicum. From the beginning of the co-culture to the stage of maximal hydrogen production, B. japonicum gathered around C. reinhardtii and assembled. Meanwhile the algal and bacterial growths increased, as well as the starch contents increased compared with those of the controls, indicating that the staged mutualistic relationship between C. reinhardtii and B. japonicum existed. This study also revealed that when co-culturing C. reinhardtii and B. japonicum, only C. reinhardtii produced hydrogen, but not B. japonicum. In the co-culture systems, the oxygen consumption increased, which was the main reason for B. japonicum to improve the hydrogen yield. Moreover, that the algal cell numbers and starch cntents increased obviously in the co-culture systems was another main reason for B. japonicum to stimulate the hydrogen yield. This study for the first time provided important theoretical and experimental foundations from ecology-physiology angles to reveal the mutual interaction between C. reinhardtii and B. japonicum during the process of cu-cultivation and the reasons of B. japonicum to enhance C. reinhardtii's hydrogen production. Out study provided important basis for further studies on metabolic regulations of hydrogen production of C. reinhardtii, expanding the host ranges of B. japonicum and constructing high-yield algal strains using genetic engineer technology.
引文
[1]Johansson T B, Kelly H, Reddy A K N.andWilliams R H. (eds),1993. Renewable Energy. Sources for Fuels and Electricity. Earthscan publications/ Island Press.
    [2]Energy Needs, Choices and Possibilities. Scenarios to 2050. Shell International, 2001.
    [3]Reith J H, den Uil H, van Veen H, de Laat W T A M, Niessen J J, de Jong E, Elbersen H W, Weusthuis R, van Dijken J P and Raamsdonk L,2002. Co-production of bio-ethanol, electricity and heat from biomass residues. Proceedings of the 12th European Conference on Biomass for Energy, Industry and Climate Protection,17-21 June 2002, Amsterdam, The Netherlands, pp. 1118-1123.
    [4]毛宗强。氢能--21世纪的绿色能源[M]。北京:化学工业出版社,2005。
    [5]吴承康,徐建中,金红光,能源科学发展战略研究院士论坛[J]。世纪科技研究与发展,2001,22(4):1-6。
    [6]Woodward J, Orr M, Cordray K, et al. Enzymatic production of Biohydrogen [J]. Nature,2000,406,6790:1014-1015
    [7]Biohydrogen production deserves serious funding [J].Nature biotechnol,1996, 14(7):199.
    [8]汤桂兰,孙振钧。生物制氢技术的研究现状与发展[J]。生物技术,2007,17(1):93-97。
    [9]Gaffron H. Reduction of CO2 with H2 in green plants [J]. Nature,1939,143: 204-205.
    [10]Gaffron H and Rubin J. Fermentative and photochemical production of hydrogen in algae [J]. J. Gen. Physiol,1942,26:219-240.
    [11]Spruit C P. Simultaneous photoproduction of hydrogen and oxygen by Chlorella [J]. Meded Landbouwhogesch Wageningen,1958,58:1-17.
    [12]Kessler E. Effect of anaerobiosis on photosynthetic reactions and nitrogen metabolism of algae with and without hydrogenase [J]. Arch Microbiol,1973, 93:91-100.
    [13]Frenkel A W, Lewin R A. Photoreduction by Chlamydomonas [J]. Am J Bot, 1954,41:586-589.
    [14]Kessler E. Hydrogenase, photoreduction and anaerobic growth of algae. In: Stewart WDP (ed) Algal Physiology and Biochemistry [M],1974, pp 454-473. Blackwell, Oxford.
    [15]Gfeller R P, Gibbs M. Fermentative metabolism of Chlamydomonas reinhardtii. Ⅰ. Analysis of fermentative productsfrom starch in dark-light [J]. Plant Physiol.,1984,75:212-218
    [16]Gfeller R P, Gibbs M. Fermentative metabolism of Chlamydomonas reinhardtii. Ⅱ. Role of plastoquinone [J]. Plant Physiol.,1985,77:509-511.
