用户名: 密码: 验证码:
SiO_2纤维表面原位沉积Ag-ITO薄膜的微观结构及反射性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纤维隔热材料由于具有低成本、低密度、高效隔热等特点,一直得到建筑、工业以及国防等领域的青睐。但是由于纤维隔热材料本身对辐射电磁波具有高透过、低反射的特点,从而大大降低了其高温隔热性能。本研究采用溶胶-凝胶和逐层吸附法在石英纤维表面原位制备掺银氧化铟锡(Ag-ITO)多层薄膜作为红外反射层以降低纤维隔热材料的辐射传热。影响Ag-ITO多层薄膜性能的因素主要有三个:薄膜的孔隙率、表面粗糙度以及Ag粒子在薄膜中的空间分布状态。本文中,通过扫描电镜(SEM)、X射线衍射(XRD)、掠入射小角X射线散射(GISAXS)、掠入射X射线反射技术(GIXR)等手段研究了热处理工艺中温度、升温速率和保温时间三个因素对ITO薄膜的孔隙率、表面粗糙度的影响,以及对多层薄膜中Ag层结构的影响;同时借助傅里叶红外(FT-IR)、紫外-可见-近红外(UV-VIS-NIR)等手段表征了薄膜材料的光学性能。本文主要研究内容与结论如下:
     通过溶胶-凝胶法在玻璃基底制备了ITO薄膜。结果显示,ITO薄膜结晶温度约450℃、表面富锡、薄膜中孔洞具有分形结构,且其形状多呈椭圆状,沿薄膜表面展开。沿着薄膜厚度方向,薄膜的结构大体呈现三个区域:接近基底区域致密性好,孔径小;中间区域孔隙率高,孔径大;近表面区域在热处理温度T≤800℃时孔隙率与孔径较低,而温度T>800℃时,孔隙率与孔径反而会升高。
     利用GISAXS、GIXR、XRD等手段研究了热处理工艺对ITO薄膜孔隙率和表面粗糙度的影响。结果表明,随着热处理温度的升高,薄膜的致密度提高,孔隙率从低温时的33.6%降到高温时的23.8%,其中低温时的孔隙率降低主要来源于大孔的收缩,高温时的孔隙率降低主要来源于小孔的消除,而薄膜的表面粗糙度略有增大;提高升温速率由于降低了晶体生长的时间而有利于薄膜的致密化,且薄膜的表面粗糙度降低,但是当升温速率过高时,表面粗糙度又大大增大。1000℃快速热处理中,延长保温时间增大了近表面的孔隙率以及表面粗糙度而提高了整体薄膜材料的孔隙率。结合薄膜孔隙率以及表面粗糙度两个影响因素,优化溶胶-凝胶ITO薄膜的热处理工艺过程为:溶剂挥发阶段慢速升温,然后快速升温到高温。
     通过SnCl2作为前驱体之一和银的还原剂,逐层吸附原位得到Ag-ITO多层膜。当ITO溶胶浓度为0.5M时,银溶胶的最佳浓度是0.1M。GISAXS结果显示,ITO层的形成符合扩散限制聚集(DLA)模型,然后通过金属诱导效应形核、长大;而Ag层开始由反应控制聚集(RLA)形成,然后在热激发下,与附近的原子交换位置发生交换机制,同时避免了Ag粒子间的聚结长大。随着热处理温度的升高,Ag相的形核密度存在一个“V”型变化,转折点在900℃。热处理过程中,在升温阶段,多层薄膜中的Ag粒子/团簇的形核、生长符合扩散-换位-再扩散-再换位生长模型;而在保温阶段,Ag粒子/团簇的生长主要发生再换位过程,导致关联距离增大,分形维数降低。
     以十二烷基苯磺酸钠和氨水的混合液作为表面活性剂,对纤维材料进行表面处理,一定程度上提高了纤维表面的负电荷性,另外通过每层吸附后用乙醇冲洗的方式解决“挂胶”问题。纤维表面沉积后得到薄膜材料致密、均匀,且具有比较好的热稳定性。ITO薄膜的孔隙率对其2.5-7.5μm区间的半球反射率有决定性作用,但在孔隙率相差不大时,薄膜表面粗糙度对其的影响才表现出来。随着热处理温度的升高,Ag-ITO多层薄膜在1-2.5μm区间其半球反射率呈现“N”型变化,而随着保温时间的延长,其半球反射率略有降低,并运用激活隧道理论解释了此过程。可见,800℃的热处理温度是最佳处理温度。利用压片法得到镀膜纤维的透过率,发现随着热处理温度的升高以及保温时间的延长,其透过率都会下降。通过Rossland平均理论以及光厚近似假设,计算得到纤维隔热材料在沉积Ag-ITO多层膜后其辐射传热可以降低30%左右。
Fibrous thermal insulation materials are of great interest in architectural and national defence fields owing to their low cost, low density and high efficiency. However, the high temperature insulation performance is decayed a lot due to the materials’high transmittance of radiation wave. In this research, silver embedded indium tin oxide (Ag-ITO) multilayer films were in situ deposited by sol-gel and layer-by-layer adsorption methods onto fibres to be as infrared reflective coating to decrease the radiation heat transfer. There are three main factors to influence the reflectivity, i.e. porosity, surface roughness and the spatial distributional state of Ag. The effects of thermal treatments including temperature, heating rate and holding time on the porosity, surface roughness of ITO film and Ag distribution of multilayer film were studied through scanning electron microscopy (SEM), X-ray diffraction (XRD), grazing incidence small angle X-ray scattering (GISAXS), grazing incidence X-ray reflectivity (GIXR) et al. Furthermore, the optical performance of films is obtained from the UV-VIS-NIR and FT-IR spectra. The main contents and conclusions are listed as follows:
