用户名: 密码: 验证码:
新型功能化吸附剂的制备及其吸附铀的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:铀作为核燃料的主要成分,又是国防建设所必需的战略物质。为了满足核能快速发展和国防建设(核军工)的需求,仍然需要加大对铀矿资源的开采和选冶力度。然而,在铀矿资源开采和选冶过程中产生大量的含铀废水,将改变铀矿厂周围环境的本底辐射而致使物种基因畸变,对人类的生存和社会发展将构成潜在威胁,也将给人们身体健康和国家经济发展造成不利影响。因此,寻求吸附性能好、再生能力强和制备成本低的新型功能化吸附剂,显得十分重要。
     本论文基于铀酰离子特殊的空间配位结构的特点,构筑了一系列具有环境友好、吸附性能好、能重复利用的新型功能化吸附剂材料,并借助红外光谱(FTIR).扫描电镜(SEM)、X射线粉末衍射(XRD)和N2吸附-脱附实验等手段对所得的各种吸附剂进行了表征研究。以铀矿冶模拟含铀废水作为研究对象,利用静态吸附试验法进行了一系列含铀废水的吸附实验,考察了各种影响因素对吸附剂吸附铀的性能影响,并对吸附实验结果采用吸附动/热力学模型和等温线模型进行了分析和讨论,取得了较好的研究成果。论文的主要研究内容及结论如下:
     (1)提出了一种胱氨酸化学修饰啤酒酵母菌SC的新方法,构筑了一种新型的功能化生物吸附剂MSC。通过静态吸附试验法分别研究了SC和MSC对铀的吸附特性。结果发现,SC和MSC在pH值均为6.0时达到最大铀吸附量,MSC的最大吸附量q∞是SC的6.5倍。动力学研究发现SC和MSC吸附铀在1.0h就完成了80%的吸附量,在1.5h左右均可达到吸附平衡,而且准二级反应动力学模型能更好的描述了SC和MSC对铀的吸附过程。同时,Langmuir和Freundlich等温线模型能够描述SC和MSC吸附铀的行为,这一结果说明此吸附过程是单层覆盖和多层吸附相结合的。通过对SC和MSC解吸实验,发现SC和MSC均具有较好的再生性能,进行8次吸附解吸后吸附能力没有下降明显,说明吸附剂SC和MSC可以多次重复利用。
     (2)研究了新型环保且经济的纳米Fe304粒子制备方法,并提出了纳米Fe304粒子表面功能化改性的新方法。采用静态吸附法对比研究了纳米Fe304粒子和表面氨基功能化磁性吸附剂Fe3O4-NH2对铀的吸附特性。结果显示,纳米Fe3O4粒子和Fe3O4-NH2纳米颗粒吸附铀的最佳条件是:pH值分别是5.0、6.0;铀的初始浓度均为5.0mg/L;吸附时间均为1.0h;反应温度均为常温条件下(25℃)。动力学研究发现准二级模型都可对纳米Fe304粒子和Fe3O4-NH2纳米颗粒吸附铀的过程进行有效表达;热力学研究结果表明,纳米Fe304粒子和Fe3O4-NH2纳米颗粒吸附铀的过程都是自发的、吸热过程,且Fe3O4-NH2纳米颗粒比纳米Fe304粒子对铀的吸附能力有所提高;吸附解吸实验,结果表明纳米Fe304粒子和Fe3O4-NH2纳米颗粒的再生性能较好,进行6次吸附解吸实验后对铀的吸附率均仍可达80%以上。(3)通过包含大量氨基、羧基和羟基等功能团的磁性纳米Fe304粒子,与氯乙酰修饰后的啤酒酵母菌表面的羧基、羟基发生O-酰化反应和氨基发生N-酰化反应,实现了纳米Fe304粒子与啤酒酵母菌“接枝负载”,得到一种新型功能化吸附剂—纳米Fe304负载啤酒酵母菌(Nano-Fe3O4loading saccharomyces cerevisiae,NFSC),并对吸附剂NFSC吸附铀的行为和机理进行研究。实验结果表明:NFSC在溶液pH值7.0、铀初始浓度5.0mg/L、吸附剂投入量20mg以及NFSC粒径大小12nnm条件下,对铀的吸附性能最好。动力学研究发现准二级反应模型比准一级模型更能有效拟合NFSC吸附铀的过程。通过研究等温线模型发现NFSC吸附铀过程均能使用Langmuir和Freundlich模型进行描述。吸附剂NFSC进行8次吸附解吸实验后,对铀的吸附率均仍可达90%以上
     (4)以FeCl3·6H2O为铁源,二乙基磷酰乙基三乙氧基硅烷(PTS)和氨丙基三乙氧基硅烷(APS)为有机改性基团,提出了对介孔氧化硅SBA-15进行功能化改性新方法,得到了一种新型功能化磁性介孔氧化硅G-PA-SBA-15。研究了溶液pH值、反应时间、铀初始浓度和温度等因素对吸附铀的影响。结果显示:G-PA-SBA-15吸附铀达到最大吸附量时的pH值均为6.0;反应时间为1.0h;铀的初始浓度为20mg/L;吸附反应温度为25℃。动力学研究发现吸附剂G-PA-SBA-15吸附铀过程可以采用准二级反应动力学模型进行描述。等温线模型研究结果表明G-PA-SBA-15吸附铀的行为符合Langmuir吸附等温模型。吸附剂G-PA-SBA-15分别使用0.1mol/L的HCl、NaOH和EDTA等3种解析剂解析再生8次后,对铀的吸附率均在80%以上,说明吸附剂G-PA-SBA-15可以多次重复利用。
Abstract:Uranium is not only the main components of the nuclear power, but also the necessary strategic material of the national defense construction. In order to meet the nuclear power development and the national defense construction demand (the nuclear war industry), it is still necessary to intensify of the intergrowth of Uranium mining and mineral smelting. However, lots of wastewater containing Uranium produced in the process of the Uranium mining and mineral smelting, will change the Uranium mines surrounding environment background radiation and the species genetic distortion. It would be a potential threat to human survival and social development, and also cause people's health and the national economic development. Therefore, seeking a variety of novel functional adsorbents with high adsorption efficiency, good regeneration performance and low cost, is becoming more and more important.
     First, we have summarizesd the main pollution characteristics of the wastewater containing Uranium during the Uranium mining and metallurgy, harm and its processing method. At the same time, we have constructed a series of novel functional adsorbent materials with friend environment, good adsorption and regeneration performance, based on the complexing space structure of Uranyl ion. With the help of Fourier Transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), X-ray powder diffraction (XRD) and N2adsorption/stripping experiment, we have characterized all the various adsorbent. Using the simulation wastewater containing Uranium during Uranium mining and metallurgy as the research object, the method of static adsorption experiment was carried out a series of adsorption experiment, inspected the various influence factors on the properties of adsorbent, with a variety of adsorption dynamics/thermodynamic and isotherm models fitting of experimental data. The main research contents and results are as follows:
     (1) A new method was proposed-cystine chemical modification Saccharomyces Cerevisiae (SC) and a novel biological adsorbent was obtained——Modification Saccharomyces Cerevisiae (MSC).The adsorption characteristics of SC and MSC for Uranium were studied with the static adsorption experiment method, respectively. The results showed that the maximum Uranium adsorption quantities of SC and MSC were all in pH of6.0, and the maximum adsorption quantity of MSC q∞is6.5times this of SC. By the adsorption Uranium dynamics research of SC and MSC, we found the adsorption Uranium of SC and MSC had completed80%of the adsorption amount in1.0h, and the adsorption equilibrium have be achieved at about1.5h. And the secondary reaction kinetics model can better describe the adsorption process of SC and MSC for Uranium. Isotherm model research results show that the adsorption Uranium process of SC and MSC could all meet the Langmuir and Freundlich isotherm models.This showed that the control of Uranium adsorption rate may be a chemical adsorption process. Through the desorption experiment of SC and MSC, we found SC and MSC had a good regeneration performance, and the adsorption ability had not declined significantly after8times adsorption-desorption experiment.And it showed SC and MSC could be reused many times.
