用户名: 密码: 验证码:
富氧条件下低温选择性催化丙烯还原氮氧化物的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着汽车保有量的持续上升,机动车排放尾气成为城市环境空气污染的主要污染源之一,引起越来越多的关注。传统的三效催化剂(TWC)对稀燃发动机、柴油发动机等排放的富氧、低温尾气不再有效;此外,城市公路隧道、地下停车场等一些特殊场所,持续地向周围大气环境排放低浓度、富氧、低温的废气,是一类容易被忽视却又具较大危害的尾气排放污染源。虽然,通过引入具有毒害性的NH3作为还原剂,在低温下利用选择性催化还原反应(SCR)可去除NOx,但该技术不适合用于机动车移动源以及隧道、停车场等固定源;采用贵金属负载氧化物、分子筛等催化剂,以与NOx共存的碳氢化合物(HC)作为还原剂,不仅可以实现污染物的同时去除,而且具有良好的低温催化活性。
     本文通过实验室配气模拟富氧、低污染物浓度的机动车排放废气,采用湿式浸渍法制备了Pt负载金属氧化物MOx(M= Al、Ce、Ti、W、Zr)及不同贵金属(Pt、Pd、Rh、Ru)负载TiO_2、Pt负载分子筛(MCM-41、ZSM-5)等3个系列催化剂,通过XRD、TEM、BET、in situ DRIFTS等分析表征方法及低温吸附(ADS)、程序升温脱附(TPD)、程序升温氧化反应(TPO)、SCR等催化剂活性评价方法,分别考察并比较了催化剂低温选择性催化C3H6还原NOx的催化活性,揭示了富氧条件下Pt/TiO_2、Pt/ZSM-5催化剂的低温C3H6-SCR反应的可能机理。本文研究的主要内容及结果如下:
     1. C3H6在Pt/MOx(M=Al、Ce、Ti、W、Zr)及Pt、Pd、Rh、Ru负载TiO_2等氧化物催化剂上的吸附能力均很微弱,Pt/TiO_2与TiO_2对C3H6的吸脱附实验结果表明,C3H6在催化剂样品及其载体上仅发生简单的物理吸附过程,影响催化剂对C3H6吸附的主要因素是载体,而不是对载体的改性(Pt负载);另一方面,Pt/ZSM-5催化剂样品具有比载体(ZSM-5)更强的C3H6吸附能力,主要是由于Pt负载过程对载体ZSM-5微孔结构的轻微改变而引起的。
     2.催化剂及其载体的NO-ADS、NO-TPD等实验结果表明,Pt负载显著提高了MOx(M=Al、Ce、Ti、W、Zr)及MCM-41、ZSM-5等载体对NO的吸附能力,也相应地增加了NO-TPD的脱附量。在贵金属负载催化剂的NO-TPD低温段出现的NO脱附峰,主要来自于载体对NO的物理吸附以及NO在贵金属表面的解离吸附,而高温段脱附的NO和NO_2来自于催化剂表面硝酸盐的分解。催化剂对NO吸附能力及其NO-TPD脱附量大小,是由载体的BET比表面积、酸碱度等物理化学特性、以及对载体的改性(如Pt负载)等多方面因素共同决定的。
     3.反应物C_3H_6和NO的TPO的实验结果表明,Pt/MOx(M=Al、Ce、Ti、W、Zr)及Pt/MCM-41、Pt/ZSM-5等催化剂均显著地提高了载体对C_3H_6-TPO的低温催化氧化活性,同时也提高了载体对NO的低温催化氧化活性,催化剂对C_3H_6具有良好的选择性氧化能力,C_3H_6在TPO、SCR反应中均被完全氧化成CO_2。催化剂的SCR催化活性与其对反应物(C_3H_6、NO)的低温氧化催化性能密切相关,催化剂的SCR反应性能随反应温度的变化呈现火山口状的变化形式。反应物(C_3H_6、NO)和反应中间产物之间对催化剂表面活性氧(如Pt-O、吸附氧)的竞争反应,导致C_3H_6与NO的氧化反应在C_3H_6-SCR中相互抑制。
     4.通过对Pt/TiO_2催化剂制备条件的对比实验发现,在450°C时制备的Pt/TiO_2催化剂具有最高低温C_3H_6-SCR催化活性。但载体预处理温度过高(>450°C),会引起载体BET比表面积的下降,以及具有较高催化活性的锐钛矿相TiO_2的减少,从而降低了催化剂的催化活性;增加Pt负载量能够显著提高催化剂的低温C_3H_6-SCR催化活性,0.5 wt%是Pt/TiO_2催化剂的有效Pt负载量。
     5.在Pt/MOx(M= Al、Ce、Ti、W、Zr)及不同贵金属(Pt、Pd、Rh、Ru)负载TiO_2等氧化物型催化剂中,0.5 wt% Pt/TiO_2具有最高的低温C_3H_6-SCR催化活性,在140°C下,实现了63.4%的NOx转化(N2+N2O)率和83.7%的C_3H_6去除率,C_3H_6的选择性还原效率C3 H6?为75.7%。Pt/ZSM-5催化剂具有比Pt/TiO_2更高的低温催化活性和C3 H6? ,在140°C下,达到了77.1%的NOx转化率(转化为N2+N2O)和79.7%的C_3H_6去除率,C3 H6?则为96.7%。富氧条件下,Pt/TiO_2、Pt/ZSM-5的C_3H_6-SCR反应具有相同的反应特性,增加O_2浓度能提高C_3H_6-SCR低温活性,并增大了C_3H_6选择性还原NOx的能力;增加C_3H_6的浓度,可以提高NOx的最高转化率,促使SCR反应温度窗口向高温方向移动,并导致C3 H6?下降,更多的C_3H_6直接发生了非选择性催化燃烧。
     6. HC-SCR的反应机理因催化剂载体物理化学性质的不同而有显著的差异,推断富氧条件下Pt/TiO_2、Pt/ZSM-5的低温C_3H_6-SCR的反应机理分别属于NO解离机理和硝酸盐反应机理,载体表面的酸碱对、电荷转移等物化特性影响C_3H_6-SCR反应对机理路径的选择。在Pt/TiO_2低温C_3H_6-SCR的反应过程中,N2和N2O的生成来自于NO*和N*自由基的复合反应。NO*与CO*等碳氧中间体(CxHyOz)之间的相互反应,是Pt/TiO_2选择性催化C_3H_6还原NOx反应中的重要步骤。而Pt/ZSM-5的SCR反应,是NO在催化剂表面形成的具有氧化性的硝酸盐物种,与C_3H_6生成的还原性碳氧中间体(CxHyOz)之间的反应。NO和C_3H_6在催化剂表面的活化是C_3H_6-SCR反应机理中两个关键反应步骤。
     总之,采用贵金属Pt负载的氧化物TiO_2、分子筛ZSM-5作为低温C_3H_6-SCR催化剂,不仅实现了与NH3-SCR相当的反应活性温度,而且达到了HC和NOx污染物同时去除的效果,在柴油发动机、稀燃汽油发动机等移动污染源,以及城市公路隧道、地下停车场等固定源的污染物控制领域,具有良好的发展前景。
With the number of motor vehicles increasing instantly, exhaust gas pollution is being more and more serious. The traditional three-way catalysts (TWC) cannot be effective for lean burn engines and diesel vehicles. Moreover, low-concentration, oxygen-rich and low-temperature exhausts emitted from urban road tunnels and underground parking lots, are easily ignored sources of air pollution and can evoke serious environmental problems. Low-temperature removal of NOx by SCR can be achieved with the application of the toxic reducing agent NH3, but it is not suitable for the mobile engines and stationary constructions. Alternatively, low-temperature and simultaneous removal of pollutants can be accomplished by noble metal supported oxide and zeolite catalysts, using hydrocarbons (HC) as reducing agent.