     ITO films are prepared by sol-gel dip-coating method. ITO film is stannum-rich on the surface with the crystalline temperature of about 450℃. Pores in the films show fractal structure and ellipsoid along the film. There are three basic regions along the thickness of film. The layer access to the substrate shows dense and small pores while the middle layer shows higher porosity and bigger pores. When the temperature is higher than 800℃, the near surface layer even shows higher porosity and bigger pores than next while it show opposite when the temperature is not.
     The effect of thermal annealing process on the porosity of ITO films is studied through GISAXS technique. The densification is improved with the increase of annealing temperature. The porosity is decreased due to the shrinkage of big pores as well as elimination of small pores in low temperature in low temperatures and just the latter one in high temperatures. The porosity is decreased with the increase of heating rate due to the shorter crystalline time. The porosity will be increased due to the increasing near surface porosity with the holding time at high temperature. Thus, thermal treatments of ITO film were optimized to be that slow heating during the volatity of solvent and then high heating.
     Ag-ITO composite films were prepared by layer-by-layer adsorption method with an in situ reducing agent (stannuous chloride). The favorite concentration of silver sols is 0.1M to keep the continuous,small and not aggregated. It is found that the ITO is diffused through diffusion-limited aggregate dynamic and metal introduced formation. The silver atoms are controlled by exchange-reaction limited aggregation mechanism and the coalescence of silver particles is inhibited. The nucleation density of silver phase shows“V”with the increase of thermal annealing temperatures of composite films. The knee point is at 900℃which means an active temperature of silver atoms. During the heating period in thermal annealing process, the formation and growth of silver particles according to the diffusion-exchange-diffusion-exchange model, and during the holding period, the exchange mechanism increases the correlation distance of silver particles and decreases the fractal dimension.
     Films were prepared on the surface of fibers through layer-by-layer adsorption method. In order to increase the electronegativity of fibers, fibers were treated by a solution including sodium dodecylbenzene sulfonate and ammonia. Films on the fibers show dense, homogenous and have thermal stability. The porosity and surface roughness both influence the hemisphere reflectivities of ITO films. The former factor is major and the latter is minor. While the hemisphere reflectance of Ag-ITO multilayer film during 1-2.5μm shows“N”curves. This phenomenon is explained by activation tunnel effect theory. The best thermal annealing temperature is proved to be 800℃. The transimittance of coated fibers are decreased with the increase of annealing temperature and holding time through pelleting technique. The reduction of radiation heat transfer could be up to 30% after the coating on the fibers through Rosseland mean theory.