     (2) A new type of environmental protection and economy preparation method of Fe3O4nanoparticle was studied and we put forward a new method of surface functionalization modification of Fe3O4nanoparticle.The adsorption characteristics of Fe3O4nanoparticle and surface amine-functionalization of magnetic adsorbent Fe3O4-NH2for Uranium were studied with the static adsorption experiment method, respectively. The results showed that the best adsorption conditions of Fe3O4nanoparticle and Fe3O4-NH2nanoparticle is:pH value is5.0,6.0respectively; the initial concentration of Uranium are all5.0mg/L;the adsorption time are all1.0h; reaction temperature are all under the condition of normal temperature (25℃).By the adsorption Uranium dynamics research of Fe3O4nanoparticle and Fe3O4-NH2nanoparticle, we found that the secondary reaction kinetics model could better describe the adsorption process of Fe3O4nanoparticle and Fe3O4-NH2nanoparticle for Uranium. Thermodynamics research results show that the adsorption processes of Fe3O4nanoparticle and Fe3O4-NH2nanoparticle are spontaneous, endothermic. And the adsorption Uranium capacity of Fe3O4-NH2nanoparticle is bigger than this of Fe3O4nanoparticle.Through the desorption experiment of Fe3O4nanoparticle and Fe3O4-NH2nanoparticle, we found Fe3O4nanoparticle and Fe3O4-NH2nanoparticle had a good regeneration performance, and the adsorption Uranium rate could be still more than80%after6times adsorption-desorption experiment.
     (3) The "graft loading"was completed between the Fe3O4nanoparticle with a large number of amino, hydroxyl and carboxyl functional groups on the surface, and Saccharomyces Cerevisiae with carboxyl and hydroxyl groups on the surface, throughing the O-acylation reaction or N-acylation reaction. And a novel functional adsorbent was obtained—Nano-Fe3O4loading Saccharomyces Cerevisiae (NFSC). We have studied the adsorption Uranium performance and mechanism from the aspects of factors which influence the adsorption performance.The experimental results showed that the best adsorption Uranium conditions of the adsorben NFSC is: the pH value is7.0;the initial concentration of Uranium is5.0mg/L;the addition amount is20mg and the optimum size of NFSC is12nm. By the adsorption Uranium dynamics research of NFSC, we found that the secondary reaction kinetics model could better describe the adsorption Uranium, process of NFSC than the first order reaction kinetics model.Isotherm model research results show that the adsorption Uranium process of NFSC could all meet the Langmuir and Freundlich isotherm models. And the adsorption model is the combination of the monolayer coverage and the multilayer adsorption. Through the desorption experiment of NFSC, we found NFSC had a good repeated use performance, and the adsorption Uranium rate could be still more than90%after8times adsorption-desorption experiment.
     (4)A new functionalization modification method of the mesoporous silica SBA-15was proposed, with FeCl3.6H2O as source of iron, and diethyl phosphoryl ethyl triethoxy silane (PTS)and ammonia propyl triethoxy silane (APS)as the organic modification group.And a new type of functional magnetic mesoporous silica G-PA-SBA-15was obtained. We have studied the solution pH value, the reaction time, the initial concentration of Uranium and the influence of temperature on the adsorption of Uranium. The results showed that the G-PA-SBA-15would be the maximum adsorption quantity:pH value is6.0;the reaction time is1.0h; the initial concentration of Uranium is20mg/L;the adsorption temperature is25℃.By the adsorption Uranium dynamics research of G-PA-SBA-15,we found that the secondary reaction kinetics model could better describe the adsorption Uranium process of G-PA-SBA-15.Isotherm model research results show that the adsorption Uranium process of G-PA-SBA-15could meet the Langmuir model.The result shows that the adsorption sites on the surface of G-PA-SBA-15are evenly distributed, which have the same affinity of uranyl ion. And the adsorption model belongs to the monolayer adsorption model. Thermodynamics research results show that the adsorption processes of G-PA-SBA-15is spontaneous, endothermic. The temperature increase would improve the adsorption Uranium capacity of G-PA-SBA-15in a small range.
     Through the desorption experiment of G-PA-SBA-15,we found G-PA-SBA-15could be reused many times because the adsorption ability had not declined significantly, and the adsorption Uranium rate could be still more than80%after8times adsorption-desorption experiment Using0.1mol/L HC1, NaOH and EDTA.
引文
[1]IAEA. Nuclear technology review-update 2001,45th Regular Session of IAEA General Conferenee, G(45)/INF/5, Annexl, Aug.29,2001.
    [2]美国能源信息署.国际能源展望(中文版)[M].北京:科学出版社,2006.106.
    [3]尤明杨,徐可忠,吴振华.日本地震对核电行业以及石油消费影响的分析[J].中国核工业,2011,47-48.
    [4]张国宝.中国不可能放弃核电[J].中国核电,2011,4(4):290-292.
    [5]叶奇蓁.后福岛时期我国核电的发展[J].中国电机工程学报,2012,32(11):0001-0008.
    [6]Underhill D H. Analysis of Uranium supply to 2050[M]. Vienna:IAEA,2002.33-56.
    [7]邹长城.中国核电产业自主化发展研究[D].长沙:中南大学,2011.
    [8]阙为民,王海峰,牛玉清,等.中国铀矿采冶技术发展与展望[J].中国工程科学,2008,10(3):44-53.
    [9]李冠兴.我国核燃料循环前端产业的现状和展望[J].中国核电,2010,3(1):1-9.
    [10]Groudev S, Spasova I, Nicolova M, et al. In situ bioremediation of contaminated soils in Uranium deposits[J]. Hydrometallurgy,2010,10:518-523.
    [11]Jingsong Wang, Ruiting Peng, Jinhui Yang, et al. Preparation of ethylenediamaine-modified magnetic chitosan complex for adsorption of uranylions [J].Carbohydrate Polymers,2011, 84:1169-1175.
    [12]高伟.硅藻土和膨润土对铀的吸附研究[D].衡阳:南华大学,2006.
    [13]汪爱河.ZVI-SBR协同处理铀废水的试验研究[D].衡阳:南华大学,2008
    [14]郑伟娜.谷壳对铀的吸附性能及机理研究[D].衡阳:南华大学,2011.
    [15]杨腊梅,俞杰,张勇.放射性废水处理技术研究进展[J].污染防治技术,2007,20(4):35-37,83.
    [16]唐志坚,张平,左社强.低浓度含铀废水处理技术的研究进展[J].工业用水与废水,2003,34(4):9-12.
    [17]Xiaolong Li, Jiaojiao Wu, Jiali Liao, et al. Adsorption and desorption of Uranium (Ⅵ) in aerated zone soil[J]. Journal of Environmental Radioactivity,2013,115:143-150.
