用户名: 密码: 验证码:
低碳烷烃CO_2氧化脱氢催化剂的制备及其催化性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
乙烯、丙烯等低碳烯烃作为石油化工的重要基础原料,在石油化学工业中起着举足轻重的作用。目前乙烯和丙烯主要来自于各种碳氢化合物在高温条件下蒸汽热裂解和直接脱氢,由于反应温度高、能耗大、催化剂易结焦失活等原因,使其在工业生产中受到很大限制。与乙烷和丙烷直接脱氢制乙烯和丙烯相比,乙烷和丙烷的CO_2氧化脱氢制乙烯和丙烯在热力学上更为有利。采用CO_2作为温和氧化剂参与反应,不仅可以提高烯烃的选择性,还可以减少温室气体CO_2排放,实现碳资源的转化利用;SBA-15介孔材料具有较大的孔径分布、规则的孔道结构和较厚的孔壁以及良好的水热稳定性。因此,SBA-15分子筛有望作为乙烷和丙烷CO_2氧化脱氢制乙烯和丙烯高效催化剂的新型载体。整体式催化剂具有床层压降低、反应物径向分布均匀和良好的传递特性。这使得整体式催化剂已经成功的应用在环境污染控制领域。本论文分别制备了用于乙烷和丙烷CO_2氧化脱氢反应的负载型催化剂和金属基整体式催化剂,对催化剂的CO_2氧化乙烷或丙烷的脱氢性能性能进行了评价,并通过XRD、TEM、N_2-吸脱附、XPS、UV-vis和H_2-TPR等表征技术对催化剂的结构进行了表征。主要研究工作与结果如下:
     对于乙烷CO_2氧化脱氢反应,制备了Cr/SBA-15、Cr-Co/SBA-15、Cr-Ce/SBA-15负载型催化剂和Cr/SBA-15/Al_2O_3/FeCrAl、Ce/SBA-15/Al_2O_3/FeCrAl、Cr-Co/SBA-15/Al_2O_3/FeCrAl、Cr-Ce/SBA-15/Al_2O_3/FeCrAl金属基整体式催化剂。结果表明,Cr/SBA-15催化剂显示出较好的乙烷CO_2氧化脱氢活性。在Cr/SBA-15催化剂中,助剂Co的添加能够促进Cr物种在催化剂表面的分散,进而改变了催化剂的氧化还原特性和催化性能。Co的质量含量为1%的5Cr-1Co/SBA-15催化剂具有最好的脱氢活性,在T=700℃、GHSV=3600 mL·g~(-1) ? h~(-1)和V_(CO2)/V_(C2H6)=3的反应条件下,乙烷的转化率和乙烯的选择性分别为53.9%和94.6%。Ce促进的Cr/SBA-15催化剂也具有很好的乙烷脱氢催化性能,Ce的添加也能够增加催化剂中Cr~(6+)物种的相对含量,而Cr~(6+)物种是催化剂具有较高乙烷脱氢反应性能的主要活性物种。在Ce的质量含量为10%的5Cr-10Ce/SBA-15催化剂上乙烷的转化率和乙烯的选择性可以分别达到55.0%和96.0%。
     对于Cr基Cr/SBA-15/Al_2O_3/FeCrAl整体式催化剂,由于FeCrAl金属载体具有良好的导热性,使得以FeCrAl为载体的催化剂床层上具有低的温度梯度,这可以避免或者降低在高温下进行的脱氢反应中催化剂活性相的烧结或者团聚。另外,介孔SBA-15分子筛的将Cr物种限制在SBA-15的介孔孔道内,降低或者避免了Cr物种的烧结和团聚,从而使得Cr/SBA-15/Al_2O_3/FeCrAl金属基整体式催化剂在CO_2氧化乙烷脱氢的过程中表现出较好的活性和稳定性。在1130h的乙烷CO_2氧化脱氢反应稳定性测试中,乙烷和CO_2的转化率分别从66.%和17.3%降到42.3%和10.6%。乙烯的选择性从95.5%降到90.1%。在Cr基整体式催化剂中,适量Co的添加能够改变催化剂中Cr氧化物的氧化还原能力和增加了Cr~(6+)物种的含量,从而改变了Cr基整体式催化剂的氧化还原能力和乙烷脱氢催化性能。Co的质量含量为1%的5Cr-1Co/SBA-15/Al_2O_3/FeCrAl催化剂展示出最佳的乙烷氧化脱氢活性:在GHSV=6000 mL·g~(-1) ? h~(-1)、V_(CO2)/V_(C2H6)=4和T=650℃的反应条件下,可以得到36.8%的乙烷转化率和99.4%的乙烯选择性。所有Ce修饰的Cr基整体式催化剂均显示出较好的CO_2氧化乙烷脱氢催化活性和稳定性。在整体式催化剂中,Ce的添加明显地提高了Cr基金属基整体式催化剂的乙烷脱氢性能和催化剂的稳定性。在1300h的CO_2氧化乙烷脱氢反应中,乙烷的转化率从51.1%降到45.2%,乙烯的选择性均高于96.4%。对于Ce/SBA-15/Al_2O_3/FeCrAl金属基整体式催化剂,高价态的Ce~(4+)物种比低价态的Ce~(3+)物种具有更高的乙烷脱氢活性。在脱氢反应中,Ce~(4+)物种在脱氢反应中被还原为Ce~(3+)物种,而Ce~(3+)物种同时可以被CO_2氧化为Ce~(4+)物种。Ce物种不同价态之间的氧化还原对于保持催化剂具有较高的乙烷脱氢催化性能起着重要的作用。
     对于丙烷CO_2氧化脱氢反应,制备了V/SBA-15、V-Cr/SBA-15负载型催化剂和V/SBA-15/Al_2O_3/FeCrAl、V-Cr/SBA-15/Al_2O_3/FeCrAl金属基整体式催化剂。在V/SBA-15催化剂中,V物种存在多种价态,其中V~(5+)物种是主要的活性组分。Cr物种的添加能够促进V物种在催化剂表面的分散性能,增加V基催化剂中高价态V~(5+)物种的含量,从而提高V基催化剂上的CO_2氧化丙烷脱氢的催化性能。
     对于以V为活性组分的V/SBA-15/Al_2O_3/FeCrAl整体式催化剂,催化剂中V物种以三种价态V~(5+)、V~(4+)和V~(3+)物种的形式存在。其中具有四面体的V~(5+)物种具有更高的丙烷氧化脱氢性能,而聚合的V~(5+)物种则具有较低的脱氢性能。在V/SBA-15/Al_2O_3/FeCrAlCr金属基整体式催化剂中,添加适量的Cr能明显提高V基整体式催化剂的CO_2氧化丙烷脱氢催化性能,并在Cr的质量含量为10%的10V-10Cr/SBA-15/Al_2O_3/FeCrAl催化剂达到最大值:在GHSV=14400 mL·g~(-1) ? h~(-1)、V_(CO2)/V_(C3H8)=3和700℃的反应条件下,可以得到61.3%的丙烷转化率和50.7%的丙烯收率。Cr物种的添加,增加了高分散的四面体的V物种的表面密度,并促进了四面体的V物种在催化剂表面的分散,从而提高了催化剂的活性。
Ethylene and propylene are the important basic chemical feedstocks and play a decisive role in petrochemical industry. At the present time, the ethene and propylene are mainly come from the steam cracking and direct dehydrogenation of hydrocarbons. But the way is limited in the industrial production becaused of high reaction temperature, large energy consumption and deactivation of catalyst. Comparing with the steam cracking and direct dehydrogenation of hydrocarbons, the catalytic oxidative dehydrogenation (ODH) of ethane and propane with carbon dioxide is thermodynamically favorable and has been recognized as an attractive alternative. In addition, using CO_2 as a mild oxidant, could not only improve the alkene selectivity, but also reduce the emission of greenhouse gas and be considered as a source of carbon. The SBA-15 mesoporous material possesses high surface areas, hexagonal array of uniform tubular channels, thick walls, and higher thermal stability than many other mesoporous silica materials. So it is a promising new type of porous support for fabrication the catalyst for ODH of ethane and propane with carbon dioxide. The monolithic catalysts have many advantages such as low-pressure drop, favorable heat and mass transfer properties and minimum axial dispersion stem from the uniquely structured multi-channel configuration of monoliths. Therefore, monolithic catalysts have been extensively applied to the control of emissions. In this paper, the supported and metal based monolithic catalysts were prepared and their catalytic performances for the ODH of ethane or propane with carbon dioxde were tested. The structure of the catalysts was characterized by XRD, TEM, N_2 adsorption-desorption, XPS, UV-vis and H_2-TPR. The main research works and results are listed as follows:
     The Cr/SBA-15, Cr-Co/SBA-15, Cr-Ce/SBA-15 supported catalysts and Cr/SBA-15/Al_2O_3/FeCrAl、Ce/SBA-15/Al_2O_3/FeCrAl、Cr-Co/SBA-15/Al_2O_3 /FeCrAl、Cr-Ce/SBA-15/Al_2O_3/FeCrAl monolithic catalysts were prepared and their catalytic activity of ODH of ethane with CO_2 were tested. The results indicated that the Cr/SBA-15 catalyst showed excellent activity of ethane dehydrogenation. For the Cr-based catalyst, the addition of Co species promoted the dispersion of Cr species and also changed the redox properties and catalytic activity of the catalysts. The 5Cr-1Co/SBA-15 catalyst with 5%Cr and 1%Co exhibited the best catalytic activity in which 53.9% ethane conversion and 94.6% ethylene selectivity could be achieved under GHSV=3600 mL·g~(-1) ? h~(-1), V_(CO2)/V_(C2H6)=3 and 700℃reaction conditions. The Cr-based catalysts modified with Ce also exhibited excellent catalytic activity for the ODH of ethane with CO_2. Adding the Ce species to the 5Cr/SBA-15 catalyst could remarkably increase the relative content of Cr~(6+) species. The Cr~(6+) species is the main active species in the ODH of ethane. The 55.0% ethane conversion and 96.0% ethylene selectivity could be obtained over 5Cr-10Ce/SBA-15 catalyst at 700℃. The deactivation and regeneration reaction results showed that the addtion of Ce species to the Cr/SBA-15 catalyst could enhance the stability of the catalyst.
     For the Cr-based monolithic catalysts, the high thermal conductivity of FeCrAl support could avoid the sinter of activity phase (Cr species), which is expected for the oxidative dehydrogenation of ethane occurring at high temperature. In addition, the mesoporous structure of SBA-15 could depress Cr species sintering, and enhance the catalytic activity and stability. During the 1130 h of stability reaction, the conversion of C_2H_6 dropped from 66.5% to 42.3%, and the selectivity for C_2H_4 decreased from 95.5% to 90.1% on 5Cr/SBA-15/Al_2O_3/FeCrAl catalyst. The activity and the stability of the catalysts could be improved when 5Cr/SBA-15/Al_2O_3/FeCrAl was doped by Co and Ce. After modified by Co species, the redox ability and catalytic activity changed and the relative content of the Cr~(6+) species increased. The 5Cr-1Co/SBA-Al_2O_3/FeCrAl catalyst exhibited excellent activity with 36.8% ethane conversion and 99.4% ethylene selectivity under GHSV=6000mL·g~(-1) ? h~(-1), V_(CO2)/V_(C2H6)=4 and 650℃reaction conditions. All the catalysts modified by Ce species showed better activity than that of Cr-based monolithic catalysts. The ODH performance could reach maximum at 5Cr-10Ce/SBA-15/Al_2O_3/FeCrAl monolithic catalysts. In the 1300 h stability reaction, the ethane conversion decreases from 51.1 % to 45.2 % and the C_2H_4 selectivity is above the 96.4 %. For the Ce/SBA-15/Al_2O_3/FeCrAl catalysts, the high oxidation state Ce~(4+) species had higher catalytic activity than the Ce~(3+) species in the monolithic catalysts. The Ce~(4+) species was reduced to Ce~(3+) species in the ethane dehydrogenation process, and the reduced Ce species was reoxidized to the Ce~(4+) species by treatment with CO_2. The Ce redox cycle played an important role in the catalyst's high activity.
     The V/SBA-15, V-Cr/SBA-15 supported catalysts and the V/SBA-15 /Al_2O_3/FeCrAl and Cr modified V-based monolithic catalysts were prepared and the catalytic activity of ODH of propane with CO_2 was tested. The results indicated that, in V-based catalysts, the vanadium exhibited multiple valences, including V~(5+) species which is main activit component for ODH of propane. The addition of Cr species in the V/SBA-15 catalyst could enhance the dispersion of the V species and increase the content of the high valence V speicies, especially the relative amount of the V~(5+) species. As a result, the catalytic activity of propane dehydrogenation had been enhanced.
     For the V/SBA-15/Al_2O_3/FeCrAl and Cr modified V-based monolithic catalysts, 10V-10Cr/SBA-15/Al_2O_3/FeCrAl catalyst had the best catalytic activity in which 61.3% propane conversion and 50.7% propylene yiled could be achieved under GHSV=14400 mL·g~(-1) ? h~(-1), V_(CO2)/V_(C3H8)=3 and 700℃reaction conditions. According to the results of characterization, the good catalytic performance of the V-based monolithic catalyst could be related to the higher surface concentration of dispersed tetrahedral V~(5+) species and the synergistic action of V and Cr species.