引文
1 http://www.ntem.com.cn/ntem/showa.jsp?informationid=200212251012503811&classid=200706041622209192
    2 http://car.newmaker.com/disp_art/10200/8418.html
    3赵淑媛,张博明,赫晓东.热防护系统高温纤维隔热毡传热及有效热导率分析.宇航材料工艺. 2006,增刊I:24
    4 E. L. Lopez. AIAA 4th Thermophysics Conference, AIAA-69-606, 1969
    5 C. M. Lampert. Heat Mirror Coatings for Energy Conserving Windows. Solar Energy Materials. 1981, 6(1):1~41
    6 W. E. Grunert, F. Notaro. Opacified Fibrous Insulations. AIAA 4th Thermophysics Conference. 1969:40~45
    7 T. W. Tong, P. S. Swathi, G. R. Cunnington, Jr. Reduction of Radiative Heat Transfer in Thermal Insulations by use of Dielectric Coated Fibers. Heat Mass Transfer. 1989,16(6):851~860
    8 E. Celik, E. Avci, Y. S. Hascicek, High Temperature Sol-gel Insulation Coatings for HTS Magnets and Their Ahesion Properties. Physica C 2000, 340:193
    9 D. D. Hass, B. D. Prasad, D. E. Glass, K. E. Wiedemanm. Reflective Coating on Fibrous Insulation for Reduced Heat Transfer. NASA Contractor Report. 1997: 201733
    10戴嘉鸿,张起明.防火材料设备的可靠度评估.中华民国第六届可靠度与维护度技术研讨会论文集. 2005:154
    11李丹之.掺杂半导体/金属膜系的光谱透射反射特性.物理学报. 1999, 48(12): 2349
    12江经善.多层隔热材料及其在航天器上的应用.宇航材料工艺. 2000, 4: 17~19
    13王哲津.应用于中红外波段的多孔氧化硅一维光子晶体研究.华东师范大学硕士论文. 2007, 5:31
    14杨帆,沈军,吴广明等.溶胶凝胶法制备SiO2/TiO2多层膜工艺研究.安阳师范学院学报. 2003, 2:31~35
    15 A. Blanco, E. Chomski, S. Grabtchak, et al. Large-scale Synthesis of a Silicon Photonic Crystal with a Complete Three-dimensional Bandgap near 1.5 Micrometres. Nature. 2000, 405:437
    16 S. C. Warren, L. C. Messina, L. S. Slaughter, et al. Ordered Mesoporous Materials from Metal Nanoparticle-block Copolymer Self-assembly. Science. 2008, 320: 1748
    17李家亮,姜洪义,牛金叶,邹科.透明导电氧化物薄膜的研究现状及展望.现代技术陶瓷. 2006, 1:19~22
    18 I. Hamberg, A. Hjortsberg, and C. G. Granqvist. High Quality Transparent Heat Reflectors of Reactively Evaporated Indium Tin Oxide. Appl. Phys. Lett. 1982, 40(5): 362~364
    19张有润.制备ITO薄膜的工艺研究.电子科技大学硕士论文. 2005:3
    20范志新,孙以材,陈玖琳.氧化物半导体透明导电薄膜的最佳掺杂含量理论计算.半导体学报. 2001, 22(11):1383~1386
    21 M. J. Alam, D. C. Cameron. Optical and Electrical Properties of Transparent Conductive ITO Thin Film Deposited by Sol-gel Process. Thin Solid Film. 2000, 377-378:455~459
    22 A. De, P. K. Biswas, J. Manara. Study of Annealing Time on Sol-gel Indium Tin Oxide Films on Glass. Materials Characterization. 2007,58(7):629
    23马颖.热处理时间对透明导电膜结构与导电性能的影响.陕西科技大学学报. 2005,23(4):61~63
    24 M. J. Alam, D. C. Cameron. Investigation of Annealing Effects on Sol-gel Deposited Indium Tin Oxide Thin Films in Different Atmospheres. Thin Solid Films. 2002,420-421:76
    25 T. F. Stoica, V. S. Teodorescu, M. G. Blanchin, T. A. Stoica, M. Gartner, M. Losurdo, M. Zaharescu. Morphology, Structure and Optical Properties of Sol-gel ITO Thin Films. Mater. Sci. Eng. B. 2003, 101:222~226
    26 Y. Shigesato, Y. Hayashi, T. Haranoh, Doping Mechanisms of Tin-doped Indium Oxide Films. Appl. Phys. Lett. 1992, 61(1):73
    27 T. M. Tillotson, A. E. Gash, R. L. Simpson, L. W. Hrubesh, J. H. Satcher Jr., J. F. Poco. Nanostructured Energetic Materials using Sol-gel Methodologies. J. Non-Cryst. Solids. 2001, 285:338