     In this work, the oxygen-rich and low-concentration vehicle exhaust was simulated in lab scale. A series of catalysts were prepared by wet-impregnation method, including Pt supported MOx (M= Al, Ce, Ti, W, Zr), noble metals (Pt, Pd, Rh, Ru) supported TiO_2 and Pt supported zeolites (MCM-41, ZSM-5). The catalysts were characterized by BET, TEM,XRD and in situ DRIFTS techniques and low-temperature adsorption (ADS), temperature programmed desorption (TPD), temperature programmed oxidation (TPO), selective catalytic reduction (SCR). The main contents and results of this paper are as follows:
     1. From the results of the adsorption and desorption of C_3H_6 over Pt/MOx, it can be observed that only simple physical adsorption process happened on the catalyst, as well as the supports. The corresponding desorption process was also simple, suggesting that the support played important role in C_3H_6 adsorption, not the promotion of support (precious metal loading). Otherwise, Pt/ZSM-5 showed stronger ability of C_3H_6 adsorption than ZSM-5. This is possibly due to the slight change of microspores structure of ZSM-5 during the impregnation of Pt.
     2. Results of the NO-ADS and NO-TPD over the catalysts and supports indicated that Pt loading enhanced the NOx adsorption ability of MOx and MCM-41, ZSM-5 dramaticly as well as the NO-TPD amounts. The NO desorption peak displayed in low temperature range, attributing to the physical adsorption of NO and the dissociative adsorption of NO on Pt sites; while NO and NO_2 desorbed at higher temperature can be assigned to the decomposition of surface nitrates. The NO-ADS capacity and NO-TPD amounts depends on the physiochemical properties of supports (e.g., BET area, acidic and basic properties), as well as the modification of supports (Pt loading).
     3. It can be observed from the C_3H_6/NO-TPO experiments that the low-temperature oxidation activity of C_3H_6/NO were increased distinctly over Pt/MOx, Pt/MCM-41 and Pt/ZSM-5. The SCR activity of catalyst correlated well with its catalytic performance for TPO of reactants (C_3H_6, NO) and displayed a volcanic variation versus temperature. Owing to high selectivity for oxdization of C_3H_6, no CO was detected during the reactions of TPO and SCR. The competitive reaction of reactants (C_3H_6 and NO) and intermediates with the active oxygen species on catalyst surface (e.g., Pt-O, adsorbed oxygen) resulted in mutual inhibitition for the oxidation of NO and C_3H_6 in SCR reaction.
     4. It was found that Pt/TiO_2 catalyst calcined at 450 oC showed the best low-temperature C_3H_6-SCR catalytic activity,which can be explained by better dispersion of Pt on the catalyst surface, as well as unchanged phase compositions of the support. However, high pretreatment temperature of support ( > 450 oC) resulted in drop of the BET surface area and derease of the active rutile TiO_2, then caused the decrease of catalytic activity. With Pt content increasing, the low-temperature C_3H_6-SCR activity increased obviously. 0.5 wt% Pt was found to be proper for the enhancement of catalytic activity, while more Pt loading did not have profound effect on the catalytic performace any more.
     5. Among noble metal supported oxide catalysts, 0.5 wt% Pt/TiO_2 displays outstanding catalytic activity for C_3H_6-SCR and selective reduction efficiency of C_3H_6 (C3 H6 ), in which 63.4% NOx was reduced to N2+N2O and 83.7% C_3H_6 was oxidized with 75.7% C3 H6? at 140 oC. At the same temperature, Pt/ZSM-5 showed higher catalytic activity and C3 H6? than oxide catalysts, with 77.1% NOx reduction, 79.7% C_3H_6 conversiton and 96.7%C3 H6? . Under the oxygen-rich condition, Pt/TiO_2 and Pt/ZSM-5 showed almost the same C_3H_6-SCR catalytic properties. With the increase of O_2 concentration, the low-temperature C_3H_6-SCR activity and C3 H6? was enhanced. With the concentration of C_3H_6 increasing, the maximum conversion of NOx was elevated, but the SCR reaction temperature range shifted to higher temperatures, bringing about the decrease ofC3 H6 .
     6. The low-termperature SCR of NO with C_3H_6 in the excess of O_2 was investigated by in situ DRIFTS. NO dissociation mechanism and nitrates reaction mechanism had been proposed for the SCR over Pt/TiO_2 and Pt/ZSM-5 respectively; and the C_3H_6-SCR mechanism varies from the physicochemical property (e.g., acid-base pair, charge transfer) of support. During the reaction of C_3H_6-SCR over Pt/TiO_2, the formation of N2 and N2O was from the combinations of NO* and N* radicals. The interaction of NO*, CO* and other CxHyOz species was thought to be the important step during the SCR reaction. On the other hand, oxidizing nitrates induced by the oxidation of NO to NO_2, could react with the reducing CxHyOz species over Pt/ZSM-5 catalyst. The activations of NO and C_3H_6 were crucial steps in the SCR reaction.
     In conclution, the Pt supported metal oxide ( Pt/TiO_2 ) and zeolite ( ZSM-5 ) catalysts for the low-temperature C_3H_6-SCR catalysts showed high catalytic activity in excess O_2 at temperature as low as that of NH3-SCR. Moreover, HC and NOx were removed simultantly in C_3H_6-SCR. The low-temperature C_3H_6-SCR is a promising technology for NOx emission control in the fields of motor vehicles, even urban road tunnels and underground parking lots.
引文
[1] Roy, S., Hegde, M.S., Madras, G., Catalysis for NOx abatement. Applied Energy, 2009. 86(11): p. 2283-2297.
    [2]毛华永,李国祥,胡云萍,刘海涛,王伟,机动车排放对人体健康的影响及防治.内燃机, 2005. 2: p. 40-42.