引文
[1] Kijima N, Matano K, Saito M, et al. Oxidative catalytic cracking of n-butane to lower alkenes over layered BiOCl catalyst [J]. Appl. Catal., A, 2001,206: 237-244
    [2] Wakui K, Satoh K, Sawada G, et al. Dehydrogenative cracking of n-butane using double-stage reaction [J]. Appl. Catal., A, 2002,230: 195-202
    [3] Eibl S, Jentoft R E, Gates B C, et al. Conversion of n-pentane and of n-butane catalyzed by platinum-containing WO_x/TiO_2 [J]. Phys. Chem. Chem. Phys., 2000, 2: 2565-2573
    [4] Souza M J B, Silva A O S, Araujo A S, et al. Catalytic cracking of C~(5+) gasoline over HY zeolite [J]. React. Kinet. Catal. Lett., 2003, 79: 257-262
    [5] Ji Dong, Wang Bin, Qian Guang, et al. A highly efficient catalytic C4 alkane cracking over zeolite ZSM-23 [J]. Catal. Commu., 2005, 6: 297-300
    [6] Borges P, Ramos Pinto R, Lemos F, et al. Activity-acidity relationship for alkane cracking over zeolites: n-hexane cracking over HZSM-5[J]. J. Mol. Catal. A: Chem., 2005, 229: 127-135
    [7] Yoo K S, Gopal Srikant, Smirniotics P G. Enhancement of n-Hexane cracking activity over modified ZSM-12 Zeolites [J]. Ind. Eng. Chem. Res., 2005,44: 4562-4568
    [8] Song J H, Chen Peilin, Kim S H, et al. Catalytic cracking of n-hexane over MoO_2[J]. J Mol Catal A Chem, 2002,184: 197-202
    [9] Andy P, Davis M E. Dehydrogenation of Propane over Platinum Containing CIT-6 [J]. Ind. Eng. Chem. Res., 2004,43: 2922-2928
    [10] Gascon J, Tellez C, Herguido J, et al. A two-zone fluidized bed reactor for catalytic propane dehydrogenation [J]. Chem. Eng. J., 2005,106: 91-96
    [11] Bocanegra S A, Guerrero-Ruiz A, Miguel S R, et al. Performance of PtSn catalysts supported on MAl_2O_4 (M Mg or Zn) in n-butane dehydrogenation: characterization of the metallic phase[J]. Appl. Catal., A, 2004, 277: 11-22
    [12] 马红超,付颍寰,王振旅等.V_2O_5/γ-Al_2O_3和V_2O_5-SiO_2负载型催化剂对异丁烷的催化脱氢性能[J].应用化学,2004,21(12):1221-1224
    [13] Bobrov V S, Digurov N G, Skudin V V. Propane dehydrogenation using catalytic membrane [J]. J. Membr. Sci., 2005,253: 233-242
    [14] Krylov O V, Mamedov A Kh, Mirzabekova S R. The regularities in the interaction of alkenes with CO_2 on oxide catalysts [J]. Catal. Today, 1995,24: 371-375
    [15] Xu L, Liu J, Yang H, et al.. Regeneration behaviors of Fe/Si-2 and Fe-Mn/Si-2 catalysts for C_2H_6 dehydrogenation with CO_2 to C_2H_4 [J]. Catal. Lett., 1999, 62 (2-4): 185-189
    [16] 李亚南,郭晓红,周广栋,等.Co-MCM-41催化剂上临CO_2-乙烷脱氢反应的研究[J].高等学校化学学报,2005,25(6):1122-1125
    [17] 李亚南,郭晓红,周广栋,等.Co-MCM-41和Co-MCM-48分子筛的合成与表征及其对临CO_2乙烷脱氢反应的催化性能[J].催化学报,2005,25(7):591-596
    [18] 郭晓红,李亚南,周广栋,等.负载型Co-Cr氧化物催化剂上CO_2氧化乙烷脱氢制乙烯反应的研究[J].分子催化,2005,19(6):457-461
    [19] 李亚男,张柯,周广栋,程铁欣,甄开吉,V-MCM-41分子筛对CO_2氧化乙烷脱氢制乙烯的催化性能研究[J].工业催化,2006,14卷增刊:283-284
    [20] Solymosi F, Nemeth R. The oxidative dehydrogenation of ethane with CO_2 over Mo_2C/SiO_2 catalyst [J]. Catal. Lett., 1999, 62: 197-200
    [21] 邵宇.VSO、MoSO负载Pd、Cu催化剂的制备及其CO_2选择氧化C_2H_6反应性能的研究[D].天津:天津大学,1997
    [22] 徐龙伢,王昌东,王清遐等.乙烷催化氧化脱氢制乙烯研究进展[J].天然气化工,1998,23(2):45-49
    [23] Wang S, Murata K, Hayakawa T, et al. Dehydrogenation of ethane with carbon dioxide over supported chromium oxide catalysts [J]. Appl. Catal., A, 2000, 196 (1): 1-8
    [24] Wang S B, Murata K, Hayakawa T, et al. Oxidative dehydrogenation of ethane by carbon dioxide over sulfate-modified Cr_2O_3/SiO_2 catalysts [J]. Catal. Lett., 1999, 63: 59-64
    [25] 邓双,李会泉,张懿.纳米Cr_2O_3系列催化剂上CO_2氧化乙烷脱氢制乙烯反应[J].催化学报,2003,24(10):744-750
    [26] Mimura N, Okamoto M, Yamashita H, et al. Oxidative dehydrogenation of ethane over Cr/ZSM-5 catalysts using CO_2 as an oxidant [J]. J. Phys. Chem. B, 2006, 110: 21764-21770
    [27] Li Y N, He X, Wu S J, et al. Cr-MCM-41 molecular sieves crystallized at room temperature for reaction of ethane with CO_2 [J]. J. Nat. Gas Chem., 2005,14: 207-212
    [28] 徐奕德.二氧化碳选择性氧化乙烷制乙烯稀土氧化物/氧化锌催化剂[P].中国专利,1199652A.1998-11-25
    [29] Xu Y, Corberan V. CeO_2: An Active and selective catalyst for the oxidative dehydrogenation of ethane with CO_2 [J]. Prog. Nat. Sci., 2000, 10(1): 22-26
    [30] Valenzuela R X, Bueno G, Solbes A, et al. Nanostructured ceria-based catalysts for oxydehydrogenation of ethane with CO_2 [J]. Top.Catal., 2001,15(2-4): 181-188
    [31] 张秀玲,谢品品,袁学德,等.负载型CeO_2催化剂上CO_2氧化乙烷制乙烯反应研究[J].大连大学学报,2006,27(6):26-30
    [32] Ge X, Hu S H, Sun Q, et al. Surface acidity/basicity and catalytic reactivity of CeO_2/γ-Al_2O_3 catalysts for the oxidative dehydrogenation of ethane with carbon dioxide to ethylene [J]. J. Nat. Gas Chem.,2003, 12: 119-122
    [33] 李青,钟顺和,邵宇.二氧化碳部分氧化乙烷制乙烯Pd/V_2O_5-SiO_2催化剂的研究[J].石油化工,1999,28(5):294-297
    [34] 李青,钟顺和,邵宇.二氧化碳部分氧化乙烷制乙烯Pd-Cu/MoO_3-SiO_2催化剂的研究[J].应用化学,1998,15(6):49-56
    [35] 李青,钟顺和.CO_2氧化乙烷脱氢制乙烯膜催化反应的研究[J].催化学报,2000,21(2):183-185
    [36] Solymosi F, Nemeth R. The oxidative dehydrogenation of ethane with CO_2 over Mo_2C/SiO_2[J]. Catal. Lett., 1999, 62 (2-4): 197-200