    28 E. Celik, E. Avci, Y. S. Hascicek, High Temperature Sol-gel Insulation Coating for HTS Magnets and Their Adhesion Properties. Physica C. 2000, 340:193
    29 G. Grolig, K. H. Kochem. Heat-reflecting Systems for Automotive Glazing. Adv. Mater. 1992, 4(3): 179
    30 J. Chen, K. R. Udayakumar, K. G. Brooks, L. E. Cross, Rapid Thermal Annealing ofSol-gel Derived Lead Zirconate Titanate Thin Films, J. Appl. Phys. 1992, 71(9): 4465
    31 K. Daoudi, C.S. Sandu, V.S. Teodorescu, et al. Rapid Thermal Annealing Procedure for Densification of Sol-gel Indium Tin Oxide Thin Films. Crystal Engineering. 2002,5:187~193
    32姜妍彦,刘洪珠,王承遇,刘振民,史维东. Cu离子注入对ITO薄膜玻璃进行表面改性的研究.玻璃与搪瓷. 1999, 27(3):18~21
    33 B. Houng. Tin Doped Indium Oxide Transparent Conducting Thin Films Containing Silver Nanoparticles by Sol-gel Technique. Appl. Phys. Lett. 2005, 87:251922
    34 K. H. Choi, J. Y. Kim, Y. S. Lee, H. J. Kim. ITO/Ah/ITO Multilayer Films for the Application of a very Low Resistance Transparent Electrode. Thin Solid Films 1999, 341:152
    35 A. Solieman, M. A. Aegerter. Modeling of Optical and Electrical Properties of In2O3:Sn Coatings Made by Various Techniques. Thin Solid Films. 2006,502:205~211
    36刘静,刘丹,顾真安.介质/金属/介质多层透明导电薄膜研究进展.材料导报. 2005,(8):9~12
    37 Jang-Hoon Lee, Seung-Hyu Lee, et al. Deposition of a Conductive Near-Infrared Cutoff Filter by Radio-frequency Magnetron Sputtering. Applied Optics. 2002, 41(16):3061~3067
    38 Yeon Sik Jung, Yong Won Choi, Ho Chul Lee, Dong Wook Lee. Effects of thermal treatment on the electrical and optical properties of silver-based indium tin oxide/metal/indium tin oxide structures. Thin Solid Films. 2003,440:278~284
    39 G. Leftheriotis, S. Papaefthimiou, P. Yianoulis. Development of Multilayer Transparent Conductive Coatings. Solid State Ionics. 2000,136-137:655~661
    40 K. Kurihara, C. Rockstuhl, T. Nakano, T. Arai, J. Tominaga. The Size Control of Silver Nano-particles in SiO2 Matrix Film. Nanotechnology. 2005, 16:1565~1568
    41 E. Kusano, J. Kawaguchi, K. Enjouji. Thermal Stability of Heat-reflective Films Consisting of oxide-Ag-oxide Deposited by dc Magnetron Sputtering. J. Vac. Sci. Technol. 1986,A4(6):2908~29
    42 Jang-Hoon Lee, Seung-Hyu Lee, et al. Deposition of a Conductive Near-infrared Cutoff Filter by Radio-frequency Magnetron Sputtering. Applied Optics. 2002,41(16):3061~3067
    43 A. M. Al-Shukri. Thin Film Coated Energy-efficient Glass Windows for Warm Climates. Desalination. 2007, 209:290~297
    44胡云慧,李京增,余圣发,彭晶等.高透明低方阻ITO-Ag-ITO柔性镀膜技术.真空. 2001, 2:36
    45 A. S. Sarac, M. Serantoni, Syed A. M. Tofail, et al. Characterisation of Nanosize Thin Films of Electrografted N-vinylcarbazole Copolymers onto Carbon Fibre AFM, XPS, and Raman Spectroscopy. Appl. Surf. Sci. 2005, 243: 183
    46 http://baike.baidu.com/view/993652.html
    47 http://zhidao.baidu.com/question/51096246.html