    [3] http://www.haguidetofreight.co.uk/General/id94.htm.
    [4]解放日报, 2005年2月24号.
    [5] Breen, J.P., Burch, R., A review of the effect of the addition of hydrogen in the selective catalytic reduction of NOx with hydrocarbons on silver catalysts. Topics in Catalysis 2006. 39(1-2): p. 53-58.
    [6] Liu, Z., Ihl Woo, S., Recent Advances in Catalytic DeNOx Science and Technology. Catalysis Reviews, 2006. 48: p. 43-89.
    [7]王素平,机动车尾气污染对大气环境质量影响分析.环境工程, 2004. 22(3): p. 72-79.
    [8] Rai, A., Kulshreshtha, K., Effect of particulates generated from automobile emission on some common plants. Journal of Food, Agriculture and Environment, 2006. 4(1): p. 253-259.
    [9] Knox, E.G., Oil combustion and childhood cancers. Journal of Epidemiology and Community Health, 2005. 59(9): p. 755-760.
    [10] The world health report 2002 - Reducing Risks, P.H.L., World Health Organization, Geneva, Switzerland, 2002.
    [11]郝吉明,马广大,大气污染控制工程.高等教育出版社,第一版,北京, 1989.5: p. 5-7.
    [12]冯志宏,吕保和,低温等离子体净化汽车尾气中NO的研究. 2005(5): p. 57-60.
    [13] Green, L.C., Armstrong, S.R., Particulate matter in ambient air and mortality: Toxicologic perspectives. Regulatory Toxicology and Pharmacology, 2003. 38(3): p. 326-335.
    [14] Bosch, H., Janssen, F., Catalytic reduction of nitrogen oxides: a review on the fundamentals and technology. Catalysis Today, 1988. 2(4): p. 369-531.
    [15]周承来,吴梦奎,大气铅污染对幼儿健康影响的调查.环境与健康杂志, 2001. 18(4): p. 224-226.
    [16]刘丹,杨立中,于苏俊,运营隧道空气污染研究的现状与发展.铁道工程学报, 2000(4): p. 62-66.
    [17]张予燕,李修刚,南京市街道峡谷机动车尾气污染特点和环境容量分析.环境监测管理与技术, 2005. 14(5): p. 11-13.
    [18] Xie, X., Huang, Z., Wang, J.S., Impact of building configuration on air quality in street canyon. Atmospheric Environment, 2005. 39(25): p. 4519-4530.
    [19] Epling, W.S., Campbell, L.E., Yezerets, A., Currier, N.W., Parks II, J.E., Overview of the Fundamental Reactions and Degradation Mechanisms of NOx Storage/Reduction Catalysts. Catalysisi Reviews, 2004. 46(2): p. 163-245.
    [20] Klingstedt, F., Arve, K., Eranen, K., Murzin, D.Yu., Toward improved catalytic low-temperature NOx removal in diesel-powered vehicles. Accounts of Chemical Research, 2006. 39(4): p. 273-282.
    [21] Johnson, D.R., Bedick, C.R., Clark, N.N., Mckain Jr., D.L., Design and testing of an independently controlled urea SCR retrofit system for the reduction of NOx emissions from marine diesels. Environmental Science and Technology, 2009. 43(10): p. 3959-3963.
    [22]孔德良,白玉兰,叶庆国,田进军,汽车尾气净化催化剂的研究进展.青岛科技大学学报, 2003. 24(2): p. 132-136.
    [23] Jia, L.-W., Shen, M.-Q., Wang, J., Lin, M.-Q., Influence of ethanol-gasoline blended fuel on emission characteristics from a four-stroke motorcycle engine. Journal of Hazardous Materials, 2005. 123(1-3): p. 29-34.
    [24] Shinjoh, H., Tanabe, T., Yokota, K., Sugiura, M., Comparative NOx reduction behavior of Pt, Pd, and Rh supported catalysts in simulated exhaust gases as a function of oxygen concentration. Topics in Catalysis, 2004. 30-31: p. 319-324.
    [25] Zhang, Z., Chen, M., Shangguan, W., Low-temperature SCR of NO with propylene in excess oxygen over the Pt/TiO2 catalyst. Catalysis Communications, 2009. 10(9): p. 1330-1333.
    [26] Smirniotis, P.G., Sreekanth, P.M., Pe?a, D.A., Jenkins, R.G., Manganese oxide catalysts supported on TiO2, Al2O3, and SiO2: A comparison for low-temperature SCR of NO with NH3 Industrial and Engineering Chemistry Research 2006. 45(19): p. 6436-6443
    [27] Tang, X., Chen, J., Huang, X., Xu, Y., Shen, W., Pt/MnOx–CeO2 catalysts for the complete oxidation of formaldehyde at ambient temperature. Applied Catalysis B: Environmental, 2007. 81(1-2): p. 115-121.
    [28] Jang, J.-H., Lee, S.-C., Kim, D.-J., Kang, M., Choung, S.-J., Characterization of Pt-impregnated MCM-41 and MCM-48 and their catalytic performances in selective catalytic reduction for NOx. Applied Catalysis A: General, 2005. 286(1): p. 36-43.
    [29] Silletti, B.A., Adams, R.T., Sigmon, S.M., Nikolopoulos, A., Spivey, J.J., Lamb, H.H., A novel Pd/MgAlOx catalyst for NOx storage-reduction. Catalysis Today, 2006. 114(1): p. 64-71.
    [30] Holmgreen, E.M., Yung, M.M., Ozkan, U.S., Pd-based sulfated zirconia prepared by a single step sol-gel procedure for lean NOx reduction. Journal of Molecular Catalysis A: Chemical, 2007. 270(1-2): p. 101-111.
    [31]吴越,催化化学,1995年6月,北京,科学出版社,776-782.
    [32]张志翔,丝光沸石负载TiO2膜光催化氧化邻氯苯酚的研究. [硕士论文].上海:东华大学., 2005.3: p. 1-20.
    [33] Richter, M., Langpape, M., Kolf, S., Grubert, G., Eckelt, R., Radnik, J., Schneider, M., -M.Pohl, Fricke, R., Combinatorial preparation and high-throughput catalytic tests of multi-component DeNOx catalysts. Applied Catalysis B: Environmental 36 (4), pp. 261-277 2002. 36(4): p. 261-277.
    [34] Liu, S.X., Chen, X.Y., Chen, X., A TiO2/AC composite photocatalyst with high activity and easy separation prepared by a hydrothermal method. Journal of Hazardous Materials, 2007. 143(1-2): p. 257-263.
    [35] Ichiura, H., Kitaoka, T., Tanaka, H., Preparation of composite TiO2-zeolite sheets using a papermaking technique and their application to environmental improvement Part II Effect of zeolite coexisting in the composite sheet on NOx removal. Journal of Materials Science, 2003. 38: p. 1611- 1615.