    [17]Happe T, Kaminski A. Differential regulation of the Fe2 hydrogenase during anaerobic adaptation in the green alga Chlamydomonas reinhardtii [J]. Eur. J. Biochem,2002,269:1022-1032
    [18]Sabeeha S, Merchant, Simon E. Prochnik, et al. The Chlamydomonas Genome Reveals the Evolution of Key Animal and Plant Functions [J]. Science,2007, 318:245-251.
    [19]吴双秀,王全喜。衣藻生物制氢的研究进展[J]。中国生物工程杂志,2006,26(10): 88-92。
    [20]J-D Rochaix Chlamydomonas reinhardtii Acadmic Press,2001.
    [21]Harries E A. Chlamydomonas resource book:a comprehensive guide to biology and laboratory use [M].New York Academic Press,1989.
    [22]Rochalx J D. Restriction endonuclease map of the chloroplast DNA of Chlamydomonas reinhardtii [J].J. Mol. Biol,1978,126:597-617.
    [23]Grant D, Chiang K S. Physical mapping and characterization of Chlamydomonas mitochondrial DNA molecules:their unique ends, sequence homogeneity, and conservation [J].Plasmid,1980,4:82-96.
    [24]Happe T, Hemschemeier A, Winkler M, et al. Hydrogenase in green:do they save the algae's life and solve our energy problems [J]? Trends In Plant Science, 2002,7:246-250.
    [25]Zhang L P, Happe T, Melis A. Biochemical and morphological characterization of sulfur-derived and H2-producing Chlamydomonas reinhardtii (green alga) [J]. Planta,2002,214:552-561.
    [26]Melis A, Happe T. Trails of green alga hydrogen research-from Hans Gaffron to new frontiers [J]. Photosyn. Res,2004,80:401-409.
    [27]Happe T, Naber J D. Isolation, characterization and N-terminal amino acid sequence of hydrogenase from the green alga Chlamydomonas reinhardtii [J]. Eur. J. Biochem,1993,214,475-481.
    [28]Happe T, Mosler B, Naber J D. Induction, localization and metal content of hydrogenase in the green alga Chlamydomonas reinhardtii [J]. Eur. J. Biochem., 1994,222,769-774.
    [29]Happe T, Kaminski A. Differential regulation of the Fe2 hydrogenase during anaerobic adaptation in the green alga Chlamydomonas reinhardtii [J]. Eur. J. Biochem,2002,269:1022-1032.
    [30]Melis A, Seibert M, Happe T. Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii [J]. Plant Physiol.,2000,122:127-135.
    [31]Cao H, Zhang L, Melis A. Bioenergetic and metabolic processes for the survival of sulfur-deprived Dunaliella salina (Chlorophyta) [J].J. Appl. Phycol.,2001, 13:25-34.
    [32]Antal T K, Lindblad P. Production of H2 by sulfur-deprived cells of the unicellular cyanobacteria Gloeocapsa alpicola and Synechocystis sp PCC 6803 during dark incubation with methane or at various extracellular pH [J]. J. Appl. Microbiol,2005,98:114-120.
    [33]Fouchard S, Hemschemeier A, Caruana A, Pruvost K, Legrand J, Happe T, Peltier G, Cournac L. Autotrophic and mixotrophic hydrogen photoproduction in sulfur-deprived Chlamydomonas cells [J]. Appl. Environ. Microbiol.,2005, 71:6199-6205.
    [34]Tsygankov A A, Kosourov S N, Tolstygina I V, Ghirardi M L, Seibert M. Hydrogen production by sulfur-deprived Chlamydomonas reinhardtii under photoautotrophic conditions [J]. Int. J. Hydrogen Energy,2006,31:1574-1584.
    [35]Kosourov S, Patrusheva E, Ghirardi M L, Seibert M, Tsygankov A A comparison of hydrogen photoproduction by sulfur-deprived Chlamydomonas reinhardtii under different growth conditions [J].J. Biotech.,2007, 128:776-787.
    [36]Melis A, Happe T. Hydrogen production:green algae as a source of energy [J]. Plant. Physiol.,2001,127:740-748.
    [37]Antal T K, Krendeleva T E, Rubin A B, Laurinavichene T V, Tsygankov A A, Makarova V V, Kosourov S, Ghirardi M L, Seibert M. The dependence of algal H2 production on photosystem Ⅱ and O2-consumption activity in sulfur-deprived Chlamydomonas reinhardtii cells [J]. Biochim. Biophys. Acta., 2003,1607:153-160.