    48 W. A. Daoud, J. H. Xin, Y. H. Zhang, C. L. Mak, Pulsed Laser Deposition of Superhydrophobic Thin Teflon Films on Cellulosic Fibers, Thin Solid Films 2006, 515: 835
    49 http://downlunwen.zdnet.com.cn/H048990/pdf/304.pdf
    50 L. C. Klein, Sol-gel Optical Materials, Annu. Rev. Mater. Sci. 1993, 23:437~452
    51 M. J. Uddin, F. Cesano, D. Scarano, F. Bonino, G. Agostini, et al. Cotton Textile Fibres Coated by Au/TiO2 films: Synthesis, Characterization and Self Cleaning Properties, J. Photochemistry Photobiology A. 2008, 199:64
    52 L. Luo, L. Miao, S. Tanemura, M. Tanemura, Photocatalytic Sterilization of TiO2 Films Coated on Al Fiber, Mater. Sci. Eng. B 2008, 148: 183
    53 David Lukas, Ning Pan. Wetting of a Fiber Bundle in Fibrous Structures. Polymer Composites. 2003, 24(3):314~322
    54 Gero Decher, Fuzzy Nanoassemblies: toward Layered Polymeric Multicomposites, Science, 1997, 277:1233
    55 J. Schemitt, G. Decher, W. J. Dressick, S. L. Brandow, R. E. Geer, et al. Metal Nanoparticles/polymer Superlattice Films: Fabrication and Control of Layer Stucture. Adv. Mater. 1997, 9:61
    56 Yanfa Yan, J. Zhou, X. Z. Wu, H. R. Moutinho, M. M. Al-Jassim. Structural Instability of Sn-doped In2O3 films during Thermal Annealing at Low Temperature. Thin Solid Films. 2007, 515: 6686
    57张爱梅,吴小山.薄膜和多层膜的X射线散射方法与应用.物理. 2007, 36(7): 516~519
    58 Junji Matsui, Kazunori Fukuda, Ayuko Kamakura, et al. Structure Estimation of Diamond-like Carbon Films by Synchrotron X-ray Reflectivity Measurement.Nuclear Instruments and Methods in Physics Research B 2007, 261:634
    59 A. Turkovic, Grazign Incidence Small-angle X-ray Scattering and Reflectivity on Nanostructured Oxide Films. Mater. Sci. Eng. B 2004, 110:68
    60 M. P. Petkov, M. H. Weber, K. G. Lynn, et al. Open Volume Defects (measured by positron annihilation spectroscopy) in Thin Film Hydrogen-silsesquioxane spin-on-glass: Correlation with Dielectric Constant. J. Appl. Phys. 1999, 86:3104
    61 M. Misheva, N. Djourelov, F. M. Margaca, et al. Positronium Study of Porous Structure of Sol-gel Prepared SiO2: Influence of pH. J. Non-Cryst. Solids. 2001, 379: 196
    62 J. Xu, J. Moxom, S. Yang, et al. Dependence of Porosity in Methyl-silsesquklioxane Thin Films on Molecular Weight of Sacrificial Triblock Copolymer. Chem. Phys. Lett. 2002, 364:309
    63 E. Kusano, J. Kawaguchi, K. Enjouji. Thermal Stability of Heat-reflective Films Consisting of oxide-Ag-oxide Deposited by dc Magnetron Sputtering. J. Vac. Sci. Technol. 1986,A4(6):2908~29
    64 M. Bender, W. Seelig, C. Daube, H. Frankenberger, B. Ocker, J. Stollenwerk. Dependence of Film Composition and Thicknesses on Optical and Electrical Properties of ITO-metal-ITO Multilayers. Thin Solid Films 1998, 326:67~71
    65 A. Kloppel, W. Kriegseis, B.K. Meyer, A. Scharmann, C. Daube, J. Stollenwerk, J. Trube. Dependence of the Electrical and Ooptical Behaviour of ITO-silver-ITO Multilayers on the Silver Properties. Thin Solid Films. 2000,365:139~146
    66 G. Leftheriotis, S. Papaefthimiou, P. Yianoulis. Development of Multilayer Transparent Conductive Coatings. Solid State Ionics. 2000,136-137:655~661