    [18]Youqun Wang, Zhibin Zhang, Yunhai Liu, et al. Adsorption of U(VI) from aqueous solution by the carboxyl mesoporous carbon[J]. Chemical Engineering Journal,2012, 198-199:246-253.
    [19]余亨华,刘淑娟,罗明标.氢氧化镁处理含铀放射性废水的研究[J].水处理技术,2002,28(5):274-277.
    [20]任俊树,牟涛,杨胜亚,等.絮凝沉淀处理含盐量较高的铀、钚低放废水[J].核化学与放射化学,2008,30(4):201-205。
    [21]杨朝文,王本仪,丁桐森,等.氯化钡—循环污渣—分步中和法处理七一一矿酸性矿坑水[J].铀矿冶,1994,13(3):172-179.
    [22]潘英杰.某铀矿矿坑水的治理经验[J].铀矿冶,1984,3(4):67-68.
    [23]Broder J. M, Britta P.F, Christian W. Uranium in the aquatie environment.In:Proeeedings of the Intemational Conferenee Uranium Mining and HydrogeologyⅢ and the Intemation Mine Water Assoeiation Symposium. Freiberg(Geany):Springer,2002,459-488.
    [24]李民权,关玉蓉.液膜分离技术处理含铀废水[J].工业水处理,1995,15(2):14-16.
    [25]Gupta S K, Rathore N. S, Sonawane J.V,et al. Dispersion-free solvent extraction of U(Ⅵ) in macro amount from nitric acid solutions using hollow fiber contactor[J]. Journal of Membrane Science,2007,300(1-2):131-136.
    [26]Sadeghi S, Sheikhzadeh E. Solid phase extraction using silica gel modified with murexide for preconcentration of Uranium(Ⅵ) ions from water samples[J]. Journal of Hazardous Materials,2009,163(2-3):861-868.
    [27]程远梅,孙霞,廖学品,等.胶原纤维负载钛对氟铀废水中铀的吸附特性[J].化工学报,2011,62(2):0386-0392.
    [28]陈卫军,林龙,沈江南,等.偕胺肟基聚丙烯腈/蒙脱土纳米复合材料海水铀的吸附规律研究[J].海洋技术,2011,30(3):0017-0020.
    [29]叶榕,刘峙嵘,文传玺,等.泥炭对铀的吸附动力学研究[J].铀矿冶,2011,30(1):0039-043.
    [30]周根茂.离子交换提铀离子交换提铀工艺用水闭路循环技术研究[D].天津:天津大学硕士论文,2010.
    [31]饶林峰.辐射接枝技术的应用:日本海水提铀研究的进展及现状[J].同位素,25(3):2012:0129-0139.
    [32]刘淑娟,李金英,罗明标,等.纯化及羧化多壁碳纳米管吸附铀的研究[J].核化学与放射化学,2011,33(5):285-290.
    [33]Majdan M, Pikus S, Gajowiak A, et al. Uranium sorption on bentonite modified by octadecyltri methylammonium bromide[J]. Journal of Hazardous Materials,2010, 184(1-3):662-670.
    [34]Kilislioglu A, Aras G. Adsorption of Uranium from aqueous solution on heat and acid treated sepiolites[J]. Applied Radiation and Isotopes,2010,68(10):2016-2019.
    [35]Barhette F, Rascalou F, Chollet H, et al. Extraction of uranyl ions from aqueous solutions using silica-gel-bound macrocycles for alpha contaminated waste water treatment[J]. Analytica Chimica Acta,2004,502(2):179-187.
    [36]Pang C, Liu Y H, Cao X H, et al. Biosorption of uranium(Ⅵ) from aqueous solution by dead fungal biomass of Penicillium citrinum[J]. Chemical Engineering Journal,2011, 170(1):1-6.
    [37]Majdan M, Pikus S, Gajowiak A, et al. Characterization of Uranium(Ⅵ) sorption by organobentonite[J]. Applied Surface Science,2010,256:5416-5421.
    [38]Runping Han, Weihua Zou, Yi Wang, et al. Removal of Uranium(Ⅵ) from aqueous solutions by manganese oxide coated zeolite:discussion of adsorption isotherms and pH effect[J]. Journal of Environmental Radioactivity,2007,93:127-143.
    [39]Sert S, Eral M. Uranium adsorption studies on aminopropyl modified mesoporous sorbent(NH2-MCM-41) using statistical design method[J]. Journal of Nuclear Materials, 2010,406(3):285-292.
    [40]Yousefi S R, Ahmadi S J, Shemirani F, et al. Simultaneous extraction and preconcentration of Uranium and thorium in aqueous samples by new modified mesoporous silica prior to inductively coupled plasma optical emission spectrometry determination[J]. Talanta,2009, 80(1):212-217.
    [41]Yunhai Liu, Xiaohong Cao, Zhanggao Lei, et al. Pre-concentration and determination of trace Uranium (Ⅵ) in environments using ion-imprinted chitosan resin via solid phase extraction[J]. Journal of the Brazilian Chemical Society,2010,21(3):533-540.
    [42]Yunhai Liu, Xiaohong Cao, Rong Hua, et al. Selective adsorption of uranyl ion on ion-imprinted chitosan/PVA cross-linked hydrogel[J]. Hydrometallurgy,2010,104(2): 150-155.
    [43]Gadd GM. Metals, minerals and microbes:geomicrobiology and bioremediation[J]. Microbiology,2010,156(Pt3):609-643.
    [44]Jing-song Wang, Xin-jiang Hu, Jie Wang, Zheng-lei Bao, Shui-bo Xie, Jin-hui Yang. The tolerance of Rhizopus arrihizus to U(VI) and biosorption behavior of U(VI) onto R. arrihizus[J]. Biochemical Engineering Journal,2010,51:19-23.
    [45]Derek R. Lovley, Elizabeth J. P. Phillips, Yuri A. Gorby, Edward R. Landa. Microbial Reduction of Uranium[J]. Nature,1991,350(4):413-416.
    [46]Nakajima A, Tsurutat. Competitive Biosorption of Thorium and Uranium by Actinomycetes[J]. Journal of Nuclear Science Technology,2002,48(3):528-531
    [47]Rodrigues S J I, Melo F A C, Costa A C A. Uranium biosorption under dynamic conditions:Preliminary tests with Sargassum filipendula in real radioactive wastewater containing Ba,Cr,Fe,Mn,Pb,Ca and Mg[J]. Journal of Radioanalytical and Nuclear Chemistry,2009,279(3):909-914.
    [48]Khani M H, Keshtkar A R, Ghannadi M, Pahlavanzadeh H. Equilibrium,kinetic and thermodynamic study of the biosorption of Uranium onto Cystoseria indica algae[J]. Journal of Hazardous Materials,2008,150(3):612-618.
    [49]Wang G, Liu J, Wang X, Xie Z, Deng N. Adsorption of Uranium (VI) from aqueous solution onto cross-linked chitosan[J]. Journal of Hazardous Materials, 2009,168(2-3):1053-1058.
    [50]闵茂中,Xu H F, Barton L L,等.厌氧菌Shewcenella putrefacie还原U(Ⅵ)的实验研究:应用于中国层间氧化带砂岩型铀矿[J].中国科学:D辑地球科学,2004,34(2):125-129.
    [51]王建龙.生物固定化技术与水污染控制[M].北京:科学出版社,2002:233-247.
    [52]Tsezos M, Volesky B. The mechanism of Uranium biosorption by Rhizopus arrhizus[J]. Biotechnol Bioeng,1982,24(7):385-401.