    [38]Zhang Z D, Shrager J, Jain M, Chang C W, Vallon O, Grossman AR. Insights into the survival of Chlamydomonas reinhardtii during sulfur starvation based on microarray analysis of gene expression [J]. Eukaryotic Cell,2004, 3:1331-1348.
    [39]Zhang L, Melis A. Probing green algal hydrogen production [J]. Phil. Trans. R. Soc. Lond. Biol. Sci.,2002,357:1499-1509.
    [40]Winkler M, Hemschemeier A, Gotor C, Melis A, Happe T. [Fe]-hydrogenases in green algae:photo-fermentation and hydrogen evolution under sulfur deprivation [J]. Intl. J. Hydrogen Energy,2002,27:1431-1439.
    [41]Kosourov S, Seibert M, Ghirardi M L. Effects of extracellular pH on the metabolic pathways in sulfur-deprived, H2-producing Chlamydomonas reinhardtii cultures [J]. Plant. Cell. Physiol.,2003,44:146-155.
    [42]Hemschemeier A, Happe T. The exceptional photofermentative hydrogen metabolism of the green alga Chlamydomonas reinhardtii [J]. Biochem. Soc. Trans.,2005,33:39-41.
    [43]Martin N C, Goodenough U W. Gametic differentiation in Chlamydomonas reinhardtii. I. Production of gametes and their fine structure [J]. J. Cell. Biol., 1975,67:587-605.
    [44]Plumley F G, Schmidt G W. Nitrogen-dependent regulation of photosynthetic gene expression [J]. Proc. Natl. Acad. Sci. USA,1989,86:2678-2682.
    [45]Bulte L, Wollman F A. Evidence for a selective destabilization of an integral membrane protein, the cytochrome b6/f complex, during gametogenesis in Chlamydomonas reinhardtii [J]. Eur. J. Biochem.,1992,204:327-336.
    [46]Peltier G, Schmidt G W. Chlororespiration:an adaptation to nitrogen deficiency in Chlamydomonas reinhardtii [J]. Proc. Natl. Acad. Sci. USA,1991, 88:4791-4795.
    [47]Wang Z T, Ullrich N, Joo S, Waffenschmidt S, Goodenough U. Algal lipid bodies:stress induction, purification, and biochemical characterization in wild-type and starchless Chlamydomonas reinhardtii [J]. Eukaryot Cell,2009, 8:1856-1868.
    [48]Miller R, Wu G, Deshpande R R, Vieler A, Gartner K, Li X, Moellering E R, Zauner S, Cornish A J, Liu B, Bullard B, Sears B B, Kuo M H, Hegg E L, Shachar-Hill Y, Shiu S H, Benning C. Changes in transcript abundance in Chlamydomonas reinhardtii following nitrogen deprivation predict diversion of metabolism [J]. Plant. Physiol.,2010,154:1737-1752.
    [49]Work V H, Radakovits R, Jinkerson R E, Meuser J E, Elliott L G, Vinyard D J, Laurens L M, Dismukes G C, Posewitz M C. Increased lipid accumulation in the Chlamydomonas reinhardtii sta7-10 starchless isoamylase mutant and increased carbohydrate synthesis in complemented strains [J]. Eukaryot Cell, 2010,9:1251-1261.
    [50]Sager R, Granick S. Nutritional control of sexuality in Chlamydomonas reinhardtii [J]. J. Gen. Physiol.,1954,37:729-742.
    [51]Martin N C, Goodenough U W. Gametic differentiation in Chlamydomonas reinhardtii. I. Production of gametes and their fine structure [J]. J. Cell. Biol., 1975,67:587-605.
    [52]Abe J, Kubo T, Takagi Y, Saito T, Miura K, Fukuzawa H, Matsuda Y. The transcriptional program of synchronous gametogenesis in Chlamydomonas reinhardtii [J]. Curr. Genet.,2004,46:304-315.
    [53]Ball S G, Dirick L, Decq A, Martiat J C, Matagne R. Physiology of starch storage in the monocellular alga Chlamydomonas reinhardtii [J]. Plant Sci., 1990,66:1-9.