    [36]张志翔,陈亮,包南,陈东辉,丝光沸石负载二氧化钛膜光催化降解邻氯苯酚.水资源保护, 2006. 22(2): p. 59-61.
    [37] Choi, H., Stathatos, E., Dionysiou, D.D., Sol-gel preparation of mesoporous photocatalytic TiO2 films and TiO2/Al2O3 composite membranes for environmental applications. Applied Catalysis B, Environmental, 2006. 63(1-2): p. 60-67.
    [38] Alawi, M.A., Hasan, L.A., Tanaka, K., Improved photocatalytic degradation of insecticide pirimicarb on SiO2-loaded TiO2. Fresenius Environmental Bulletin, 2007. 16(4): p. 403-407.
    [39] Yuan, J., Hu, H., Chen, M., Shi, J., Shangguan, W., Promotion effect of Al2O3-SiO2 interlayer and Pt loading on TiO2/nickel-foam photocatalyst for degrading gaseous acetaldehyde. Catalysis Today, 2008. 139(1-2): p. 140-145.
    [40]黎维彬,杨絮飞, NOx在担载CeO2的纳米ZrO2上的吸附研究.高等学校化学学报, 2002. 23(6): p. 1140-1142.
    [41] Bhatkhande, D.S., Pangarkar, V.G., Beenackers, A. ACM., Photocatalytic degradation for environmental applications-a review. Journal of Chemical Technology and Biotechnology, 2001. 77(1): p. 107-116.
    [42] Yamashita, H., Ichihashi, Y., Anpo, M., Hashimoto, M., Louis, C., Che, M., Photocatalytic Decomposition of NO at 275 K on Titanium Oxides Included within Y-Zeolite Cavities: The Structure and Role of the Active Sites. Journal of Physical Chemistry, 1996. 100(40): p. 16041-16044.
    [43] Lu, H.-K., Yang, W.-J., Zhou, Z.-J., Huang, Z.-Y., Liu, J.-Z., Zhou, J.-H., Cen, K.-F., Application of selective non-catalytic reduction on a power plant boiler. Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 2008. 28(23): p. 14-19.
    [44] Alzueta, M.U., Bilbao, R., Millera, A., Oliva, M., Iba?ez, J.C., Impact of new findings concerning urea thermal decomposition on the modeling of the urea-SNCR process Energy and Fuels, 2000. 14(2): p. 509-510.
    [45] Wang, Z., Jiang, Z., Shangguan, W., Simultaneous catalytic removal of NOx and soot particulate over Co-Al mixed oxide catalysts derived from hydrotalcites. Catalysis Communications, 2007. 8(11): p. 1659-1664.
    [46] Wang, Z., Shangguan, W., Su, J., Jiang, Z., Catalytic oxidation of diesel soot on mixed oxides derived from hydrotalcites. Catalysis Letters, 2006. 112(3-4): p. 149-154.
    [47]裴梅香,黄震,上官文峰,柴油机排放NOx催化还原技术研究进展.工业催化, 2003. 11(10): p. 33-38.
    [48] Jelles, S.J., Krul, R.R., Makkee, M., Moulijn, J.A., The influence of NO on the oxidation of metal activated diesel soot. Catalysis Today, 199. 53(4): p. 623-630.
    [49] Takahashi, N., Yamazaki, K., Sobukawa, H., Shinjoh, H., Influence of NOx Species and the Residual CO and C3H6 on NOx Storage Performance of NSR Catalysts at Low Temperatures.Journal of Chemical Engineering of Japan, 2006. 39(4): p. 437-443.
    [50]何代平,丁云杰, Pd改性K/MnOx-ZrO2催化剂上CO加氢制甲醇和异丁醇.催化学报, 2005. 26(11): p. 961-964.
    [51] Machida, M., Kurogi, D., Kijima, T., NOx storage and reduction characteristics of Pd/MnOx-CeO2 at low temperature. Catalysis Today, 2003. 84(3-4): p. 201-207.
    [52] Toops, T.J., Smith, D.B., Partridge, W.P., NOx adsorption on Pt/K/Al2O3. Catalysis Today 2006. 114(1): p. 112-124.
    [53] Piacentini, M., Maciejewski, M., Baiker, A., NOx storage-reduction behavior of Pt-Ba/MO2 (MO2 = SiO2, CeO2, ZrO2) catalysts Applied Catalysis B: Environmental 2007. 72(1-2): p. 105-117.
    [54] Costa, C.N., Efstathiou, A.M., Low-temperature H2-SCR of NO on a novel Pt/MgO-CeO2 catalyst. applied Catalysis B: Environmental, 2007. 72(3-4): p. 240-252.
    [55] Mokhnachuk, O.V., Soloviev, S.O., Kapran, A.Yu., Effect of rare-earth element oxides (La2O3, Ce2O3) on the structural and physico-chemical characteristics of Pd/Al2O3 monolithic catalysts of nitrogen oxide reduction by methane. Catalysis Today, 2007. 119(1-4): p. 145-151.
    [56] Misono, M., Inui, T., New catalytic technologies in Japan. Catalysis Today, 1999. 51(3-4): p. 369-375.
    [57] Takahashi, N., Suda, A., Hachisuka, I., Sugiura, M., Sobukawa, H., Shinjoh, H., Sulfur durability of NOx storage and reduction catalyst with supports of TiO2, ZrO2 and ZrO2-TiO2 mixed oxides. Applied Catalysis B: Environmental 2007. 72(1-2): p. 187-195
    [58] Narula, C.K., Daw, C.S., Hoard, J.W., Hammer, T., Materials Issues Related to Catalysts for Treatment of Diesel Exhaust. Int. J. Appl. Ceram. Technol., 2005. 2(6): p. 452-466.
    [59] Rappé, K.G., Hoard, J.W., Aardahl, C.L., Park, P.W., Peden, C.H.F., Tran, D.N., Combination of low and high temperature catalytic materials to obtain broad temperature coverage for plasma-facilitated NOx reduction. Catalysis Today, 2004. 89(1-2): p. 143-150.
    [60] Iwamoto, M., Furukawa, H., Mine, Y., Uemura, F., Mikuriya, S.-I., Kagawa, S., Copper(II) ion-exchanged ZSM-5 zeolites as highly active catalysts for direct and continuous decomposition of nitrogen monoxide. Journal of the Chemical Society, Chemical Communications 1986(16): p. 1272-1273.
    [61] Fritz, A., Pitchon, V., The current state of research on automotive lean NOx catalysis. Applied Catalysis B: Environmental, 1997. 13(1): p. 1-25.
    [62]马涛,王睿, NOx的催化分解研究.化学进展, 2008. 20(6): p. 798-810.
    [63]余运波,富氧条件下Ag/Al2O3选择性催化还原NOx反应机理研究[博士论文].北京:中国科学院生态环境研究中心. 2004.