    [53]Tsezos M. Recovery of Uranium from biological adsorbents-desorption equilibrium[J]. Biotechnol Bioeng,1984,26(8):973-981.
    [54]Abdelouas A, Lu Yongming, Lutze W, et al. Reduction of U(VI) to U(IV) by indigenous bacteriain contaminated ground water[J]. Journal of Contaminant Hydrology,1998, 35(1/3):217-233.
    [55]Hosea M, Greene B, Mepherson R, et al. Aeeumulation of element goldon the ATGA Chlorell avulgaris[J]. InorganieaChimica.Acta,1986,123:161-165.
    [56]Liu Y Y, Fu J K, Luo X F, et al. Transmission electron microscopic observation of biosorption by saccharomyces cerevisiae waste biomass[J]. J Chin Elec Micro Society, 2000,19(5):695-698.
    [57]Liu Y Y, Fu J K, Hu H B, et al. Properties and characterization of Au3+ -adsorption by mycelial waste of Streptomyces aurofaciences[J]. Chin Sei Bulletin,2001,46(20): 1709-1712.
    [58]王保军,杨慧芳,李文忠.烟草头抱霉FZ对氛化汞解毒作用的研究[J].环境科学学报,1992,12(3):275-281.
    [59]Lloyd J R, Yong P, Macaskie L E.Enzymatic recovery of elemental Palladium by using sulfate-reducing bacteria[J]. Appl Environ Microbio,1998,64(11):4607-4609.
    [60]刘月英,傅锦坤.李仁忠,等.细菌吸附Pd2+的研究[J].微生物学报,2000,20(5):535-539.
    [61]徐磊辉,黄巧云,陈雯莉.环境重金属污染的细菌修复与检测[J].应用与环境生物学报,2004,10(2):256-262.
    [62]YANG Jinbai, VOLESKY Bohulil. Biosorption of Uranium on sargassum biomass[J]. Wat Res,1999,33(2):3357-3363.
    [63]Stranderberrg G W, Shumate S E, Parrot J R. Microbial cell as biosorbents for heavy metals, accumulation of Uranium by S. Cerevisiate and Paeruginosa [J]. Appl Environ.Mcrobio,1981,41(3):237-246.
    [64]Volesky B, May-Philips H A, Holan Z R. Cadmium biosorption by Saccharomyces cerevisiae [J]. Biotechnol & Bioeng,1993,41(1):826-829.
    [65]Ashkenazy R, Gottlieb L, Yannai S. Characterization of acetone-wastesd yeast biomass functional groups involved in lead biosorption[J]. Biotechnol & Bioeng,1997,55(1): 001-010.
    [66]Genc Q, Yalcinkaya Y, Buyuktuncel E, et al. Uraium recovery by immobilized and dried powdered biomass:characterization and comparison[J]. Int. J. Miner. Process,2003,68 (1):93-107.
    [67]Katsoyiannis I A. Carbonate effects and pH-de-pendence of Uranium sorption onto bacteriogenic iron oxides:kinetic and equilibrium studies[J]. Journal of Hazardous Materials,2007,139(1):31-37.
    [68]维戈利奥F.综述回收金属的生物吸附法[J].国外金属选矿,1998,12(2):27-35.
    [69]Sar P, Kazy S K, D Souza S F. Radi & nuclide remediation using a bacterial biosorbent[J]. International BiodeterioRation & Biodegradation,2004,54 (2):193-202.
    [70]White C, Wilkinson S C, Gadd G M. The role of microorganisms in biosorption of toxic metals and radionuclides[J]. Int Biodeterioation & Biodegradation,1995,35(1-3):17-40.
    [71]王宝娥,徐伟昌,郭杨斌.预处理啤酒酵母菌对铀的吸附研究[J].湿法冶金,2004,23(1):0025-0028.
    [72]姜友军,张云松,王仁国,等.KMnO4参饰面包酵母菌对Cd2+的吸附研究[J].环境科学学报,2011,31(7):1386-1395.
    [73]XU Yi-jun, RosaArrigo, LIU Xi, et al. Characterization and use of functionalized carbon nanotubes for the adsorption ofheavymetal anions[J]. New Carbon Materials,2011,31(7): 1386-1395.
    [74]Selatnia A, Bakhti M Z, Madani A, et al. Biosorption of Cd2+ from aqueous solution by a NaOH-treated bacterial dead Streptomycesrimosus biomass[J]. Hydrometallurgy,2004, 75:11-24.
    [75]赵朝辉,姚素薇,张卫国.纳米Fe3O4磁性颗粒的制备及应用现状[J].化工进展,2005,24(8):865-868.
    [76]朱红.纳米材料化学及其应用[M].北京:清华大学出版社,2009:1-3.
    [77]王世敏.纳米材料制备技术[M].北京:化学工业出版社,2001:1-4.
    [78]白春礼.纳米科技及其发展前景[J].新材料产业,2001,4:8-11.
    [79]武利民.纳米材料在涂料中的应用研究[J].中国涂料,2001,3:34-37.
    [80]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2001:5-8.
    [81]Arturo M, Quintela L, Rivas J. Chemieal reaction microelnulsions:a powerful method to obtainul trafine Particles[J]. Langmuir,1999,154(4):447-453.
    [82]Ball P, Garwin L, Matrix-mediated synthesis of nano-crystalline r-Fe3O4:a new optically transparent magnetic material[J]. Nature,1992,355:761-771.
    [83]Wang Y. Herron N. Nanometer-sized semiconduetor clusters:materials synthesis, quantum size effects, and photophysical properties[J],J Phys Chem,1991,95(2):525-532.
    [84]廖鹏飞,夏金兰,聂珍媛.磁性微球的制备及在生物分离应用中的研究进展[J].生物磁学,2005,4(5):47-51.
    [85]Comell R M, Sehwertman U. The Iron Oxides:structure, properties, reactions[J]. Occurrence and Uses, VCH, NewYOrk,1996:28-29.
    [86]Hong R Y, Pa T T, Han Y P, et al. Magnetic field synthesis of Fe3O4 nanopartieles used as a preeursor of fermfluids[J]. J Magn Magn Mater,2007,310(3):37-40.
    [87]Asuha S, Zhao S, Wu H Y, et al. One step synthesis of maghemite nanoparticles by direct thermal decomposition of Fe-urea complex and their properties[J]. Journal of Alloys and Compounds,2008,5:28-29.
    [88]GrZeta B, Ristic M, Nowik I, et al. Formation of nanocrystalline magnetite by thermal decomposition of iron choline citrate[J]. Alloys Compd,2002,334:304-306.
    [89]Kakol Z, Kozlowski A. Possible influence of electron-lattice interactions on the Verwey transition in magnetite[J]. Solid State Sci,2000,2:737-746.
    [90]Ozdemir O, Dunlop D J. Low-temperature properties of a single crystal of magnetite oriented along principal magnetic axes[J]. Earth Planet Sci Lett,1999,165:229-239.
    [91]Kucza W. Electrostatically driven charge-ordering in magnetite below the verwey temperature[J].Solid State Sci,2001,118:401-402.
    [92]张克立.固体无机化学[M].武汉:武汉大学出版社,2005:373-375.
    [93]宋庆峰.纳米四氧化三铁的制备-修饰及磁场的影响[D].石家庄:河北师范大学,2008.
    [94]Skumryev V, Blythe H J, Cullen J, et al. AC susceptibility of a magnetite crystal[J]. J Magn Magn Mater,1999,196-197:515-517.