    [54]Hicks G R, Hironaka C M, Dauvillee D, Funke R P, D'Hulst C, Waffenschmidt S, Ball S G. When simpler is better. Unicellular green algae for discovering new genes and functions in carbohydrate metabolism [J]. Plant Physiol.,2001,127: 1334-1338.
    [55]Philipps G, Happe T, Hemschemeier A. Nitrogen deprivation results in photosynthetic hydrogen production in Chlamydomonas reinhardtii [J]. Planta, 2012,235:729-745.
    [56]王荣荣,阎光宇,王全喜,吴双秀,刘晓磊。氮源对莱茵衣藻生长和产氢的影响[J]。太阳能学报,2009,(30)4:546-551。
    [57]Laurinavichene T, Tolstygina IV, Tsygankov A. The effect of light intensity on hydrogen production by sulfur-deprived Chlamydomonas reinhardtii [J]. J. Biotech.,2004,114:143-151.
    [58]Boichenko V A, Hoffman P. Photosynthetic hydrogen production in prokaryotes and eukaryotes:occurrence, mechanism and functions [J]. Photosynthetica, 1994,30,527-552.
    [59]Lehr F, Morweiser M, Sastre R R, et al. Process development for hydrogen production with Chlamydomonas reinhardtii based on growth and product formation kinetics [J]. J. Biotech.,2012,162,89-96.
    [60]Abeles F B. Cell free hydrogenase from Chlamydomonas reinhardtii [J]. Plant. Physiol.,1964,39:167-176.
    [61]Wunschiers R, Senger H, Schulz R. Electron pathways involved in H2— metabolism In the green alga Scenedesmus obliquus [J]. Biochim. Biophys. Acta.,2001,1503 (3):271-278.
    [62]Hansel A, Lindblad P. Towards optimition of cyanobacteria as biotechnologically relevant producers of molecular hvdrogen, a clean and renewable energy source [J]. Appl Microbiol Biotechnol,1998,50:153-160.
    [63]Schnackenberg J, Schulz R, Senger H. Characterization and purification of a hydrogenase from the eukaryotic green alga Scenedesmus odliquus [J]. FEBS Lett,1993,327:21-24.
    [64]Guang Y F, Zhang W, Deng M C, et al. Significant enhancement of photobiological H2 evolution by carbonylcyanidem-chlorophenylhydrazone in the marine green alga Platymonas subcordiformis [J]. Biotechnol. Lett.,2004, 26:1031-1035.
    [65]Chen H C, Yokthongwattana K, Newton A J, et al. SulP, a nuclear gene encoding a putative, chloroplast-targeted sulfate permease in Chlamydomonas reinhardtii [J]. Planta,2003,218:98-106.
    [66]Zhang L P, Niyogi K K, Baroli I, el al. DNA insertional mutagenesis for the elucidation of a photosystem Ⅱ repair process in the green alga Chlamydomonas reinhardtii [J]. Photosynth. Res.,1997,53:173-184.
    [67]Melis A, Neidhardt J, Benemann J. Dunaliella salina (Chlorophyta) with small chlorophyll antenna sizes exhibit higher photosynthetic productivities and photon use eflciencies than normally pigmented cells [J]. J. Applied. Phycol., 1999,10:515-525.
    [68]Melis A, Chen, H C. Chloroplast sulfate transport in green algae-genes, proteins and effects [J]. Photosynth. Res.,2005,86:299-307.
    [69]Chen H C, Newton A J, Melis A. Role of SuIP, a nuclear-encoded chloroplast sulfate permease, in sulfate transport and H2 evolution in Chlamydomonas reinhardtii [J]. Photosynth. Res.,2005,84:289-296.
    [70]Polle J E, Kanakagiri S D, Melis A. Tlal, a DNA insertional transformant of the green alga Chlamydomonas reinhardtii with a truncated light-harvesting chlorophyll antenna size [J]. Planta,2003,217:49-59.
    [71]Posewitz M C, Smolinski S L, Kanakagiri S, et al. Hydrogen photoproduction is attenuated by disruption of an isoamylase gene in Chlamydomonas reinhardtii [J]. The Plant Cell,2004,16:2151-2163.