    [64] Wang, X., Kang, Q., Li, D., Ceria modified MnOx/TiO2 as a superior catalyst for NO reduction with NH3 at low-temperature. Catalysis Communications, 2008. 9(13): p. 2217-2220.
    [65] Casagrande, L., Lietti, L., Nova, I., Forzatti, P., Baiker, A., SCR of NO by NH3 over TiO2-supported V2O5-MoO3 catalysts: Reactivity and redox behavior. Applied Catalysis B: Environmental, 1999. 22(1): p. 63-77.
    [66] Sobczak, I., Kusior, A., Ziolek, M., FTIR study of NO, C3H6 and O2 adsorption and interactionon gold modified MCM-41 materials. Catalysis Today, 2008. 137(2-4): p. 203-208.
    [67] Beltramone, A.R., Pierella, L.B., Requejo, F.G., Anunziata, O.A., Fourier transform IR study of NO + CH4 + O2 coadsorption on In-ZSM-5 DeNOx catalyst. Catalysis Letters, 2003. 91(1-2): p. 19-24.
    [68] Szailer, T., Kwak, J.H., Kim, D.H., Hanson, J.C., Peden, C.H.F., Szanyi, J., Reduction of stored NOx on Pt/Al2O3 and Pt/BaO/Al2O3 catalysts with H2 and CO. Journal of Catalysis, 2006. 239(1): p. 51-64.
    [69] Kobayashi, T., Ikeue, T., Ito, T.et al., Short-term exposure to diesel exhaust induces nasal mucosal hyperresponsiveness to histamine in guinea pigs. Fundamental and Applied Toxicology. 1997, 38(2):166-172.
    [70] Jung, S.M., Grange, P., Investigation of the promotional effect of V2O5 on the SCR reaction and its mechanism on hybrid catalyst with V2O5 and TiO2-SO42- catalysts. Applied Catalysis B-Environmental. 2002, 36(3):207-215.
    [71] Nova, I., Ciardelli, C., Tronconi, E., Chatterjee, D., Bandl-Konrad, B., NH3-NO/NO2 chemistry over V-based catalysts and its role in the mechanism of the Fast SCR reaction. Catalysis Today, 2006. 114(1): p. 3-12.
    [72] Martín, J.A., Yates, M.,ávila, P., Suárez, S., Blanco, J., Nitrous oxide formation in low temperature selective catalytic reduction of nitrogen oxides with V2O5/TiO2 catalysts. Applied Catalysis B: Environmental, 2007. 70(1-4): p. 330-334.
    [73] Lietti, L., Nova, I., Ramis, G., Dall'Acqua, L., Busca, G., Giamello, E., Forzatti, P., Bregani, F., Characterization and Reactivity of V2O5-MoO3/TiO2 De-NOx SCR Catalysts. Journal of Catalysis, 1999. 187(2): p. 419-435.
    [74] Valdés-Solís, T., Marbán, G., Fuertes, A.B., Kinetics and Mechanism of Low-Temperature SCR of NOx with NH3 over Vanadium Oxide Supported on Carbon-Ceramic Cellular Monoliths. Industrial and Engineering Chemistry Research, 2004. 43(10): p. 2349-2355.
    [75] Iwamoto, M., Proceedings of meeting of catalytic technology for removal of nitrogen monoxide. Tokyo, Jan., 1990: p. 17-22.
    [76] Held, W., Konig, A., Thomas, R., Catalytic NOx Reduction in net oxidizing exhaust gas. SAE paper, 1990. 900496.
    [77] Kotsifa, A., Kondarides, D.I., Verykios, X.E., Comparative study of the chemisorptive and catalytic properties of supported Pt catalysts related to the selective catalytic reduction of NO by propylene. Applied Catalysis B: Environmental 2007. 72(1-2): p. 136-148.
    [78] Ueda, A., Haruta, M., Reduction of nitrogen monoxide with propene over Au/Al2O3 mixed mechanically with Mn2O3. Applied Catalysis B, Environmental, 1998. 18(1-2): p. 115-121.
    [79] Yentekakis, I.V., Tellou, V., Botzolaki, G., Rapakousios, I.A., A comparative study of the C3H6 + NO + O2, C3H6 + O2 and NO + O2 reactions in excess oxygen over Na-modified Pt/γ-Al2O3 catalysts. Applied Catalysis B, Environmental, 2005. 56(3): p. 229-239.
    [80] Obuchi, A., Ohi, A., Nakamura, M., Ogata, A., Mizuno, K., Ohuchi, H., Performance of platinum-group metal catalysts for the selective reduction of nitrogen oxides by hydrocarbons. Applied Catalysis B, Environmental, 1993. 2 (1): p. 71-80
    [81] Wang, X., Zhang, S., Yu, Q., Yang, H., Tungsten promoted HZSM-5 in the SCR of NO by acetylene. Microporous and Mesoporous Materials, 2008. 109(1-3): p. 298-304.
    [82] Machida, M., Watanabe, T., Effect of Na-addition on catalytic activity of Pt-ZSM-5 for low-temperature NO-H2-O2 reactions. Applied Catalysis B: Environmental, 2004. 52(4): p. 281-286.
    [83] Zhang, R., Alamdari, H., Kaliaguine, S., Catalytic conversion of NO and C3H6 in exhaust gases over silver catalysts under stoichiometric or excess oxygen. Catalysis Letters, 2007. 119(1-2): p. 108-119
    [84] Wojciechowska, M., Zieliński, M., Pietrowski, M., Reduction of NO by C3H6 over CuO–MnO/MgF2 in the presence of H2O Catalysis Today, 2004. 90(1-2): p. 35-38.
    [85] Ferraris, G., Fierro, G., Lo Jacono, M., Inversi, M., Dragone, R., Catalytic activity of copper-zinc manganites for the reduction of NO and N2O by hydrocarbons. Applied Catalysis B: Environmental, 2003. 45(2): p. 91-101.
    [86] Burch, R., Halpin, E., Sullivan, J.A., A comparison of the selective catalytic reduction of NOx over Al2O3 and sulphated Al2O3 using CH3OH and C3H8 as reductants. Applied Catalysis B: Environmental, 1998. 17(1-2): p. 115-129.
    [87] Beutel, T., Adelman, B.J., Lei, G.-D., Sachtler, W.M.H., Potential reaction intermediates of NOx reduction with propane over Cu/ZSM-5. Catalysis Letters, 1995. (32): p. 1-2.
    [88] Lee, J.H., Schmieg, S.J., Oh, S.H., Improved NOx reduction over the staged Ag/Al2O3 catalyst system. Applied Catalysis A: General, 2008. 342(1-2): p. 78-86.