    [95]Ljiri Y, Borchers J A, Erwin R. W, et al. Role of the antiferromagnet in exchange-biased Fe3O4/CoO superlattices[J]. Appl Phys,1998,83(11):6882-6884.
    [96]Bandow S, Kimura K, Kon-no K, et al. Magnetic properties of magnetite ultrafine particles prepared by microemulsion method[J].Jpn J Appl Phys,1987,26(5):713-717.
    [97]Bhagwati P, Chiradeep G, Anindita C, et al. Adsorption of arsenite (As3+) on nano-sized Fe3O4 waste powder from the steel industry[J]. Desalination,2011,274:105-112.
    [98]Huang S H, Chen D H. Rapid Removal of Heavy Metal Cations and Anions from Aqueous Solutions by an Amino-functionalized Magnetic Nano-adsorbent[J]. J. Hazard. Mater., 2009,163(1):174-179.
    [99]张明磊,张朝晖,罗丽娟,等.磁性Fe304@SiO2@CS镉离子印迹聚合物研制及其吸附性能研究[J].高等学校化学学报,2011,32(12):2763-2768.
    [100]Zheng Y Y, Wang X B, Shang L, et al. Fabrication of shape controlled Fe3O4nanostructure [J]. Materals Characterization,2010,62:489-492.
    [101]艾凡荣,姚爱华,黄文旵,等.磁场-温度双重响应性复合微球的制备与表征[J].高等学校化学学报,2010,31(9):1701-1705.
    [102]刘峰,杨枝,刘和连,等.Fe3O4纳米磁性微粒对钴和锶的吸附[J].核化学与放射化学,2008,30(1):0056-0060.
    [103]贾继云,袁亚莉,黄芬,等.Fe3O4磁流体对铀(Ⅵ)的吸附研究[J].南华大学学报(自然科学版),2011,25(2):0066-0069.
    [104]关晓辉,赵洁,秦玉春.纳米Fe3O4的制备及其辅助吸附重金属离子的特性[J].环境化学,2005,24(4):409-412.
    [105]胡军,周跃明,梁喜珍,等.纳米氧化铁对铀(Ⅵ)吸附性能的研究[J].光谱实验室,2011,28(2):718-722.
    [106]Zhao Y G, Shen H Y, Li Q, et al. Adsorption Studies on Cr(Ⅵ) in Wastewater by NH2-functionalized Nano-Fe3O4 Magnetic Composites [J]. Acta Chim. Sinica,2009, 67(13):1509-1514.
    [107]吴四华,黄进,许东芳,施阳,陈锐,何其庄.介孔磁性微球的制备表征及其在环境中应用[J].环境科学与技术,2011,34(12):74-78.
    [108]曹向宇,李垒,陈灏.羧甲基纤维素/Fe3O4复合纳米磁性材料的制备、表征及吸附性能的研究[J].化学学报,2010,68(15):1461-1466.
    [109]赵永纲,沈昊宇,李勃,等.氨基功能化纳米Fe3O4磁性高分子吸附剂对废水中Cr(Ⅵ)的吸附研究[J].化学学报,2009,67(13):1509-1514.
    [110]Bayramoglu G, Arica M Y. Ethylenediamine Grafted Poly (glycidylmethacrylate-co-methyl methacrylate) Adsorbent for Removal of Chromate Anions[J]. Sep. Purif. Technol, 2005,45(3):192-199.
    [111]Zhao Y G, Shen H Y, Pan S D, et al. Synthesis, Characterization and Properties of Ethylenediamine-functionalized Fe3O4 Magnetic Polymers for Removal of Cr(Ⅵ) in Wastewater[J]. J. Hazard. Mater.,2010,182(1/3):295-302.
    [112]程昌敬,刘东,张嫦.羧甲基化壳聚糖修饰磁性硅粒子去除Cr(Ⅵ)离子[J].化工进展,2012,31(1):227-232.
    [113]Peng Q Q, Liu Y G, Zeng G M, et al. Biosorption of copper(Ⅱ) by immobilizing Saccharomyces cerevisiae on the surface of chitosan-coated magnetic nanoparticles from aqueous solution[J]. Journal of Hazardous Materials,2010,177(1/2/3):676-682.
    [114]Safarikova M,Maderova Z,Safarik I.Ferrofluid modified Saccharomyces cerevisiae cellsfor biocatalysis[J]. Food Research International,2009,42(4):521-524.
    [115]廖鹏飞,张武昌,穆巍巍,等.钝顶螺旋藻磁性生物吸附剂的制备及对铬(Ⅵ)的吸附性能[J].中南大学学报(自然科学版),2011,42(9):2551-2559.
    [116]郑群雄刘煌,徐小强,等.羧基化核壳磁性纳米Fe304吸附剂的制备及对Cu2+吸附性能[J].高等学校化学学报,2012,33(1):107-113.
    [117]高云燕,李海霞,欧植泽,等.多壁碳纳米管负载Fe304磁性纳米粒子表面吸附增强过氧化酶的催化活性[J].物理化学学报,2011,27(10):2469-2477.
    [118]关晓辉,秦玉春,秦玉华,等.纳米Fe304负载的浮游球衣菌去除Cr(VI)的研究[J].环境科学,2007,28(9):2096-2100.
    [119]文建湘,倪忠斌,孙竹青,等.硅基介孔材料的制备与应用研究进展[J].化学世界,2006,9:568-572.
    [120]Lu A H, Schmidt W, Matoussevitch N, et al. Nanoengineering of a magnetically separable hydrogenation catalyst[J]. Angew Chem Int Ed,2004,43:4303-4306.
    [121]Lu A H, Li W C, Kiefer A, et al. Fabrication of magnetically separable mesostructured silica with open pore system[J]. J Am Chem Soc,2004,126,8616-8617.
    [122]Jing-song Wang, Xin-jiang Hu, Jie Wang, Zheng-lei Bao, Shui-bo Xie, Jin-hui Yang. The tolerance of Rhizopus arrihizus to U(Ⅵ) and biosorption behavior of U(Ⅵ) onto R. arrihizus [J]. Biochemical Engineering Journal,2010,51:19-23.
    [123]Xie shuibo, Zhang Chun, Zhou Xinghuo, Yang Jing, Zhang Xiaojian, Wang Jingsong. Removal of uranium (Ⅵ) from aqueous solution by adsorption of hematite [J]. Journal of Environmental Radioactivity,2009,100:162-166.
    [124]黄冰,孙小梅,雷超,等.胱氨酸修饰啤酒废酵母对Hg(Ⅱ)的吸附性能[J].武汉大学学报(自然科学版),2010,56(3):279-283.
    [125]Yu Junxia, Tong Mi, Sun Xiaomei, et al. Cystine modified biomass for Cd(Ⅱ) and Pb(Ⅱ) biosorption[J]. Journal of Hazardous Materials,2007,143:277-284.
    [126]Cleide S T Araujo, Vanessa N Alves, Helen C Rezende, et al. Development of a Flow System for the Determination of Low Concentrations of Silver Using Moringa Oleifera Seeds as Biosorbent and Flame Atomic Adsorption Spectrometry[J]. Microchem J,2010, 96(1):82-85.
    [127]黄冰,孙小梅,李步海,等.硫脲修饰啤酒废酵母吸附Hg2+的性能[J].化学与生物工程,2010,27(1):23-26.
    [128]丁瑜,赵琴娜,张琴,等.聚丙烯/四氧化三铁纳米复合材料的制备、表征及磁性能研究[J].塑料工业,2013,41(6):21-24.