    [37] Liu Y, Xue J Z, Liu X X, et al. Oxidative dehydrogenation of ethane over Na_2WO_4-Mn/SiO_2 catalyst using oxygen and carbon dioxide as oxidants [J]. Stud. Surf. Sci. Catal., 1998,119: 593-597
    [38] 柳海涛,高润雄,杨得信,等.甲烷氧化偶联Na_2WO_4-Mn/SiO_2催化剂用于乙烷脱氢[J].石油化工,2006,35:1044-1047
    [39] Michorczyk P, Ogonowski J. Dehydrogenation of propane to propene over gallium oxide in the presence of CO_2 [J]. Appl. Catal., A, 2003, 251(2): 425-433
    [40] Nakagawa K, Kajita C, Okumura K, et al. Role of carbon dioxide in the dehydrogenation of ethane over gallium-loaded catalysts [J]. J. Catal., 2001,203: 87-93
    [41] Nakagawa K, Kajita C, Ide Y, et al. Promoting effect of carbon dioxide on the dehydrogenation and aromatization of ethane over gallium-loaded catalysts [J]. Catal. Lett., 2000, 64: 215-221
    [42] Nakagawa K, Okamura M, Ikenaga N, et al. Dehydrogenation of ethane over gallium oxide in the presence of carbon dioxide [J]. Chem. Common., 1998,9: 1025-1026
    [43] 葛欣,胡胜华,沈俭一.逆水煤气变换耦合乙烷脱氢制乙烯催化反应的研究[J].天然气化工,2003,28(5):13-15
    [44] Zhang X, Ye Q, Xu B Q, et al. Oxidative dehydrogenation of ethane over Co-BaCO_3 catalysts using CO_2 as oxidant: effects of Co promoter [J]. Catal. Lett., 2007, 117(3-4): 140-145
    [45] Zhang X L, Zhu A M, Li X H, et al.Oxidative dehydrogenation of ethane with CO_2 over catalyst under pulse corona plasma [J].Catal. Today, 2004, 89: 97-102
    [46] 王海南,王虹.丙烷氧化脱氢制丙烯催化剂研究进展[J].天然气化工,2003,28:25-31
    [47] 葛欣,沈俭一.丙烷脱氢与逆水煤气变换制丙烯反应的研究进展[J].天然气化工,2001,26:37-41
    [48] Nakagawa K, Kajita C H, Ikenaga N, et al. Dehydrogenation of light alkanes over oxidized diamond-supported catalysts in the presence of carbon dioxide [J]. Catal.Today, 2003, 84: 149-157
    [49] 照日格图,李文钊.丙烷氧化脱氢反应催化剂体系研究进展[J].天然气化工,2003,28:15-20
    [50] Mamedov E A, Corberan V C. Oxidative dehydrogenation of lower alkanes on vanadium oxide-based catalysts: The present state of the art and outlooks [J]. Appl. Catal., A, 1995, 127: 1-40
    [51] Blasco T, Lopez Nieto J M. Oxidative dehydrogenation of short alkanes on supported vanadium oxide catalysts [J]. Appl. Catal., A, 1997,157: 111-142
    [52] 张昕,万惠霖,翁维正,等.丙烷氧化脱氢催化Ag-Mo-P-O中MoO_3的作用[J].物理化学学报,2002,18:878-883
    [53] Grabowski R, Sloczynski J, Grzesik N M. Kinetics of oxidation dehydrogenation of propane over V_2O_5/TiO_2 catalyst [J]. Appl. Catal., A, 2003, 242: 297-309
    [54] 陈树明,翁维正,万惠霖,等.载体SiO_2表面修饰对钒基催化剂丙烷氧化脱氢催化性能的影响[J].厦门大学学报(自然科学版),1999,38:556-561
    [55] Male J L, Niessen H G, Bell A T, et al. Thermolytic molecular precursor route to active and selective vandia-zirconia catalysts for the oxidative dehydrogenation of propane [J]. J. Catal., 2000,194:431-444
    [56] Adamski A, Sojka Z, Dyrek K, Surface heterogeneity of zirconia-supported V_2O_5 catalysts.The link between structure and catalytic properties in oxidative dehydrogenation of propane [J]. Langmuir, 1999,15: 5733-5741
    [57] Zhang Q H, Wang Y, Ohishi Y, et al. Vanadium-Containing MCM-41 for Partial Oxidation of Lower Alkanes [J]. J. Catal., 2001,202: 308-318
    [58] Pena M L, Dejoz A, Fornes V, et al. V-containing MCM-41 and MCM-48 catalysts for the selective oxidation of propane in gas phase [J]. Appl. Catal., A, 2001,209: 155-164
    [59] 张雪峥,乐英红,高滋.SBA-15负载氧化铁催化剂上乙酸选择加氢制乙醛[J].高等化学学报,2003,46:121-124
    [60] 魏一伦,曹毅,朱建华,等.MgO/SBA-15固体介孔材料的研制[J].无机化学学报, 2003,19: 233-239
    [61] Fornes V, lopez C, lopez H H, et al. Catalytic performance of mesoporous VOx/SBA-15 catalysts for the partial oxidation of methane to formaldehyde [J]. Appl. Catal., A, 2003, 249: 345-354
    [62] 蒋慧,季生福,吴平易,等.CO_2氧化丙烷脱氢制丙烯V-Cr/SBA-15催化剂的研究[J].燃料化学学报,2006,34(5):600-606
    [63] Takehira K, Ohishi Y, Shishido T, et al. Behavior of active sites on Cr-MCM-41 catalysts during the dehydrogenation of propane with CO_2 [J]. J. Catal., 2004, 224: 404-416
    [64] 上官荣昌,葛欣,邹琥,等.二氧化碳氧化丙烷制丙烯催化反应的研究铬镁铝复合氧化物催化剂的制备、表面微量吸附量热及催化性能[J].催化化学,1999,20:515-520
    [65] Al-Zahrani S M, Jibril B Y, Abasaeed A E. Propane oxidation dehydrogenation over alumina-supported metal oxides [J]. Ind. Eng. Chem. Res., 2000,39: 4070-4074
    [66] Dale B F, Emerson H L, Min H R. Carbon dioxideas hydrogen acceptor in dehydrogenation of alkanes [J]. Ind. Eng. Chem. Res., Dev., 1972,11: 444-446
    [67] Takahara I, Saito M. Promoting effects of carbon dioxide on dehydrogenation of propane over a SiO_2-supported Cr_2O_3 catalyst [J]. Chem. Lett., 1996,25: 973-974
    [68] Takahara I, Chang W C, Mimura N, et al. Promoting effects of CO_2 on dehydrogenation of propane over a SiO_2-supported Cr_2O_3 catalyst [J]. Catal Today, 1998, 45: 55-59
    [69] 邹琥,葛欣,李明时,等.CrO_x/SiO_2催化剂上丙烷在CO_2气氛中脱氢反应的研究[J].无机化学学报,2000,16(5):775-782
    [70] 刘月霞,张明珠,王洪钧,等.在Cr/ZrO_2复合氧化物催化剂上丙烷脱氢反应性能的研究[J].天津轻工业学院学报,1996,1:27-31
    [71] Zhang X Z, Yue Y H, Gao Z. Chromium oxide supported on mesoporous SBA-15 as propane dehydrogenation and oxidation dehydrogenation catalysts [J]. Catal Lett, 2002, 83: 19-26