    67 K. H. Choi, J. Y. Kim, Y. S. Lee and H. J. Kim, ITO/Ag/ITO Multilayer Films for the Application of a very Low Resistance Transparent Electrode. Thin Solid Films 1999, 341:152
    68 B. B. Mandelbrot. The Fractal Geometry of Nature. W.H. Freeman and Company. 1982:14
    69 Falconer Kenneth. Fractal Geometry: Mathematical Foundations and Applications. John Wiley & Sons, Ltd., 2003:8
    70郭从容,王雪松,杨桂琴,崔建中,严乐美,张万东.分形理论及其在材料科学中的应用.半导体杂志. 1999, 24(1):38
    71袁安,阎子峰.分形理论的发展与化学.石油化工高等学校学报. 2000, 13(2):7~9
    72刘莹,胡敏,余桂英,李小兵,刘晓林.分形理论及其应用.江西科学. 2006, 24(2):206~207
    73 C. J. Brinker, A. J. Hurd, P. R. Schunk, G. C. Frye, C. S Ashley. Review of Sol-gel Thin Film Formation. J. Non-Cryst. Solids. 1992,147-148:424~436
    74李晓雷. La2NiO4系类钙钛矿薄膜的溶胶-凝胶法制备及氧敏特性的研究.天津大学博士生学位论文. 2002:67
    75 S. R. Ramanan. Dip Coated ITO Thin-films through Sol-gel Process Using Metal Salts. Thin Solid Films 2001, 389:207
    76 K. Nishio, T. Sei, T. Tsuchiya. Preparation and Electrical Properties of ITO Thin Films by Dip-coating Process. J. Mater. Sci. 1996,31:1761~1766
    77 J. E. Song, Y. H. Kim, Y. S. Kang. Preparation of Indium Tin Oxide Nanoparticles and Their Application to Near IR-reflective Film. Current Appl. Phys. 2006, 6:791~795
    78 Seon-Soon Kim, Se-Young Choi, Chan-Gyung Park, Hyeon-Woo Jin. Transparent conductive ITO Thin Films through the Sol-gel Process using Metal Salts. Thin Solid Films. 1999, 347:155~160
    79 C. J. Brinker, D. M. Smith, R. Deshpande, P. M. Davis, S. Hietala, G. C. Frye, C. S. Ashley, R. A. Assink. Sol-gel Processing of Controlled Pore Oxides. Catalysis Today, 1992, 14(2):155~163
    80 C. J. Brinker, A. J. Hurd, G. C. Frye, K. J. Ward, C. S. Ashley. Sol-gel Thin Film Formation. J. Non-Cryst. Solids 1990, 121: 294
    81 http://www.chemhello.com/Consult/html/4293.html
    82 http://www.risoe.dk/rispubl/reports_INIS/RISOR396.pdf
    83 C. Revenant, F. Leroy, R. Lazzari, G. Renaud, C. R. Henry, Quantitative Analysis of Grazing Incidence Small Angle X-ray Scattering: Pd/MgO(001) growth. Phys. Rev. B 2004, 69: 035411
    84 Po-zen Wong, Scattering by Inhomogeneous Systems with Rough Internal Surfaces: Porous Solids and Random-field Ising Systems. Phys. Review. B 1985, 32: 7417
    85 P. M. Buschbaum, Grazing Incidence Small-angle X-ray Scattering: an Advanced Scattering Technique for the Investigation of Nanostructured Polymer Films. Anal. Bioanal. Chem. 2003, 376:3~10
    86 F. Pfeiffer, W. Zhang, I. K. Robinson, Coherent Grazing Exit X-ray ScatteringGeometry for Probing the Structure of Thin Films. Appl. Phys. Lett. 2004, 84:1847
    87 S. K. Sinha, E. B. Sirota, S. Garoff, X-ray and Neutron Scattering from Rough Surfaces, Phys. Rev. B 1988, 38(4):2297~2312
    88 http://www.instrument.com.cn/netshow/C18555.htm
    89李芝华,李晶,任冬燕. ITO透明导电薄膜的溶胶凝胶法制备及结构表征.稀有金属与硬质合金2004, 32(4):22
    90 R. B. H. Tahar, T. Ban, Y. Ohya, Y. Takahashi. Optical, Structural and Electrical Properties of Indium Oxide Thin Films Prepared by the Sol-gel Method. J. Appl. Phys. 1997, 82(2):15