    [129]Sawpan M A. Effect of fibre treatments on interfacial shear strength of hemp fibre reinforced polylactide and unsaturated polyester composites[J]. Composites:Part A,2011, 42:1189-1196.
    [130]曹向宇,李垒,陈灏.羧甲基纤维素/Fe3O4复合纳米磁性材料的制备、表征及吸附性能的研究[J].化学学报,2010,68(15):1461-1466.
    [131]Zhan Y, Zhao R, Lei Y, et al. Preparation, characterization and electromagnetic properties of carbon nanotubes/Fe3O4 inorganic hybrid material[J]. Applied Surface Science,2011, 257:4524-4528.
    [132]Xia Juan, Song Lexin, Dang Zheng, et al. Polyethylene Glycol/Fe3O4 Nanoparticle Composite Materials:Structure, Physical Properties and Application[J]. Acta Phys Chim Sin,2013,29 (7):1524-1533.
    [133]Zhao D Y, Huo Q S, Feng J L, et al. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally.stable, mesoporous silica structures [J]. J Am Chem Soc,1998,120:6024-6036.
    [134]Horwitz E P, Dietz M L, Chiarizia R, et al. Separation and Preconcentration of Uranium from Acidic Media by Extraction Chromatography [J]. Anal Chim Acta,1992,266:25-37
    [135]Merdivan M, Buchmeiser M R, Bonn G. Phosphonate-based resins for the selective enrichment of uranium(Ⅵ) [J]. Anal Chim Acta,1999,402:91-97.
    [136]Singh S K, Dhami P S, Dakshinamoorthy A, et al. Studies on the Recovery of Uranium from Phosphoric Acid Medium Using Synergistic Mixture of 2-Ethyl Hexyl Hydrogen 2-Ethyl Hexyl Phosphonate and Octyl(phenyl)-N,N-diisobutyl Carbamoyl Methyl Phosphine Oxide [J]. Sep Sci Technol,2009,44:491-505.
    [137]Tbal H, Morcellet J, Delporte M, et al. Uranium Adsorption by Chelating Resins Containing Amino-Groups [J]. J Macromol Sci A,1992,29:699-710.
    [138]Feng Ningchuan, Guo Xueyi. Characterization of adsorptive capacity and mechanisms on adsorption of copper, lead and zinc by modified orange peel [J]. Trans Nonferrous Met Soc China,2012,22:1224-1231.
    [139]Mata Y N, Blazouez M L, Ballester F A, et al. Sugar-beet pulp pectin gels as biosorbent for heavy metals:Preparation and determination of biosorption and desorption characteristics [J]. Chem Eng J,2009,150:289-301.
    [140]Inoue K, Kawakita H, Ohto K. Adsorptive removal of uranium and thorium with a crosslinked persimmon peel gel[J]. Journal of Radioanalytical and Nuclear Chemistry, 2006,67(2):435-436.
    [141]Ghasemi M, Keshtkar A R, Dabbagh R, et al. Biosorption of uranium(Ⅵ) from aqueous solutions by Ca-pretreated Cystoseira indica alga:Breakthrough curves studies and modeling[J]. Journal of Hazardous Materials,2011,189(1):141-149.
    [142]任柏林.耐辐射融合菌株的构建及其对铀的吸附试验研[D].衡阳:南华大学,2010.
    [143]冯宁川.橘子皮化学改性及其对重金属离子吸附行为的研究[D].长沙:中南大学,2009.
    [144]谭翔.固定化真菌微球吸附铀的研究[D].衡阳:南华大学,2013.
    [145]Akhtar K, Akhtar M W, Khalid A M. Removal and recovery of uranium from aqueous solutions by Trichoderma harzianum[J]. Water Research,2007,41(6):1366-1378.
    [146]Benguella B, Benaissa H. Cadmium removal from aqueous solution by chitin:kinetic and equilibrium studies[J]. Water Research,2002,36:2463-2474.
    [147]Yahaya Y A, Don M M, Bhatia S. Biosorption of copper (Ⅱ) onto immobilized cells of Pycnoporus sanguineus from aqueous solution:Equilibrium and kinetic studies[J]. J Hazard Mater,2009,161:189-195.
    [148]Bayramoglu G. Poly(2-Hydroxyethylmethacrylate)/Chitosan Dye and Different Metal-Ion-Immobilized Interpenetrating Network Membranes:Preparation and Application in Metal Affinity Chromatography[J]. J Appl Poly Sci,2003,88:1843-1853.
    [149]Isik M. Biosorption of Ni(Ⅱ) from aqueous solutions by living and non-living ureolytic mixed culture[J]. Colloids and Surfaces B:Biointerfaces,2008,62(1):97-104.
    [150]Gerente C, Lee VKC, Cloirec P L, et al. Application of Chitosan for the Removal of Metals From Wastewaters by Adsorption-Mechanisms and Models Review[J]. Criti Revi Environ Sci Techn,2007:41-127.
    [151]Yahaya Y A, Don M M, Bhatia S. Biosorption of copper (Ⅱ) onto immobilized cells of Pycnoporus sanguineus from aqueous solution:Equilibrium and kinetic studies[J]. J Hazard Mater,2009,161:189-195.
    [152]李小娜,戴友芝,王未平,等.废啤酒酵母去除水中重金属镉的作用机理[J].环境化学,2012,31(12):1886-1890.
    [153]臧运波.啤酒酵母对重金属离子生物吸附的研究进展[J].广东化工,2010,4(37):22-24.
    [154]Noureddine B, Mohammed A, Abdelghani B, et al. Biosorption characteristics of Cadmium(Ⅱ) onto Scolymus hispanicus L as low-cost natural biosorbent[J]. Desalination, 2010,258:66-71.
    [155]Giilay B M, Yakup A. Construction of a hybrid biosorbent using Scenedesmus quadricauda and Ca-alginate for biosorption of Cu(II), Zn(Ⅱ) and Ni(Ⅱ):Kinetics and equilibrium studies[J]. Bioresour Technol,2009,100:186-193.
    [156]刘明学,董发勤,李琼芳,等.酵母菌固定化及对锶吸附的影响[J].工业水处理,2009,29(5):19-23.
    [157]陶长元,曹渊,朱俊,等.农林生物质在含铬废水处理中的应用[J].环境污染治理技术与设备,2005,6(12):1-4.
    [158]卢涌泉,邓振华.实用红外光谱解析[M].北京:电子工业出版社,1989.21.
    [159]Donat R. The removal of uranium (Ⅵ) from aqueous solutions onto natural sepiolite[J]. Journal of Chemical. Thermodynamics,2009,41(7):829-835.
    [160]刘淑娟,李金英,罗明标,等.甲醛改性多壁碳纳米管吸附铀的性能研究[J].原子能科学技术,2013,47(1):007-013.
    [161]范春辉,张颖,张颖超,等.红外光谱法研究低温焚烧稻壳灰对Cr(Ⅵ)的吸附机理[J].光谱学与光谱分析,2010,30(9):2345-2340.
    [162]Zhang Y S, Liu W G, Zhang L, et al. Application of bifunctional saccharomyces cerevisiae to remove lead (Ⅱ) and cadmium (Ⅱ) in aqueous solution[J]. Appl Surf Sci, 2011,257(23):9809-9814.
    [163]谢水波,段毅,刘迎九,等.交联海藻酸钠固定化的腐殖酸多孔性薄膜对铀(Ⅳ)的吸附性能及机理[J].化工学报,2013,64(7):2488-2495.