    [72] Zhu K K, Yue B, Zhou W Z, et al. Preparation of three-dimensional chromium oxide porous single crystals templated by SBA-15 [J]. Chem Commun, 2003,1: 98-99
    [73] 柳海涛,李会泉,杨玮娇,等.CO_2氧化丙烷脱氢Cr/MSU-x催化剂O_2再生性能研究[C].第十届中国科协年会,2008,199-203
    [74] Liu L C, Li H Q, Zhang Y. Mesoporous silica-supported chromium catalyst: Characterization and excellent performance in dehydrogenation of propane to propylene with carbon dioxide [J]. Catal. Commun., 2007, 8: 565-570
    [75] Dury F, Gaigneaux E M, Ruiz P, The active role of CO_2 at low temperature in oxidation processes: the case of oxidative dehydrogenation of propane on NiMoO_4 catalysts [J]. Appl. Catal., A, 2003, 242: 187-203
    [76] 郭俊宝,钟顺和,邵怀启.CO_2氧化丙烷脱氢制丙烯Pd-Cu/MoO_3-SiO_2催化剂研究[J].天然气化工,2003,28(5):1-6
    [77] 邵怀启,钟顺和,郭俊宝.CO_2氧化丙烷脱氢制丙烯用Pd-Cu/V_2O_5-SiO_2催化剂的研究[J].催化学报,2004,25(2):143-148
    [78] 邵怀启.二氧化碳部分氧化丙烷制丙烯催化剂及膜反应器的研究[D].天津:天津大学博士学位论文,2004
    [79] 郑波,华伟明,乐英红,等.Ga_2O_3催化剂上CO_2气氛中丙烷脱氢反应的研究[J].高等化学学报,2005,26(9):1726-1731
    [80] 李永丹,张海娟.结构化反应器的研究现状与发展前景[J].石油化工,2005, 34(1):1-8
    [81] Centi G, Perathoner S. Integrated design for solid catalysts in multiphase reactions [J]. Cattech, 2003,3(7): 78-89
    [82] Holler V, Yuranow I, Kiwi-Minsker L, et al. Structured multiphase reactors based on fibrous catalysts: nitrite hydrogenation as a case study [J]. Catal. Today, 2001, 69: 175-181
    [83] 闵恩泽.21世纪石油化工催化材料的发展与对策[J].石油与天然气化工,2000,29(5):215-220
    [84] Yuranov I, Kiwi-Minsker L, Renken A. Structured combustion catalysts based on sintered metal fibre filters [J]. Appl. Catal., 2003, 43: 217-227
    [85] Victor J M, Campos D, Rosa M, et al. Structured catalysts for partial oxidations [J]. Catal. Today, 2001,169: 121-129
    [86] Roy S, Heibel A K, Liu W, et al. Design of monolithic catalysts for multiphase reactions [J]. Chem.Eng. Sci., 2004, 59(5): 957-966
    [87] Groppi G, Ibashi W, Tronconi E, et al. Structured reactors for kinetic measurements in catalytic combustion [J]. Chem. Eng. J., 2001, 82: 57-71
    [88] Kapteijn F, Nijhuis T A, Heiszwolf J J, et al. New non-traditional multiphase catalytic reactors based on monolithic structures [J]. Catal. Today, 2001,66: 133-144
    [89] Cybulski A, Moulijn J A. Monoliths in heterogeneous catalysis [J]. Catal. Rev. -Sci. Eng., 1994, 36(2): 179-270
    [90] Kapteijn F, Heiszwolf J J, NijhuisT A, et al. Monoliths in multiphase catalytic processes-aspects and prospects [J]. Cattech, 1999,3: 24-41
    [91] 龙军,邵潜,贺振富,等.规整结构催化剂及反应器研究进展[J].化工进展,2004 23(9):925-932
    [92] Groppi G, Tronconi E. Design of novel monolith catalyst supports for gas/solid reactions with heat exchange [J]. Chem. Engi. Sci., 2000, 55: 2161-2165
    [93] Dautzenberg F M, Mukherjee M. Process intensification using multifunctional reactors [J]. Chem. Eng. Sci., 2001, 56: 251-267
    [94] 曹荣,陈燕馨,李峥嵘,等.甲烷部分氧化制甲醛催化剂MoO_3/SiO_2及MoO_3·M_xO_y/SiO_2的程序升温还原研究[J].分子催化,1996,10(5):368-374
    [95] Nijhuis T A, Kreutzer M T, Romijn A C J, et al. Monolithic catalysts as efficient three-phase reactors [J]. Chem. Eng. Sci., 2001, 56: 823-829
    [96] Victor J M, Quinta-Ferreira R M. Structured catalysts for partial oxidations [J]. Catal. Today, 2001,69: 121-129
    [97] Hilmen A H, Bergene E, Lindvag O A, et al. Fischer-Tropsch synthesis on monolithic catalysts of different materials [J]. Catal. Today, 2001,69: 227-232
    [98] Cimino S, Lisi L, Pirone R, et al. Methane combustion on perovskites-based structured catalysts [J]. Catal. Today, 2000,59: 19-31
    [99] Ferrandon M, Berg M, Bj(?)rnbom E. Thermal stability of metal-supported catalysts for reduction of cold-start emissions in a wood-fired domestic boiler [J]. Catal. Today, 1999, 53: 647-659
    [100] Berglin C T, Hermann W. Method in the production of hydrogen peroxide [P]. US Patent, 4552748,1985-11-12
    [101] 杨立英,李成岳,刘辉.金属基体上铝溶胶涂层的制备[J].催化学报,2004,25: 283-288
    [102] 季生福,李成岳,刘辉,等.一种用于甲烷催化燃烧的金属载体催化剂及其制备方法[P].中国专利,200410091176,2004
    [103] Yin F X, Ji S F, Chen N Z, et al. Ce_(1-x)Cu_xO_(2-x)/Al_2O_3/FeCrAl catalysts for catalytic combustion of methane [J]. Catal. Today, 2005,105: 372-377
    [104] Wang K, Li X J, Ji S F, et al. Preparation of Ni-Based Metal Monolithic Catalysts and a Study of Their Performance in Methane Reforming with CO_2 [J]. ChemSusChem, 2008, 1(6): 527-533
    [105] Rolison D R. Cataytic nanoarchitectures-the importance of nothing and the unimportance of periodicity [J]. Sci., 2003,299(5613): 1698-1701
    [106] Stein A. Advances in microporous and mesoprous solids-highlights of recent progress [J]. Adv. Mater., 2003, 15(10): 763-775
    [107] Zhao D Y, Feng J L, Huo Q S, et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores [J]. Sci., 1998, 279(23): 548-552
    [108] Weckhuysen B, Schoonheydt R. Alkane dehydrogenation over supported chromium oxide catalysts [J]. Catal. Today, 1999,51: 223-232.
    [109] Wang S B, Murata K, Hayakawa T, et al. Dehydrogenation of ethane with carbon dioxide over supported chromium oxide catalysts [J]. Appl. Catal., A, 2000,196: 1-8.