    [72]Miura Y, Saiton C, Matsuoka S, Kazuhisa M. Stably sustained hydrogen production with high molar yield through a combination of marine green alga and a photosynthetic bacterium [J]. Biosci. Biotechnol. Biochem.,1992,56 (5): 751-754.
    [73]Kawaguchi H, Hashimoto K, Hirata K, Kazuhisa M. H2 production from algal biomass by mixed culture of Rhodobium marinum A-501 and Lactobacillus amylovorus [J].J. Biosci. Bioeng.,2001,91:277-282.
    [74]Kim M S, Baek J S, Yun Y S, Sim S J, Park S H, Kin S C. Hydrogen production from Chlamydomonas reinhardtii biomass using a two-step conversion process: Anaerobic conversion and photosynthetic fermentation [J]. Intl. J. Hydrogen Energy,2006,31:812-816.
    [75]Melis A, Melnicki M R. Integrated biological hydrogen production [J].Intl. J. Hydrogen Energy,2006,31:1563-1573.
    [76]Wu S X, Li X X, Yu J, Wang Q X. Increased hydrogen production in co-culture of Chlamydomonas reinhardtii and Bradyrhizobium japonicum [J]. Bioresou. Technol.,2012,123:184-188.
    [77]陈文新。中国根瘤菌[M]。北京:科学出版社,2011,5-8。
    [78]张世光。豆科植物生物固氮的研究调查[J]。湖南农机,2011,7:207-208。
    [79]陈文新,汪恩涛,陈文峰。根瘤菌-豆科植物共生多样性与地理环境的关系[J]。中国农业科学,2004,37(1):81-86。
    [80]叶喜文,焦峰,吴金华等。PGPR促生菌肥在水稻上应用效果研究[J]。八一农垦大学学报,2005,(1):9-11。
    [81]王平,王勤,冯新梅。华癸根瘤菌在非豆科植物根圈定殖能力的研究[J]。华中农业大学学报,1999,18(3):238-241。
    [82]Yanni Y G, Rizk R Y, Abd EI-Fattah F K, et al. The beneficial plant growth-promoting association of Rhizobium leguminosarum bv. trifolii with rice roots [J]. Australlia J. Plant Physiol.,2001,28 (9):845-870.
    [83]Kim K Y. Effect of phosphate-solubilizing bacteria and vesicular-arbuscular mycorrhizae on tomato growth and soil microbial activity [J]. Biol. Fertil. Soils, 1998,26:79-87.
    [84]Chi F, Shen S H, Cheng H P, et al. Ascending migration of endophytic rhizobia, from roots to leaves, inside rice plants and assessment of benefits to rice growth physiology [J] Appl. Environ. Microb.,2005,71(11):7271-7278.
    [85]Appleby, CA. Leghemoglobin and Rhizobium respiration [J]. Annu. Rev. Plant.Physiol.,1984,35:443-478.
    [86]张静娴,荆玉祥。植物的血红蛋白[J]。生命科学,1999,11(2):66-71。
    [87]Wu S X, Yan G Y, Xu L L, et al. Improvement of hydrogen production with expression of lba gene from soybean in chloroplast of Chlamydomonas reinhardtii [J]. Intl. J. Hydrogen Energy.2010 (35):13419-13426.
    [88]Wu S X, Hang R, Xu L L, et al. Improvement of hydrogen production with expression of hemH and lba genes in chloroplast of Chlamydomonas reinhardtii [J]. J. Biotechnol.,2010,146 (3):120-125.
    [89]Wu S X, Xu L L, Huang R,et al. Improved biohydrogen production with expression of codon-optimized hemH and lba genes in chloroplast of Chlamydomonas reinhardtii [J]. Bioresour.Technol.,2011,102(3):2610-2612.
    [90]Wu S X, Li X X, Yu J, Wang Q X. Increased hydrogen production in co-culture of Chlamydomonas reinhardtii and Bradyrhizobium japonicum [J]. Bioresour.Technol.,2012,123:184-188.
    [91]李福东,张城,邹景忠。细菌在浮游植物生长过程中的作用[J]。海洋科学,1996,(6):30-34。
    [92]Ietswaartt, Schneider P J, Prinsra. Utilization of organic nitrogen sources by two phytoplankton species and a bacterial isolate in pure and mixed cultures [J]. Appl. Environ. Microbiol.,1994,60 (5):1554-1560.