    [164]Amyn S T, Pei-oong K. Synthesis, properties and applications of magnetic iron oxide nanoparticles[J]. Progress in Crystal Growth and Characterization of Materials,2009,55: 22-45.
    [165]高原.氧化石墨烯及四氧化三铁纳米粒子的制备及生物应用[D].吉林:吉林大学,2012.
    [166]Gupta A K, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications[J]. Biomaterials,2005,26(18):3995-4021.
    [167]Chikazumi S, Taketomi S, Ukita M, et al. Physics of magnetic fluids[J]. J Magn Magn Mater,1987,65(2-3):245-51.
    [168]Takafuji M, Ide S, Ihara H, et al. Preparation of Poly(1-vinylimidazole)-Grafted Magnetic Nanoparticles and Their Application for Removal of Metal Ions[J]. Chem Mater,2004, 16(10):1977-83.
    [169]张春荣,闫李霞,申大忠,等Fe3O4/C纳米粒子的制备及其对水中罗丹明B的去除[J].环境化学,2012,31(11):1669-1675.
    [170]Hu H B, Wang Z H, Pan L. Synthesis of monodisperse Fe3O4@silica core-shell microspheres and their application for removal of heavy metal ions from water [J]. J Alloy Compd,2010,492:656-661.
    [171]Zhang S X, Niu H Y, Hu Z J, et al. Preparation of carbon coated Fe3O4 nanoparticles and their application for solid-phase extraction of polycyclic aromatic hydrocarbons from environmental water samples[J]. J Chromatogr A,2010,1217:4757-4764.
    [172]Hao Y M, Man C, Hu Z B. Effective removal of Cu (Ⅱ) ions from aqueous solution by amino-functionalized magnetic nanoparticles[J]. J. Hazard. Mater,2010,184(1-3): 392-399.
    [173]Tran H V, Tran L D, Nguyen T N. Preparation of chitosan/magnetite composite beads and their application for removal of Pb(Ⅱ) and Ni(Ⅱ) from aqueous solution[J]. Mate Sci Eng C,2010,30(2):304-310.
    [174]Afkhami A, Norooz A R. Removal, Preconcentration and Determination of Mo(VI) from Water and Waste Water Samples Using Maghemite Nanoparticles[J]. Colloids and Surfaces A:Physicochem.Eng. Aspects,2009,346(1-3):52-57.
    [175]Bhagwati Prasad, Chiradeep Ghosh, Anindita Chakraborty, N. Bandyopadhyay, R.K. Ray. Adsorption of arsenite (As3+) on nano-sized Fe3O4 waste powder from the steel industry[J]. Desalination,2011,274:105-112.
    [176]Yokoi T, Kubota Y, Tatsumi T. Amino-functionalized mesoporous silica as base catalyst and adsorbent[J]. Applied Catalysis A:General,2012,421-422:14-19.
    [177]关晓辉,王磊,马啸飞,等.改性生物聚合硫酸铁的制备及其性能研究[J].中国电机工程学报,2010,30(32):0058-0062.
    [178]Hao S Y, Zhong Y J, Pepe F, et al. Adsorption of Pb2+ and Cu2+ on anionic surfactant-templated amino-function-alized mesoporous silicas[J]. Chemical Engineering Journal,2012,189-190:160-165.
    [179]Silverstein R M, Webster F X. Spectrometric Identification of Organic Compounds, 6th ed., John Wiley & Sons, New York,1998,58.
    [180]胡 玮,娄兆文.四氧化三铁磁性纳米微粒表面的氨基化修饰[J].化学研究,2013,24(2):0144-0148.
    [181]Feng B, Hong R Y, Wang L S, et al. Synthesis of Fe3O4/APTES/PEG diacid functionalized magnetic nanoparticles for MR imaging[J]. Elsevier,2008,328: 52-59.
    [182]王兴慧,朱桂茹,高从楷.短孔道介孔二氧化硅SBA-15对铀的吸附性能[J].化工学报,2013,64(7):2480-2487.
    [183]Khani M H, Keshtkar A R, Meysami B, et al. Biosorption of uranium from aqueous solution by nonliving biomass of marine algae Cystoseira indica[J]. Electron J Biotechnol,2006,9(2):100-106.
    [184]Feng N C, Guo X Y, Liang S, et al. Biosorption of heavy metals from aqueous solutions by chemically modified orange peel[J]. J Hazard Mater,2011,185(1):49-55.
    [185]林海,曹丽霞,陈月芳,等.香菇培养基废料吸附矿山酸性废水中铜离子[J].北京科技大学学报,2013,35(9):1119-1125.
    [186]Guo S, Li D, Zhang L, Li J, Wang E. Monodisperse mesoporous superparam-agnetic single-crystal magnetite nanoparticles for drug delivery[J]. Biomaterials,2009,30: 1881-1889.
    [187]庞晋山,邓爱华,毛凌波,等.磁性炭包铁纳米粒子对重金属离子的吸附性能[J].新型炭材料,2013,28(1):76-80.
    [188]Mohan S, Gandhimathi R. Removal of heavy metal ions from municipal solid waste leachate using coal fly-ash as an adsorbent[J]. Journal of Hazardous Materials,2009, 169(1/2/3):351-359.
    [189]Nascimento M, Soares P S M, Souza V P D. Adsorption of heavy metal cations using coal fly ash modified by hydrothermal method[J]. Fuel,2009,88(9):1714-1719.
    [190]夏良树,谭凯旋,王 晓,等.铀在榕树叶上的吸附行为及其机理分析[J].原子能科学技术,2010,44(3):0278-02814.
    [191]郭学益,肖彩梅,梁莎,等.改性柿子粉吸附剂对Cd2+的吸附性能[J].中南大学学报:自然科学版,2012,43(2):412-417.
    [192]苏峰,罗胜联,曾光明,等.海带对镉的吸附动力学与热力学研究[J].环境工程学报,2009,3(5):857-860.
    [193]Lu Y, Wilkins E. Heavy metal removal by caustic-treated yeast immobilized in alginate[J]. Journal of Hazardous Material,1996,49(2-3):165-179.
    [194]Vianna L N L, Andrade M C, Jacques R N. Screening of waste biomass from Saccharomyces cerevisiae, Aspergillus oryzae and Bacillus lentus fermentations for removal of Cu, Zn and Cd by biosorption[J]. World Journal ofMicrobiology & Biotechnology,2000,16(5):437-440.
    [195]Ksheminska H, Fedorovych D, Babyak L, et al. Chromium (Ⅲ) and (Ⅵ) tolerance and bioaccumulation in yeast:A survey of cellular chromium content in selected strains of representativegenera[J]. Process Biochemistry,2005,40(5):1565-1572.
    [196]Vijayaraghavan K, Padmesh T V, Palanivelu K, et al. Biosorption of nickel (Ⅱ) ions onto Sargassum wightii:Application of two-parameter and three-parameter isotherm models[J]. Journal of Hazardous Materials,2006,133(1/2/3):304-308.
    [197]Chernikoval A A, Tsoglin L N, Markelova A G, et al. Capacity of Spirulina platensis to accumulate manganese and its distribution in cell[J]. Russian Journal of Plant Physiology,2006,53(6):800-806.
    [198]Wang J L, Mao Z Y, Zhao X. Response of Saccharomyces cerevisiae to chromium stress[J]. Process Biochemistry,2004,39(10):1231-1235.