    [110] Mimura N, Takahara I, Inaba M, et al. High-performance Cr/H-ZSM-5 catalysts for oxidative dehydrogenation of ethane to ethylene with CO_2 as an oxidant [J]. Catal. Commun., 2002,3(6): 257-262
    [111] Maity K, Rana M S, Srinivas B N, et al. Characterization and evaluation of ZrO_2 supported hydrotreating catalysts [J]. J. Mol. Catal., 2000,153: 121-127
    [112] Pak C, Bell A T, Tilley T D. Oxidative dehydrogenation of propane over vanadia-magnesia catalysts prepared by thermolysis of OV(O~tBu)_3 in the presence of nanocrystalline MgO [J]. J. Catal., 2002,206: 49-59
    [113] Liu Y M, Cao Y, Yi N, et al. Vanadium oxide supported on mesoporous SBA-15 as highly selective catalysts in the oxidative dehydrogenation of propane [J]. J. Catal., 2004, 224: 417-428
    [114] 缪建文,周静,宋国华,等.CrO_x/SBA-15介孔催化剂上丙烷在二氧化碳气氛中脱氢反应的研究[J].无机化学学报,2005,21:1541-1546
    [115] Jarupatrakorn J, Tilley T D. Silica-Supported, Single-site titanium catalysts for olefin epoxidation. A molecular precursor strategy for control of catalyst structure [J]. J. Am. Chem. Soc. 2002,124: 8380-8388
    [116] Yoon Y -S, Fujikawa N, Ueda W, et al. Propane oxidation over various metal molybdate catalysts [J]. Catal. Today, 1995,24(3): 327-333
    [117] Nekrasov N V, Gaidai N A, Agafonov Yu A, S.L. et al. Transient response studies of isobutane oxidative dehydrogenation over molybdenum catalysts [J]. Stud. Surf. Sci. Catal., 2000,130(2): 1901-1906
    [118] Brik Y, Kacimi M, Ziyad M, F, et al. Titania-supported cobalt and cobalt-phosphorus catalysts: characterization and performances in ethane oxidative dehydrogenation [J]. J. Catal., 2001,202(1): 118-128
    [119] Bozon-Verduraz F, Ziyad M. Characterization and Comparison of the activity of boron-modified Co/TiO_2 catalysts in butan-2-ol conversion and oxidative dehydrogenation of ethane [J]. J. Catal., 2002,211(2): 470-481
    [120] Zhang X R, Shi P F. Production of hydrogen by steam reforming of methanol on CeO_2 promoted Cu/Al_2O_3 catalysts [J]. J. Mol. Catal. A: Chem., 2003,194(1-2): 99-105
    [121] Ronning M, Huber F, Meland H, et al. Relating catalyst structure and composition to the water-gas shift activity of Cu-Zn-based mixed-oxide catalysts [J]. Catal. Today, 2005, 100(3-4): 249-254
    [122] Kaspar J, Fornasiero P. Nanostructured materials for advanced automotive de-pollution catalysts [J]. J. Solid State Chem., 2003, 171(1-2)19-29
    [123] Epling W S, Hoflund G B. Catalytic oxidation of methane over ZrO_2-supported Pd catalysts [J]. J. Catal., 1999,182(1): 5-12
    [124] Miiller C A, Maciejewski M, Koeppel R A, et al. Combustion of methane over palladium/zirconia: effect of Pd-particle size and role of lattice oxygen [J]. Catal. Today, 1999, 47(1-4): 245-252
    [125] Cherian M, Rao M S, Hirt A M, et al. Oxidative dehydrogenation of propane over supported chromia catalysts: influence of oxide supports and chromia loading [J]. J. Catal, 2002, 211(2): 482-495
    [126] Liu L C, Li H Q, Zhang Y. A comparative study on catalytic performances of chromium incorporated and supported mesoporous MSU-x catalysts for the oxidehydrogenation of ethane to ethylene with carbon dioxide [J]. Catal. Today, 2006,115(1-4): 235-241.
    [127] Shi X J, Ji S F, Wang K. Oxidative dehydrogenation of ethane to ethylene with carbon dioxide over Cr-Ce/SBA-15 catalysts[J]. Catal. Lett., 2008,125: 331-339
    [128] Sundaramurthy V, Eswaramoorthi I, Dalai A K, et al. Hydrotreating of gas oil on SBA-15 supported NiMo catalysts [J]. Microporous Mesoporous Mater., 2008, 111(1-3):560-568
    [129] Zhang L, Zhao Y H, Dai H X, et al. A comparative investigation on the properties of Cr-SBA-15 and CrOx/SBA-15 [J]. Catal. Today, 2008,131(1-4): 42-54
    [130] Zhao X H, Wang Xi L. Oxidative dehydrogenation of ethane to ethylene by carbon dioxide over Cr/TS-1 catalysts [J]. Catal. Commun., 2006,7:633 - 638
    [131] Luan Z, Hartmann M, Zhao D, et al. Alumination and ion exchange of mesoporous SBA-15 molecular sieves [J]. Chem. Mater., 1999,11(6): 1621-1627
    [132] Luan Z, Maes E M, Heide P A W van der, et al. Incorporation of titanium into mesoporous silica molecular sieve SBA-15 [J]. Chem. Mater., 1999, 11(12):3680-3686
    [133] Andrei Y. Khodakov, Rafeh Bechara, Anne Griboval-Constant. Fischer-Tropsch synthesis over silica supported cobalt catalysts: mesoporous structure versus cobalt surface density [J]. Appl. Catal., A, 2003,254: 273-288
    [134] Cherian M, Rao M S, Yang W T, et al. Oxidative dehydrogenation of propane over Cr_2O_3/Al_2O_3 and Cr_2O_3 catalysts: effects of loading, precursor and surface area [J]. Appl. Catal., A, 2002,233: 215-226
    [135] Xu X Y, Li J J, Hao Z P, et al. Characterization and catalytic performance of Co/SBA-15 supported gold catalysts for CO oxidation [J]. Mater. Res. Bull., 2006,41: 406-413
    [136] Gaspar A B, Brito J L F, Dieguez L C. Characterization of chromium species in catalysts for dehydrogenation and polymerization [J]. J. Mol. Catal. A: Chem., 2003, 203(1-2): 251-266
    [137] Jimenez-Lopez A, Rodrigues-Castellon E, Maireles-Torres P, et al. Chromium oxide supported on zirconium- and lanthanum-doped mesoporous silica for oxidative dehydrogenation of propane [J]. Appl. Catal., A, 2001, 218(1-2): 295-306.
    [138] Pradier C M, Rodrigues F, Msrcus P, et al, Supported chromia catalysts for oxidation of organic compounds. The state of chromia phase and catalytic performance [J]. Appl. Catal., B, 2000, 27: 73-85
    [139] Kim C S, Woo S I. Characterization of Cr/silica ethylene polymerization catalyst by TPO/TPR and FT-IR [J]. J. Mol. Catal. A: Chem., 1992, 73(2): 249-263
    [140] Shi D X, Zhao Z, Xu C M, et al. Characterization and catalytic performances of supported chromia catalysts for C_(10)~+ heavy aromatics hydrodealkylation [J]. J. Mol. Catal. A: Chem., 2006,245(1-2): 106-113
    [141] Hakuli A, Kytokivi A, Krause A O I. Dehydrogenation of i-butane on CrO_x/Al_2O_3 catalysts prepared by ALE and impregnation techniques [J]. Appl. Catal., A, 2000, 190(1-2): 219-232
    [142] Liu B P, Terano M. Investigation of the physico-chemical state and aggregation mechanism of surface Cr species on a Phillips CrO_x/SiO_2 catalyst by XPS and EPMA [J]. J. Mol. Catal. A: Chem., 2001,172(1-2): 227-240
    [143] Hakuli A, Kytokivi A, Krause A O I, et al. Initial Activity of Reduced Chromia/Alumina Catalyst inn-Butane Dehydrogenation Monitored by On-Line FT-IR Gas Analysis [J]. J. Catal., 1996, 161(1): 393-400
    [144] Skoglundh M, Johansson H, L(?)wendahl L, et al. Cobalt-promoted palladium as a three-way catalyst [J]. Appl. Catal., B, 1996,7(3-4): 299-319
    [145] Todorova S, Parvulescu V, Kadinov G., et al. Metal states in cobalt- and cobalt-vanadium-modified MCM-41 mesoporous silica catalysts and their activity in selective hydrocarbons oxidation [J]. Microporous Mesoporous Mater., 2008,113: 22-30
    [146] Chu W, Chernavskii P A, Gengembre L, et al. Cobalt species in promoted cobalt alumina-supported Fischer-Tropsch catalysts [J]. J. Catal., 2007,252(2): 215-230
    [147] Boix A V, Miro E E, Lombardo E A, et al. The inhibiting effect of extra-framework Al on monolithic Co-ZSM5 catalysts used for NO_x SCR [J]. Catal. Today, 2008,133-135: 428-434