    [89] García-Cortés, J.M., Pérez-Ramírez, J., Illán-Gómez, M.J., Kapteijn, F., Moulijn, J.A, Salinas-Martínez de Lecea, C., Comparative study of Pt-based catalysts on different supports in the low-temperature de-NOx-SCR with propene. Applied Catalysis B: Environmental, 2001. 30(3-4): p. 399-408
    [90] Nakajima, F., Hamada, I., The state-of-the-art technology of NOx control. Catalysis Today, 1996. 29(1-4): p. 109-115.
    [91] Burch, R., Breen, J.P., Meunier, F.C., A review of the selective reduction of NOx with hydrocarbons under lean-burn conditions with non-zeolitic oxide and platinum group metal catalysts. Applied Catalysis B: Environmental, 2002. 39(4): p. 283-303.
    [92] Natile, M.M., Tomaello, F., Glisenti, A., WO3/CeO2 nanocomposite powders: Synthesis, characterization, and reactivity. Chemistry of Materials 2006. 18(14): p. 3270-3280.
    [93] Komatsu, T., Tomokuni, K., Yamada, I., Outstanding low temperature HC-SCR of NOx over platinum-group catalysts supported on mesoporous materials expecting diesel-auto emission regulation. Catalysis Today, 2006. 116(2 SPEC. ISS.): p. 244-249.
    [94] Burch, R., Millington, P.J., Selective reduction of NOx by hydrocarbons in excess oxygen by alumina- and silica-supported catalysts. Catalysis Today 1996. 29 (1-4): p. 37-42.
    [95] Ichiura, H., Kitaoka, T., Tanaka, H., Photocatalytic oxidation of NOx using composite sheets containing TiO2 and a metal compound. Chemosphere, 2003. 51(9): p. 855-860.
    [96]李英杰,富氧环境下碳烟还原NOx的微观反应机理研究[博士论文].上海:上海交通大学. 2008.
    [97] http://zh.wikipedia.org/.
    [98] Brown, W.A., King, D.A., NO chemisorption and reactions on metal surfaces: a new perspective. Journal of Physical Chemistry B 2000. 104(12): p. 2578-2595.
    [99] Palermo, A., Lambert, R.M., Harkness, I.R., Yentekakis, I.V., Mar'ina, O., Vayenas, C.G., Electrochemical promotion by Na of the platinum-catalyzed reaction between CO and NO. Journal of Catalysis, 1996. 161(1): p. 471-479.
    [100] Burch, R., Millington, P.J., Walker, A.P., Mechanism of the selective reduction of nitrogen monoxide on platinum-based catalysts in the presence of excess oxygen Applied Catalysis B, Environmental, 1994. 4(1): p. 65-94.
    [101] Kn?zinger, K., Knozinger, H., Species formed after NO adsorption and NO+ O2 co-adsorption on TiO2 : an FTIR spectroscopic study. Phys. Chem. Chem. Phys., 2000. 2: p. 2803-2806.
    [102] Shimizu, K.-I., Shibata, J., Yoshida, H., Satsuma, A., Hattori, T., Silver-alumina catalysts for selective reduction of NO by higher hydrocarbons: Structure of active sites and reaction mechanism. Applied Catalysis B, Environmental, 2001. 30(1-2): p. 151-162.
    [103] Shimizu, K.-I., Kawabata, H., Satsuma, A., Hattori, T., Role of acetate and nitrates in the selective catalytic reduction of NO by propene over alumina catalyst as investigated by FTIR. Journal of Physical Chemistry B, 1999. 103(25): p. 5240-5245.
    [104] Shimizu, K.-I., Shibata, J., Satsuma, A., Hattori, T., Mechanistic causes of the hydrocarbon effect on the activity of Ag-Al2O3 catalyst for the selective reduction of NO. Physical Chemistry Chemical Physics, 2001. 3(5): p. 880-884.
    [105] Satsuma, A., Shimizu, K.-I., In situ FT/IR study of selective catalytic reduction of NO over alumina-based catalysts. Progress in Energy and Combustion Science, 2003. 29(1): p. 71-84.
    [106] Despres, J., Koebel, M., Krocher, O., Elsener, M., Wokaun, A., Adsorption and desorption of NO and NO2 on Cu-ZSM-5. Microporous and Mesoporous Materials, 2003. 58(2): p. 175-183.
    [107] Meunier, F.C., Zuzaniuk, V., Breen, J.P., Olsson, M., Ross, J.R.H., Mechanistic differences in the selective reduction of NO by propene over cobalt- and silver-promoted alumina catalysts: kinetic and in situ DRIFTS study. Catalysis Today, 2000. 59(3).
    [108] Thomas I. Halkides, D.I.K.a.X.E.V., Mechanistic study of the reduction of NO by C3H6 in the presence of oxygen over Rh/TiO2 catalysts. Catalysis Today, 2002. 73(3-4): p. 213-221.
    [109] Chaisuk, C., Praserthdam, P., The nature of surface species on modified Pt-based catalysts for the SCR of NO by C3H6 under lean-burn condition. Reaction Kinetics and Catalysis Letters, 2003. 78(1): p. 99-105.
    [110] Wang, J., He, H., Feng, Q., Yu, Y., Yoshida, K., Selective catalytic reduction of NOx with C3H6 over an Ag/Al2O3 catalyst with a small quantity of noble metal. Catalysis Today, 2004. 93-95: p. 783-789.
    [111] Raskó, J., Solymosi, F., Infrared spectroscopic study of isocyanate formation in the reaction of NO and CO over Cr2O3/Al2O3 and Cr2O3/SiO2. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 1980(77): p. 2383-2395.
    [112] Frank Radtke, R.A.K., Alfons Baiker, Formation of undesired by-products in deNOx catalysis by hydrocarbons. Catalysis Today, 1995. 26: p. 159-167.
    [113] Kantcheva, M., Identification, Stability, and Reactivity of NOx Species Adsorbed on Titania-Supported Manganese Catalysts. journal of Catalysis, 2001. 204: p. 479-494.
    [114] Bion, N., Saussey, J., Haneda, M., Daturi, M., Study by in situ FTIR spectroscopy of the SCR of NOx by ethanol on Ag/Al2O3-Evidence of the role of isocyanate species. Journal of Catalysis, 2003. 217(1): p. 47-58.
    [115] Chen, H.-Y., Voskoboinikov, T., Sachtler, W.M.H., Reaction Intermediates in the Selective Catalytic Reduction of NOx over Fe/ZSM-5. Journal of Catalysis, 1999. 186(1): p. 91-99.
    [116]刘坚,赵震,徐春明,利用烃类作还原剂选择性催化还原NOx的催化剂.化学通报, 2005. 68: p. 1-8.
    [117] Cónsul, J.M.D., Thiele, D., Baibich, I.M., Veses, R.C. , Selective Reduction of NOx by Propylene Over Silver Catalyst Under Oxidative Conditions. J. Braz. Chem. Soc., 2004. 15(4): p. 556-562.