    [93]Bell W H, Lang J M, Mitchell R. Selective stimulation of marine bacteria by algal extracellular products [J]. Linnol Ocean-ogr,1974,19 (5):833-839.
    [94]Riquelm C E, Fukami K, Ishida Y. Effects of bacteria on the growth of a marine diatom, Asterionella gracialis [J]. Bulletin of Japanese Society of Microbial Ecology,1988,3:29-34.
    [95]Joint I R. Environmental role of nitrogen-fixing blue-green algae and asymbiotic bacteria [J]. SCI. Total Environ.,1979,13(1):93-241.
    [96]Hodson S, Croft M, Deery E, et al. Algae acquire Vitamin B12 through a symbiotic relationship with bacteria [J]. Comparative Biochemistry and Physiology-Part A:Molecular & Integrative Physiology.2007,146 (S4): 222-571.
    [97]郑天凌,徐美珠,俞志明等。菌-藻相互作用下胞外酶活性变化研究[J]。海洋科学,2002,26(12):41-44。
    [98]Mayali X, Doucette G J. Microbial community interactions and population dynamics of an algicidal bacterium active against Karenia brevis (Dinophyceae) [J]. Harmful Algae,2002,1:277-293.
    [99]Adlercreutz P, Holst Olle, Mattiasson B. Oxygen supply to immobilized cells: Studies on animmobilized algae--bacteria preparation with in situ oxygen generation [J]. Enzyme Microb. Technol,1982,4(6):395-400.
    [100]Pratt R, Daniels T C, Eiler J B, et al. Chlorellin, an antibacterial substance from Chlorella [J]. Science,1944,99:351-352.
    [101]郑天凌。微型藻类在海水环境自净中的作用[J]。环境科学学报,1990,10(2):195-200。
    [102]Smith V J, Desbois A P, Dyrynda E A. Conventional and unconventional antimicrobials from fish, marine invertebrates and micro-algae [J]. Mar:Drugs, 2010,8:1213-1262.
    [103]Kirchner M, Sahling G, Uhling G, et al. Does the red-tide-forming dinoflagellate Notiluca scintillans feed on bacteria? [J] Sarsia,1996,81:45-46.
    [104]赵以军,刘永定。有害藻类及其微生物防治的基础——藻菌关系的研究动态[J]。水生生物学报,1996,20(2):173-181。
    [105]L vdal T, Eichner C, Grossart H P, et al. Competition for inorganic and organic forms of nitrogen and phosphorous between phytoplankton and bacteria during an Emiliania huxleyi spring bloom (PeECE Ⅱ) [J]. Biogeosci. Discuss.,2007,4: 3343-3375.
    [106]徐金森,郑天凌,陈霞等。塔马亚历山大藻与细菌的共培养及其微生态效应[J]。应用与环境生物学报,2002,8(2):111-114。
    [107]Shilo M. Lysis of blue-green algae by myxobacter. [J] J.Bacteriol.,1970,104 (1):453-461.
    [108]李勤生,黎尚豪。溶解固氮蓝藻的细菌[J]。水生生物学集刊,1981,7(3):377-384。
    [109]Yamamoto Y, Suzuli K. Ultrastructural studies on lysis of blue-green algae by a bacterium [J]. Faculty of Agriculture,1977,23 (3):285-295.
    [110]Jung S W, Kim B H, Katano T, et al. Pseudomonas fluorescens HYK0210-SK09 offers species-specific biological control of winter algal blooms caused by freshwater diatom Stephanodiscus hantzschii [J], J. Appl. Microbiol.,2008, 105:186-195.
    [111]Kang Y H, Kim J D, Kim B H. Isolation and characterization of a bioagent antagonistic to diatom, Stephanodiscus hantzschii [J]. J. Appl. Microbiol.,2005, 98:1030-1038.
    [112]Mitsutani A, Takesue K, Kirita M, et al. Lysis of Skeletonema costatum by Cytophaga sp.isolated from the coastal water of the Ariake sea [J]. Nippon Suisan Gakkaishi,1992,58 (2):2158-2167.