    [150] Ge X, Zhu M, Shen J Y. Catalytic performance of silica-supported chromium oxide catalysts in ethane dehydrogenation with carbon dioxide [J]. React. Kinet. Catal. Lett., 2002, 77(1): 103-108
    [151] Shanke D, Vada S, Blekkan E A, et al. Study of Pt-Promoted Cobalt CO Hydrogenation Catalysts [J]. J. Catal., 1995,156(1): 85-95
    [152] Rossi S, Casaletto M, Ferraris G, et al. Chromia/zirconia catalysts with Cr content exceeding the monolayer. A comparison with chromia/alumina and chromia/silica for isobutene dehydrogenation [J]. Appl. Catal., A, 1998,167(2): 257-270
    [153] Yang S W, Iglesia E, Bell A T. Oxidative Dehydrogenation of propane over V_2O_5/MoO_3/Al_2O_3 and V_2O_5/Cr_2O_3/Al_2O_3: Structural characterization and catalytic Function [J]. J. Phys. Chem. B, 2005,109: 8987-9000
    [154] Deng Y Q, Nevell T G. Non-steady activity during methane combustion over Pd/Al_2O_3 and the influences of Pt and CeO_2 additives [J]. Catal. Today, 1999,47(1-4): 279-286
    [155] Thevenin P O, Alcalde A, Pettersson L J, et al. Catalytic combustion of methane over cerium-doped palladium catalysts [J]. J. Catal., 2003,215(1): 78-86
    [156] Sharma S, Hilaire S, Vohs J M, et al. Evidence for Oxidation of Ceria by CO_2 [J]. J. Catal., 2000, 190(1): 199-204
    [157] Trovarelli A, Zamar F, Llorca J, et al. Nanophase Fluorite-Structured CeO_2-ZrO_2Catalysts Prepared by High-Energy Mechanical Milling [J]. J. Catal., 1997,169(2): 490-502
    [158] Hartmann M, Vinu A. Mechanical stability and porosity analysis of large-pore SBA-15 mesoporous molecular sieves by mercury porosimetry and organics adsorption [J]. Langmuir, 2002,18(21): 8010-8016
    [159] Li X K, Ji W J, Zhao J, et al. n-Butane oxidation over VPO catalysts supported on SBA-15 [J]. J. Catal., 2006,238(1): 232-241
    [160] Burri D R, Choi K -M, Lee J -H, et al. Influence of SBA-15 support on CeO_2-ZrO_2 catalyst for the dehydrogenation of ethylbenzene to styrene with CO_2 [J]. Catal. Commun., 2007, 8(1): 43-48
    [161] Berrichi Z E, Cherif L, Orsen O, et al. Ga doped SBA-15 as an active and stable catalyst for Friedel-Crafts liquid-phase acylation [J]. Appl. Catal., A, 2006, 298: 194-202
    [162] Vinu A, Sawant D P, Ariga K, et al. Benzylation of benzene and other aromatics by benzyl chloride over mesoporous A1SBA-15 catalysts [J]. Microporous Mesoporous Mater., 2005, 80(1-3): 195-
    [163] Derossi S, Ferraris G, Fremiotti S, et al. Propane Dehydrogenation on Chromia/Silica and Chromia/Alumina Catalysts [J]. J. Catal., 1994, 148(1): 36-46
    [164] Kim D S, Wachs I E. Surface Chemistry of Supported Chromium Oxide Catalysts [J]. J. Catal., 1993,142(1): 166-171
    [165] 杨宏,王清遐,徐龙伢,等.6Cr/SiO_2催化剂上CO_2氧化乙烷脱氢制乙烯反应的研究[J].天然气化工,2001,26(4):20-23
    [166] Seijger G B F, Palmaro S G, Krishna K, et al. In situ preparation of ferrierite coatings on structured metal supports [J]. Microporous Mesoporous Mater, 2002, 56(1): 33-45
    [167] Kucharczyk B, Tylus W, L. Kepinski. Pd-based monolithic catalysts on metal supports for catalytic combustion of methane [J]. Appl. Catal., B, 2004,49(1): 27-37
    [168] Liu H, Zhao J D, Li C Y, et al. Conceptual design and CFD simulation of a novel metal-based monolith reactor with enhanced mass transfer [J]. Catal. Today, 2005, 105(3-4): 401-406
    [169] Mei H, Li C Y, Liu H. Simulation of heat transfer and hydrodynamics for metal structured packed [J]. Catal. Today, 2005,105(3-4): 689-696
    [170] Yim S D, Nam I S. Characteristics of chromium oxides supported on TiO_2 and Al_2O_3 for the decomposition of perchloroethylene [J]. J. Catal., 2004,221(2): 601-611
    [171] Hakuli A, Harlin M E, Backman L B, et al. Dehydrogenation of /-Butane on CrO_x/SiO_2 Catalysts [J]. J. Catal., 1999,184(2): 349-356
    [172] Xu L Y, Liu J X, Xu Y D, et al. The suppression of coke deposition by the modification of Mn on Fe/silicalite-2 catalyst in dehydrogenation of C_2H_6 with CO_2[J]. Appl. Catal., A, 2000, 193(1-2): 95-101
    [173] 杨宏,王清遐,徐龙伢,等.6Cr/SiO_2催化剂上CO_2氧化乙烷脱氢制乙烯反应的研究[J].天然气化工,2001,26(4):20-24
    [174] Weckhuysen B M, Wachs I E, Schoonheydt R A. Surface Chemistry and Spectroscopy of Chromium in Inorganic Oxides [J]. Chem. Rev., 1996,96(8): 3327-3349
    [175] Grzybowska B, Slocynski J, Grabowski R, et al. Chromium oxide/alumina catalysts in oxidative dehydrogenation of isobutane [J]. J. Catal., 1998,178(2): 687-700
    [176] Hoang M, Mathews J F, Pratt K C. Oxidative dehydrogenation of isobutane over supported chromium oxide on lanthanum carbonate [J]. J. Catal., 1997, 171(1): 320-324
    [177] Liu Y M, Cao Y, Zhu K K, et al. Highly effective oxidative dehydrogenation of propane over vanadia supported on mesoporous SBA-15 silica [J]. Catal. Lett., 2003, 88(1-2):61-67
    [178] Wu X D, Weng D, Zhao S, et al. Influence of an aluminized intermediate layer on the adhesion of a γ-Al_2O_3 washcoat on FeCrAl [J]. Surf. Coat. Technol., 2005, 190(2-3): 434-439
    [179] Yin F X, Ji S F, Chen B H, et al. Catalytic combustion of methane over Ce_(1-x)La_xO_(2-x/2)/Al_2O_3/FeCrAl catalysts [J]. Appl. Catal., A, 2006,310: 164-173
    [180] Zhao S, Zhang J Z, Weng D, et al. A method to form well-adhered γ-Al_2O_3 layers on FeCrAl metallic supports [J]. Surf. Coat. Technol., 2003,167(1): 97-105
    [181] Cavani F, Koutyrev M, Trifiro F, et al. Chemical and physical characterization of alumina-supported chromia-based catalysts and their activity in dehydrogenation of isobutane [J]. J. Catal., 1996,158: 236-250
    [182] Valenzuela R X, Bueno G, Corberan V C, et al. Selective oxidehydrogenation of ethane with CO_2 over CeO_2-based catalysts [J]. Catal.Today, 2000, 61: 43-48
    [183] Rocchini E, Trovarelli A, Llorca J, et al. Relationships between Structural/Morphological Modifications and Oxygen Storage-Redox Behavior of Silica-Doped Ceria [J]. J. Catal., 2000, 194(2): 461-478
    [184] Dai Q G, Wang X Y, Lu G Z. Low-temperature catalytic combustion of trichloroethylene over cerium oxide and catalyst deactivation [J]. Appl. Catal., B, 2008, 81(3-4): 192-202
    [185] Burroughs P, Hammett A, Orchard A F, et al. Satellite structure in the X-ray photoelectron spectra of some binary and mixed oxides of lanthanum and cerium [J]. J. Chem. Soc., Dalton Trans., 1976, 17: 1686-1698
    [186] Liu G, Rodriguez JA, Hrbek J, et al. Electronic and chemical properties of Ce_(0.8)Zr_(0.2)O_2(111) surfaces: photoemission, XANES, density-functional, and NO_2 adsorption studies [J]. J. Phys. Chem. B, 2001, 105(32): 7762-7770
    [187] Larese C, Cabello Galisteo F, Lopez Granados M, et al. Effects of the CePO_4 on the oxygen storage and release properties of CeO_2 and Ce_(0.8)Zr_(0.2)O_2 solid solution [J]. J. Catal., 2004, 226(2): 443-456
    [188] Pfau A, Schierbaum K D. The electronic structure of stoichiometric and reduced CeO_2 surfaces: an XPS, UPS and HREELS study [J]. Surf. Sci., 1994, 321(1-2): 71-80
    [189] Heckert E G, Karakoti A S, Seal S, et al. The role of cerium redox state in the SOD mimetic activity of nanoceria [J]. Biomaterials, 2008,29(18): 2705-2709
    [190] Zaki M I, Hussein G A M, Manssur S A A, et al. Ceria on silica and alumina catalysts: dispersion and surface acid-base properties as probed by X-ray diffractometry, UV-Vis diffuse reflectance and in situ IR absorption studies [J]. Colloids Surf., A, 1997, 127(1-3): 47-56
    [191] Hara F J. Dehyrogenation catalyst [P]. US Patent 3904552. 1975-9-9.