    [118] Captain, D.K., Amiridis, M.D., NO reduction by propylene over Pt/SiO2: An in situ FTIR study. Journal of Catalysis, 2000. 194(2): p. 222-232.
    [119] Captain, D.K., Amiridis, M.D. , In Situ FTIR Studies of the Selective Catalytic Reduction of NO by C3H6 over Pt/Al2O3. Journal of Catalysis, 1999. 184(2): p. 377-389.
    [120] Kumar, P.A., Reddy, M.P., Ju, L.K., Hyun-Sook, B., Phil, H.H., Low temperature propylene SCR of NO by copper alumina catalyst. Journal of Molecular Catalysis A: Chemical, 2008. 291(1-3): p. 66-74.
    [121] Castagnola, M.J., Neylon, M.K., Marshall, C.L., Coated bifunctional catalysts for NOx SCR with C3H6 Part II. In situ spectroscopic characterization. Catalysis Today, 2004. 96(1-2): p. 61-70.
    [122] Zhang, X., Yu, Y., He, H., Effect of hydrogen on reaction intermediates in the selective catalytic reduction of NOx by C3H6. Applied Catalysis B: Environmental, 2007. 76(3-4): p. 241-247.
    [123] García-Cortés, J.M., Pérez-Ramírez, J., Rouzaud, J.N., Vaccaro, A.R., Illán-Gómez, M.J., Salinas-Martínez De Lecea, C., On the structure sensitivity of deNOx HC-SCR over Pt-beta catalysts. Journal of Catalysis, 2003. 218(1): p. 111-112.
    [124] Flores-Moreno, J.L., Delahay, G., Figueras, F., Coq, B. , DRIFTS study of the nature and reactivity of the surface compounds formed by co-adsorption of NO, O2 and propene on sulfated titania-supported rhodium catalysts. Journal of Catalysis, 2005. 236(2): p. 292-303.
    [125] Cvetanovic, R.J., Amenomiya, Y., Advance in Catalysis 1967. 17(103).
    [126]周荣花,吴.,氧化物酸碱性的离子参数标度法.武汉工程大学学报, 2008. 30(1): p. 23-25.
    [127]姚国胜,氧化物催化剂酸碱性的微量吸附量热法研究.洛阳师范学院学报, 2002. 21(2): p. 47-49.
    [128]郭洪辉,赵.,杨培法,影响复合氧化物催化剂反应性能的因素.辽宁化工, 2006. 35(8): p. 458-461.
    [129] Toubeli, A., Efthimiadis, E.A., Vasalos, I.A., NO reduction by C3H6 in excess oxygen over fresh and sulfated Pt- and Rh- based catalysts. Catalysis Letters, 2000. 69(3-4): p. 157-164.
    [130] Guo, Y., Wang, L.-F., Sakurai, M., Kameyama, H., Kudoh, Y., Selective Catalytic Reduction of Nitric Oxide with Propene and Diesel Fuel as Reducing Agents over Anodic Alumina Catalyst. Journal of Chemical Engineering of Japan, 2006. 39(2): p. 162-172.
    [131] Carp, O., Huisman, C.L., Reller, A., Photoinduced reactivity of titanium dioxide. Progress inSolid State Chemistry, 2004. 32(1-2): p. 33-177.
    [132] Zhang, C., He, H., Tanaka, K.-I., Perfect catalytic oxidation of formaldehyde over a Pt/TiO2 catalyst at room temperature. Catalysis Communications, 2005. 6(3): p. 211-214.
    [133]黄浪欢,曾令可,罗民华, TiO2光催化脱除NOx的研究进展.环境污染治理技术与设备, 2001. 2(2): p. 60-64.
    [134] Martra, G., Lewis acid and base sites at the surface of microcrystalline TiO2 anatase: relationships between surface morphology and chemical behaviour. Applied Catalysis A: General, 2000. 200(1-2): p. 275-285.
    [135] Motonobu Kobayashi, K.M., WO3-TiO2 monolithic catalysts for high temperature SCR of NO by NH3: Influence of preparation method on structural and physico-chemical properties, activity and durability. Applied Catalysis B, Environmental, 2007. 72(3-4): p. 253-261.
    [136]余家国,赵修建,热处理工艺对TiO2纳米薄膜光催化性能的影响.硅酸盐学报, 1999. 27(6): p. 769-774.
    [137] Suárez, S., Yates, M., Avila, P., Blanco, J., New TiO2 monolithic supports based on the improvement of the porosity. Catalysis Today, 2005. 105(3-4): p. 499-506.
    [138] Salasc, S., Skoglundh, M., Fridell, E., A comparison between Pt and Pd in NOx storage catalysts. Applied Catalysis B: Environmental, 2002. 36(2): p. 145-160.
    [139] Labhsetwar, N., Minamino, H., Mukherjee, M., Mitsuhashi, T., Rayalu, S., Dhakad, M., Haneda, H., Subrt, J., Devotta, S., Catalytic properties of Ru-mordenite for NO reduction. Journal of Molecular Catalysis A: Chemical, 2007. 261(2): p. 213-217.
    [140] Abul-Milh, M., Westberg, H., Reduction of NO2 stored in a commercial lean NOx trap at low temperatures. Topics in Catalysis 2007. 42-43(1-4): p. 209-214
    [141]贺泓,环境多相催化研究过程中的表面科学研究方法.环境科学学报, 2003. 23(2): p. 224-229.
    [142]辛勤,固体催化剂的研究方法—第八章红外光谱法(上).石油化工, 2001. 30(1): p. 72-85.
    [143]王仲鹏,类水滑石衍生混合氧化物同时催化去除soot和NOx[博士论文].上海:上海交通大学. 2007.
    [144] Liao, D.L., Liao, B.Q., Shape, size and photocatalytic activity control of TiO2 nanoparticles with surfactants. Journal of Photochemistry and Photobiology A: Chemistry, 2007. 187(2-3): p. 363-369.
    [145] Fujishima, A., Zhang, X., Tryk, D.A., TiO2 photocatalysis and related surface phenomena. Surface Science Reports 2008. 63(12): p. 515-582.
    [146] Zhang, J., Liu, Y., Fan, W., He, Y., Li, R., Adsorption and temperature programmed desorption of NO, NO + O2, NO2 and NO + NO2 over CoH-ZSM-5. Fuel, 2007. 86(10-11): p. 1577-1586.
    [147] Nguyen, L.Q., Salim, C., Hinode, H., Performance of nano-sized Au/TiO2 for selective catalytic reduction of NOx by propene. Applied Catalysis A: General, 2008. 347(1): p. 94-99.
    [148] Olsson, L., Sjovall, H., Blint, R.J., Detailed kinetic modeling of NOx adsorption and NO oxidation over Cu-ZSM-5. Applied Catalysis B: Environmental, 2008.