    [113]Imai I, Ishida Y, Hata Y. Killing of marine phytoplankton by a gliding bacterium Cytophaga sp.,isolation from the coastal sea of Japan [J]. Mar. Biol.,1993,116: 527-532.
    [114]Caiola M G, Pellegrini S. Lysis of Microcystis aeruginosa by Bdellovibrio-like bacteria [J]. J. Physiol.,1984,20 (4):471-475.
    [115]Rice E L. Allelopathy (2rd edition) [M]. Academic Press.1984,1-50.
    [116]邓建明,陶勇,李大平等。溶藻细菌及其分子生物学研究进展[J]。应用与环境生物学报,2009,15(6):895-900。
    [117]Nakashima T, Miyazaki Y, Matsuyama Y, et al. Producing mechanism of an algicidal compound against red tide phytoplankton in a marine bacterium γ-proteobacterium [J]. Appl. Microbiol. Biotechnol.,2006,73:684-690.
    [118]Fuqua WC, Winans S C. A LuxR-LuxI type regulatory system activates Agrobacterium Tiplasmid conjugal transfer in the presence of a plant tumor metabolite [J]. J. Bacteriol,1994,176:2796-2806.
    [119]Nealson K H, Platt T, Hastings J W. Cellular control of the synthesis and activity of the bacterial luminescent system [J]. J. Bacteriol.,1970,104: 313-322.
    [120]Piper K R, Beck von Bodman S, Farrand S K. Conjugation factor of Agrobacterium tumefaciens regulates Ti plasmid transfer by antoinduction [J]. Nature,1993,362 (6419):448-450.
    [121]Zhang L, Murphy P J, Kerr A, et al. Agrobacterium conjugation and gene regulation by N-acyl-L-homoserine lactones [J]. Nature,1993,362 (6419):446-448.
    [122]Zhang H B, Wang L H, Zhang L H. Genetic control of quorum-sensing signal turnover in Agrobacterium tumefaciens [J]. Proceedings of the National Academy of Sciences of the United States of America,2002,99 (7):4638-4843.
    [123]Rudner D Z, LeDeaux J R, Ireton K, et al. The spoOK locus of Bacillus subtilis is homologous to the oligopeptide permease locus and is required for sporulation and competence [J]. J. Bacteriol.,1991,173:1388-1398.
    [124]Pirhonen M, Flego D, Heikinheimo R, et al. A small diffusible signal molecule is responsible for the global control of virulence and exoenzyme production in the plant pathogen Erwinia carotovora [J]. The EMBO journal,1993,12 (6): 2467-2476.
    [125]Eberl L, Winson M K, Sternberg C, et al. Involvement of N-acyl-L-homoserine lactone autoinducers in controlling the multicellular behaviour of Serratia liqnefaciens [J]. Mol. Microbiol.,1996,20(1):127-136.
    [126]Thomson N R, Crow M A, McGowan S J, et al. Biosynthesis of carbapenem antibiotic and prodigiosin pigment in Serratia is under quorum sensing control [J]. Mol. Microbiol.,2000,36(3):539-556.
    [127]Pirhonen M, Flego D, Heikinheimo R, et al. A small diffusible signal molecule is responsible for the global control of virulence and exoenzyme production in the plant pathogen Erwinia carotovora [J]. The EMBO journal,1993,12(6): 2467-2476.
    [128]Latifi A, Foglino M, Tanaka K, et al. A hierarchical quorum-sensing cascade in Pseudomonas aeruginosa links the transcriptional activators LasR and Rh1R (VsmR) to expression of the stationary phase sigma factor RpoS [J]. Mol. Microbio.,1996, S21 (6):1137-1146.
    [129]Ortiz-Castro R, Contreras-Cornejo H A, Macias-Rodriguez L, et al. The role of microbial signals in plant growth and development [J]. Plant Signaling and Behavior,2009,4(8):701-712.
    [130]Klein I, von Rad U, Durner J. Homoserine lactones, do plants really listen to bacterial talk [J]? Plant Signaling and Behavior,2009,4(1):50-51.
    [131]Dong Y H, Gusti A R, Zhang Q, et al. Identification of quorum-quenching N-acyl homoserine lactonases from Bacillus species [J]. Appl. Environ. Microbiol.,2002,68 (4):1754-1759.