    [199]咎逢宇,霍守亮,席北斗,等.非固定化和固定化啤酒酵母对Cd2+和Cu2+的吸附特性研究[J].环境工程学报,2011,5(11):2473-2480.
    [200]吴琦,单志,沈茂,等.磁修饰酵母对直接大红染料的生物吸附[J].生物 工程学报,2009,25(10):1477-1482.
    [201]Sun D, Xie X, Cai Y. Voltammetric determination of Cd2+based on the bifunctionality of single-walled carbon nanotubes-nafion film[J]. Analytica Chimica Acta,2007, 581(1):27-31.
    [202]牛艳,关晓辉,尹荣.纳米Fe304的制备及其强化生物聚合铁絮凝性能的研究[J].工业水处理,2010,30(7):0018-0021.
    [203]关晓辉,赵洁,秦玉春.纳米Fe304的制备及其辅助吸附重金属离子的特性[J].环境化学,2005,24(4):409--412.
    [204]Wang J S, Hu X J, Wang J, et al. The tolerance of Rhizopus arrihizus to U(VT) and biosorption behavior of U(VI) onto R. arrihizus[J]. Biochemical Engineering Journal, 2010,51:19-23.
    [205]金政伟,王建清,高文华.SBA-16硅基介孔材料结构对Cd2+吸附性能的影响[J].天津科技大学学报,2009,24(3):0013-0016.
    [206]Landskron K, Hatton B D, Perovic D D, et al. Periodic Mesoporous Organosilicas Containing Interconnected [Si(CH2)]3 Rings[J]. Science,2003,302:266-269.
    [207]Hoffmann F, Cornelius M, Morell J, et al. Silica-based mesoporous organic-inorganic hybrid materials[J]. Angewandte Chemie International Edition,2006,5(2):216-3251.
    [208]Kresge C T, Leonowicz M E, Roth W J, et al. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism[J]. Nature,1992,359:710-712.
    [209]Davis M E. Orderedporous materials for emerging applications[J]. Nature,2002,417: 813-821.
    [210]Beck J S, Vartuli J C, Roth W J, et al. A new family of mesoporous molecular sieves prepared with liquid-crystal template mechanism[J]. J Amer Chem Soc,1992,114(27): 10834-10843.
    [211]Ho KY, Mckay G, Yeung K L. Selective adsorbents from ordered mesoporous silica [J]. Langmuir,2003,19(7):3019-3024.
    [212]Algarra M, Jimenez M V, Rodriguez-Castellon E, et al. Heavy metals removal from electroplating wastewater by aminopropyl-Si MCM-41[J]. Chemosphere,2005,59 (6): 779-786.
    [213]王晓亮.功能化介孔氧化硅对铀的富集田].衡阳:南华大学,2012.
    [214]刘雅兰.功能化介孔氧化硅材料对U(IV)的吸附行为研究[D].衡阳:南华大学,2012.
    [215]Yousefi S R, Ahmadi S J, Shemirani F, et al. Simultaneous extraction and preconcentration of uranium and thorium in aqueous samples by new modified mesoporous silica prior to inductively coupled plasma optical emission spectrometry determination[J].Talanta., 2009,80(1):212-217.
    [216]Sert S, Eral M. Uranium adsorption studies on aminopropyl modified mesoporous sorbent(NH2-MCM-41) using statistical design method[J]. Journal of Nuclear Materials., 2010,406(3):285-292.
    [217]Jung Y, Kim S, Park S J, et al. Application of polymer-modified nanoporous silica to adsorbents of uranyl ions[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2008,313-314:162-166.
    [218]Jamali M R, Assadi Y, Shemirani F, et al. Synthesis of salicylaldehyde-modified mesoporous silica and its application as a new sorbent for separation, preconcentration and determination of uranium by inductively coupled plasma atomic emission spectrometry [J]. Analytica Chimica Acta,2006,579(1):68-73.
    [219]Wang X G, Cheng S F. Direct synthesis and catalytic reactivity of highly ordered large poremethylaminopropyl functionalized SBA-15 Materials Ustralia[J]. Journal of Chemistry, 2005,8(7):507-510.
    [220]Li W J, Huang S J, Liu S B, et al. Influence of the Al source and synthesis of ordered Al-SBA-15 Hexagonal Particle with Nanostairs and Terraces[J]. Langmuir,2005,21(5): 2078-2085.
    [221]李乐园.氨基功能化SBA-15对Cr3+和Zn2+的吸附性能研究[D].齐齐哈尔:齐齐哈尔大学,2012.
    [222]郭风,朱桂茹,高从堦.有机-无机杂化介孔二氧化硅在环境保护中的应用[J].化学进展,2011,23(6):1237-1250.
    [223]Yuan L Y, Liu Y L, Shi W Q, et al. High performance of phosphonate-functionalized mesoporous silica for U(VI) sorption from aqueous solution [J]. Dalton Trans,2011,40: 7446-7453.
    [224]付庆涛,何婷婷,于濂清,等.磁性核壳介孔氧化硅微球的制备与应用[J].化学进展,2010,22(6):1116-1124.
    [225]王婵.多功能集成介孔材料的合成及应用研究[M].大连:大连理工大学,2012.
    [226]Zhou L, Gao C, Xu W J. Magnetic dendritic materials for highly efficient adsorption of dyes and drugs [J]. ACS Appl. Mater. Interfaces,2010,2:1483-1491.
    [227]姜华玮,王同华,李琳,等.有序介孔复合炭膜的制备及其性能研究[J].新型炭材料2010,25(4):273-278.
    [228]邢伟,禚淑萍,司维江,等.磁性有序介孔炭的制备及药物吸附行为研究[J].化学学报,2009,67(8):761-766.
    [229]朱滇林,赵俊琦,刁香,等.磁性介孔氧化硅材料的制备与应用[J].石油化工,2009,38(8):811-817.
    [230]Unlu N, Ersoz M. Adsorption characteristics of heavy metal ions onto a low cost biopolymeric sorbent from aqueous solutions [J]. J Hazard Mater,2006,136:272-280.
    [231]Shao D D, Jiang Z Q, Wang X K, et al. Plasma Induced Grafting Carboxymethyl Cellulose on Multiwalled Carbon Nanotubes for the Removal of UO22+ from Aqueous Solution [J]. J Phys Chem B,2009,113:860-864.
    [232]Gavrilescu M, Pavel L V, Cretescu I. Characterization and remediation of soils contaminated with uranium [J]. Journal of Hazardous Materials,2009,163:475-510.
    [233]Hattori T, Saito T, Ishida K, et al. The structure of monomeric and dimeric uranyl adsorption complexes on gibbsite:A combined DFT and EXAFS study [J]. Geochim Cosmochim Acta,2009,73:5975-5988.
    [234]Barnett M O, Jardine P M, Brooks S C, et al. Adsorption and transport of uranium(IV) subsurface media [J]. Soil Sci Soc Am J,2000,64(3):908-917.
    [235]Maneet B, Umesh G, Dwian S, et al. Remova 1 of Cr (VI) from aqueous solutions using pre-consumer processing agricultural waste:A case study of rice husk[J]. Journal of Hazardous Materials,2009,162(1):312-320.
    [236]Kumar Y P, King P, Prasad V S R K. Equilibrium and kinetic studies for the biosorption system of copper(Ⅱ) ion from aqueous solution using Tectona grandis L. f. leaves powder[J]. Journal of Hazardous Materials,2006,137(2):1211-1217.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700