    [149] Shen, S.-C., Kawi, S., Kinetic studies of selective catalytic reduction of nitric oxide by propylene on Pt/MCM-41 catalyst. Catalysis Today, 2001. 68(1-3): p. 245-254.
    [150] Zhang, C., He, H., Tanaka, K.-i., Catalytic performance and mechanism of a Pt-TiO2 catalyst for the oxidation of formaldehyde at room temperature. Applied Catalysis B: Environmental, 2006. 65(1-2): p. 37-43.
    [151] Beutel, T., Adelman, B., Sachtler, W.M.H., Potential reaction paths in NOx reduction over Cu/ZSM-5 Catalysis Letters, 1996. 37(3-4): p. 125-130.
    [152] Jorge Luis Flores-Moreno, G.D., Fran?ois Figueras, Bernard Coq, DRIFTS study of the nature and reactivity of the surface compounds formed by co-adsorption of NO, O2 and propene on sulfated titania-supported rhodium catalysts. Journal of Catalysis, 2005. 236(2): p. 292-303.
    [153] Ivanova, E., Mihaylov, M., Thibault-Starzyk, F., Daturi, M., Hadjiivanov, K., FTIR spectroscopy study of CO and NO adsorption and co-adsorption on Pt/TiO2 Journal of Molecular Catalysis A: Chemical, 2007. 274(1-2): p. 179-184.
    [154] Hadjiivanov, K.I., Identification of neutral and charged NxOy surface species by IR spectroscopy. Catalysis Reviews - Science and Engineering, 2000. 42(1-2): p. 71-144.
    [155] Sazama, P., Ca?pek, L., Drobná, H., Sobalík, Z., Ded?ece?k, J., Arve, K., Wichterlová, B., Enhancement of decane-SCR-NOx over Ag/alumina by hydrogen. Reaction kinetics and in situ FTIR and UV-vis study. Journal of Catalysis, 2005. 232(2): p. 302-317.
    [156] Qi, G., Yang, R.T., Chang, R., MnOx-CeO2 mixed oxides prepared by co-precipitation for selective catalytic reduction of NO with NH3 at low temperatures. Applied Catalysis B: Environmental, 2004. 51(2): p. 93-106.
    [157] Venkov, T., Dimitrov, M., Hadjiivanov, K., FTIR spectroscopic study of the nature and reactivity of NOx compounds formed on Cu/Al2O3 after coadsorption of NO and O2 Journal of Molecular Catalysis A: Chemical, 2006. 243(1): p. 8-16.
    [158] Twigg, M.V., Roles of catalytic oxidation in control of vehicle exhaust emissions. Catalysis Today, 2006. 117(4): p.407-418.
    [159] Li, L., Zhang, F., Guan, N., Richter, M., Fricke, R., Selective catalytic reduction of NO by propane in excess oxygen over IrCu-ZSM-5 catalyst. catalysis Communications, 2007. 8(3): p. 583-588.
    [160] Shen, S.-C., Kawi, S. , Mechanism of selective catalytic reduction of NO in the presence of excess O2 over Pt/Si-MCM-41 catalyst. Journal of Catalysis, 2003. 203: p. 241-250.
    [161] Derylo-Marczewska, A., Gac, W., Popivnyak, N., Zukocinski, G., Pasieczna, S., The influence of preparation method on the structure and redox properties of mesoporous Mn-MCM-41 materials. Catalysis Today, 2006. 114(2-3): p. 293-306.
    [162] Tao, Y., Kanoh, H., Abrams, L., Kaneko, K., Mesopore-modified zeolites: Preparation, characterization, and applications. Chemical Reviews, 2006. 106(3): p. 896-910.
    [163]方书农,伏义路,林培琰, NO在Cu-ZSM-5分子筛上的程序升温脱附研究.分子催化, 1995. 9(2): p. 118-124.
    [164] Varga, J., Halász, J., Kiricsi, I., Modified ZSM-5 zeolite as DENOx catalyst. Environmental Pollution, 1998. 102(81): p. 691-695.
    [165] Suib, S.L., A review of framework open structures. Annual Review of Materials Science 1996. 26: p. 135-151.
    [166] Tanabe, K., Holderich, W.F., Industrial application of solid acid-base catalysts. Applied Catalysis A: General, 1999. 181(2): p. 399-434.
    [167] Hadjiivanov, K., Klissurski, D., Ramis, G., Busca, G., Fourier transform IR study of NO, adsorption on a CuZSM-5 DeNOx catalyst. Applied Catalysis B: Environmental, 1996. 7(3-4): p. 251-267.
    [168] Busca, G., Larrubia, M.A., Arrighi, L., Ramis, G., Catalytic abatement of NOx: Chemical and mechanistic aspects. Catalysis Today, 2005. 107-108: p. 139-148.
    [169] Beck, J.S., Vartuli, J.C., Roth, W.J., Leonowicz, M.E., Kresge, C.T., Schmitt, K.D., Chu, C.T.-W., (...), Schlenker, J.L., A new family of mesoporous molecular sieves prepared with liquid crystal templates. Journal of the American Chemical Society, 1992. 114(27): p. 10834-10843.
    [170] Grün M., Lauer. I., Unger K.K., The synthesis of micrometer- and submicrometer-size spheres of ordered mesoporous oxide MCM-41. Advanced Materials, 1997. 9(3): p. 254-257.
    [171] Olson, D.H., Kokotailo, G.T., Lawton, S.L., Meier, W.M., Crystal structure and structure-related properties of ZSM-5. Journal of Physical Chemistry B, 1981. 85(15): p. 2238-2243.
    [172] de Boer, J.H., The Structure and Properties of Porous Materials[M], Butterworths. 1958.
    [173] Halkides, T.I., Kondarides, D.I., Verykios, X.E., Mechanistic study of the reduction of NO by C3H6 in the presence of oxygen over Rh/TiO2 catalysts. catalysis Today, 2002. 73(3-4): p. 213-221.
    [174] Chen, H.-Y., Voskoboinikov, T., Sachtler, W.M.H., Reduction of NOx over Fe/ZSM-5 catalysts: mechanistic causes of activity differences between alkanes. Catalysis Letters, 1999. 54(4): p. 483-494.
    [175] Kantcheva, M., Cayirtepe, I., Routes of formation and composition of NOx complexes adsorbed on palladium-promoted tungstated zirconia. Journal of Molecular Catalysis A: Chemical, 2006. 247(1-2): p. 88-98.
    [176] Van Kooten, W.E.J., Krijnsen, H.C., Van Den Bleek, C.M., Calis, H.P.A., Deactivation of zeolite catalysts used for NOx removal. Applied Catalysis B: Environmental, 2000. 25(2-3): p. 125-135.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700