    [132]周丽娟,陈小兰,王波等。外源AHLs信号物质对蓝藻生长代谢的影响[J]。云南大学学报(自然科学版),2007,29(3):303-307。
    [133]Joseph C M, Phillips D A. Metabolites from soil bacteria affects plant water relations [J]. Plant Physiol. Biochem.,2003,41(2):189-192.
    [134]Von Rad U, Klein I, Dobrev P I, et al. Response of Arabidopsis thaliana to N-hexanoyl-DL-homoserine lactone, a bacterial quorum sensing molecule produced in the rhizospher [J]. Planta,2008,229:73-85.
    [135]Nys R, Wright A D, Konig G M, et al. New halogenated furanones from the marine alga Delisea pulchra (cf. fimbriata) [J]. Tetrahedron,1993,49: 11213-11220.
    [136]Teplitski M, Chen H C, Rajamani S, et al. Chlamydomonas reinhardtii secretes compounds that mimic bacterial signals and interfere with quorum sensing regulation in bacterial [J]. Plant Physiol.,2004,134:137-146.
    [137]Harris E H. The Chlamydomonas sourcebook:Introduction to Chlamydomonas and its Laboratory Use,2nd Edition [M]. San Diego, Academic Press,2009, 119-158,267-274.
    [138]Makarova V V, Kosourov S, Krendeleva T E, et al. Photoproductiion of hydrogen by sulfur-deprived C.reinhardtii mutants with impaired photosystem II photochemical activity [J]. Photosynth Res,2007,94:79-89.
    [139]Mus F, Dubini A, Seibert M,et al. Anaerobic Acclimation in Chlamydomonas reinhardtii Anoxic gene expression, hydrogenase induction, and metabolic pathways [J]. J. Biol. Chem.,2007, (282),35:25475-25486.
    [140]王少沛,曹煜成,李卓佳,杨莺莺,陈素文。水生环境中细菌与微藻的相互关系及其实际应用[J]。南方水产,2008,(4)1:76-80。
    [141]Li X X, Huang S, Yu J, Wang Q X, Wu S X, Improvement of hydrogen production of Chlamydomonas reinhardtii by co-cultivation with isolated bacteria [J]. Intl. J. Hydrogen Energy,2013,38(25):10779-10787.
    [142]Dela Pena M R. Cell growth and nutritive value of the tropical benthic diatom, Amphora sp., at varying levels of nutrients and light intensity, and different culture locations [J]. J. Appl. Physiol.,2007,19(6):647-655.
    [143]Ding Y, Miao J L, Wang Q F, et al. Purification and characterization of a psychrophilic glutathione reductase from Antarctic ice microalgae Chlamydomonas sp. Strain ICE-L [J]. Polar Biology,2007,31(1):23-30.
    [144]Bell W H. Bacterial utilization of algal extracellular products. The kinetic approach [J]. Limnol Oceanogr,1980,25 (6):1007-1020.
    [145]Gyurjan I, Turtoczky I, Toth G, et al. Intercellular symbiosis of nitrogen-fixing bacteria and green alga [J]. Acta Botanica Hungarica,1984,30 (3):249-256.
    [146]Miller M, Bassler B. Quorum sensing in bacteria [J]. Annu. Rev.Microbiol., 2001,55:165-199.
    [147]Lindemann A, Pessi G, Schaefer A L, et al. Isovaleryl-homoserine lactone, an unusual branched-chain quorum-sensing signal from the soybean symbiont Bradyrhizobium japonicum [J]. PNAS,2011,108 (40):16765-16770.
    [148]Natrah F M I, Defoirdt T, Sorgeloos P, et al. Disruption of bacterial cell-to-cell communication by marine organisms and its relevance to aquaculture [J]. Mar. Biotechnol.,2011,13:109-126.
    [149]Posewitz M C, Smolinski S L, Kanakagiri S, et al. Hydrogen photoproduction is attenuated by disruption of an isoamylase gene in Chlamydomonas reinhardtii [J]. Plant Cell,2004,16:2151-2163.
    [150]Byi W, Wilson R H, Burris, Corree W B. Hydrogenase and synbiotic nitrogen fixation [J]. J. Biol. Chem.,1943,147:474-81.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700