    [192] Imanari M, Takiguchi M. Catalyst for the production of styrene [P]. US patent, 4460706. 1984-7-17.
    [193] Sherrod F A, Smith A R. Dehydrogenation catalyst [P]. US patent, 4758543. 1988-7-19
    [194] Muhler M, Schlogl R, Ertl G. The nature of the iron oxide-based catalyst for dehydrogenation of ethylbenzene to styrene 2. Surface chemistry of the active phase [J]. J.Catal., 1992, 138(2): 413-444
    [195] Shi X J, Ji S F, Wang K, et al. Oxidative dehydrogenation of ethane over Ce-based monolithic catalysts using CO_2 as oxidant [J]. Catal. Lett., 2008,126: 426-435
    [196] Shi X J, Ji F, Wang K. Oxidative dehydrogenation of ethane to ethylene with carbon dioxide over Cr-Ce/SBA-15 catalysts [J]. Catal. Lett., 2008, 125: 331-339
    [197] Han P, Wang X M, Qiu X P, et al. One-step synthesis of palladium/SBA-15 nanocomposites and its catalytic application [J]. J. Mol. Catal. A: Chem., 2007, 272(1-2): 136-141
    [198] Trovarelli A, Leitenburg C, Dolcetti G et al. CO_2 methanation under transient and steady-state conditions over Rh/CeO_2 and CeO_2-promoted Rh/SiO_2: The role of surface and bulk ceria [J]. J. Catal., 1995,151(1): 111-124
    [199] Bhasin M M, McCain J H, Vora B V, et al. Dehydrogenation and oxydehydrogenation of paraffins to olefins [J]. Appl. Catal., A, 2001,221(1-2): 397-419
    [200] 刘智勇,彭志民,崔湘浩,等.钴钼氧化物催化剂对丙烷催化氧化脱氢反应的研究[J].分子催化,1998,12(3):193-198
    [201] 上官荣昌,葛欣,邹琥,等.二氧化碳氧化丙烷制丙烯催化反应的研究铬镁铝复合氧化物催化剂的制备、表面微量吸附量热及催化性能[J].催化学报,1999,20(5):515.
    [202] Solsona B, Blasco T, Lopez Nieto J M, et al. Vanadium oxide supported on mesoporous MCM-41 as selective catalysts in the oxidative dehydrogenation of alkanes [J]. J. Catal., 2001, 203(2): 443-452
    [203] Vradman L, Landau M V, M. Herskowitz M, et al. high loading of short WS_2 slabs inside SBA -15: promotion w ith nickel and performance in hydrodesulfurization and hydrogenation [J]. J. Catal., 2003, 213(2): 163-175
    [204] Berndt H, Martin A, Bruckner A, et al. Structure and catalytic properties of VOx /MCM materials for the partial oxidation of methane to formaldehyde [J]. J. Catal., 2000, 191(2): 384-400
    [205] Bukhtiyarov V I. XPS and SIMS characterization [J]. Catal. Today, 2000, 56(4): 403-413
    [206] Reddy B M, Chowdhury B, Reddy E P, et al. X-ray Photoelectron Spectroscopy Study of V_2O_5 Dispersion on a Nanosized Al_2O_3-TiO_2 Mixed Oxide [J]. Langmuir, 2001,17(4): 1132-1137
    [207] Reddy B M, Sreekanth P M, Reddy E P, et al. Surface Characterization of La_2O_3-TiO_2 and V_2O_5/La_2O_3-TiO_2 Catalysts [J]. J. Phys. Chem. B, 2002, 106(22): 5695-5700
    [208] Wang Y, Ohishi Y, Shishido T, et al. Characterizations and catalytic properties of Cr-MCM-41 prepared by direct hydrothermal synthesis and template-ion exchange [J]. J. Catal., 2003, 220(2): 347-357
    [209] Lim S, Haller G L. Gas phase methanol oxidation on V-MCM-41 [J]. Appl. Catal., A, 1999, 188(1-2): 277-286
    [210] Argyle M D, Chen K, Bell A T, et al. Effect of catalyst structure on oxidative dehydrogenation of ethane and propane on alumina-supported vanadia [J]. J. Catal., 2002, 208(1): 139-149
    [211] Qiao Y Y, Miao C X, Yue Y H, et al. Vanadium oxide supported on mesoporous MCM-41 as new catalysts for dehydrogenation of ethylbenzene with CO_2 [J]. Microporous Mesoporous Mater., 2009,119(1-3): 150-157
    [212] Sokolovskii V, Arena F, Coluccia S, et al. Coordination symmetry and reduction features of V Ions in V_2O_5/SiO_2 catalysts: relevance to the partial oxidation of light alkanes [J]. J. Catal., 1998,173(1): 238-242
    [213] Santamaria-Gonzalez J, Luque-Zambrana J, Merida-Robles J, et al. Catalytic behavior of vanadium-containing mesoporous silicas in the oxidative dehydrogenation of propane [J]. Catal. Lett., 2000, 68: 67-73
    [214] Kocon M, Michorczyk P, Ogonowski J. Effect of supports on catalytic activity of chromium oxide-based catalysts in the dehydrogenation of propane with CO_2 [J]. Catal. Lett., 2005, 101(1-2): 53-57
    [215] Cerri I, Saracco G, Geobaldo F, et al. Development of methane premixed catalytic burner for household applications [J]. Ind. Eng. Chem. Res., 2000, 39(1): 24-33
    [216] Kruk M, Jaroniec M. Gas adsorption characterization of ordered organic-inorganic nanocomposite materials [J]. Chem. Mater, 2001,13(10): 3169-3183

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700