    91 M. Wakagi, K. Chahara, K. Onisawa, Y. Kawakubo, T. Kichikawa, T. Satoh, T. Minemura, Rapid Heat Treatment for Spin Coated ITO Films by Electron Plasma Annealing Method, Thin Solid Films 2002, 411:46
    92 H. Imai, K. Awazu, M. Yasumori, H. Onuki, H. Hirashima, Densification of Sol-gel Thin Films by Ultraviolet and Vacuum Ultraviolet Irradiations, J. Sol-gel Sci. Tech. 1997, 8:365
    93 C. M. Lopatin, T. L. Alford, V. B. Pizziconi, M. Kuan, T. Laursen, Ion-beam Densification of Hydroxyapatite Thin Films, Nucl. Instrum. Meth. B 1998,145(4):522
    94 A. Cavallaro, F. Sandiumenge, J. Gzquez, T. Puig, X. Obradors, J. Arbiol, H. C. Freyhardt, Growth Mechanism, Microstructure, and Surface Modification of Nanostructured CeO2 films by Chemical Solution Deposition. Adv. Funct. Mater. 2006, 16:136
    95 A. Karamanov, M. Pelino, J. Eur. Ceram. Soc. 2006, 26: 2520
    96 Hongshui Wang, Xueliang Qiao, Jianguo Chena, Xiaojian Wang, Shiyuan Ding. Mechanisms of PVP in the Preparation of Silver Nanoparticles. Materials Chemistry and Physics. 2005,94:449~453
    97 A. Lando, N. Kebaili, P. Cahuzac, A. Masson, C. Brechignac. Coarsening and Pearling Instabilities in Silver Nanofractal Aggregates. Phys. Rev. Lett. 2006, 97:133402
    98 G. Renaud, et al. Real-time Monitoring of Growing Nanoparticles. Science. 2003, 300:1416
    99唐鑫.表面三维岛对薄膜表面原子扩散以及基底原子应力的影响.大连理工硕士学位论文. 2005, 6: 3~10
    100 http://www.aps.anl.gov/Science/Publications//techbulletins/tb47/tb47-1-3.pdf
    101 L. M. Sander, Z. M. Cheng, R. Richter, Diffusion-limited Aggregation in Three Dimensions, Phys. Rev. B 1983, 28 (11): 6394
    102 B. Bian, J. Yie, B. Q. Li and Z. Q. Wu, Fractal Formation inα-Si:H/Ag/α-Si:H Films after Annealing, J. Appl. Phys. 1993, 73(11): 7402
    103 W. M. Sears, K. Colbow, Mobility of Silver on Tin Oxide Surfaces. Appl. Phys. Lett. 1989, 55: 2185
    104 T. Chin, I. S. Hwang, T. T. Tsong, Direct Observation of Reaction-limited Aggregation on Semiconductor Surfaces. Phys. Rev. Lett. 1999, 83(6): 1192
    105王戴木.亚单层薄膜形核生长动力学计算模拟研究.中国科技大学博士学位论文. 2006, 5:39~47
    106 A. Torncrona, J. Brandt, L. Lowendahl, J. E. Otterstedt. Sol-gel Coating of Alumina Fibre Bundles. J. European Ceramic Society. 1997, 17(12):1459
    107 X. Gu, P. A. Trusty, E. G. Butler, C. B. Ponton. Deposition of Zirconia Sols on Woven Fibre Performs using a Dip-coating Technique. J. European Ceramic Society. 2000, 20:675~684
    108 M. Verdenelli, S. Parola, F. Chassagneux, et al. Sol-gel Preparation and Thermo-mechanical Properties of Porous xAl2O3-ySiO2 Coatings on SiC Hi-Nicalon Fibres. J. European Ceramic Society. 2003, 23:1207~1213
    109 K. Y. Wang, S. Kumar, C. L. Tien, Radiative Transfer in Thermal Insulations of Hollow and Coated Fibers. J. Thermophysics. 1987, 1(4):291
    110 M. M. Braun, L. Pilon, Effective Optical Properties of Non-absorbing Nanoporous Thin Films. Thin Solid Films, 2006, 496:514
    111徐则川,刘卫忠,卢德新,刘丽丽.热红外低比辐射率高漫反射比表面的分形表征.华中理工大学学报. 2000, 28(1):78
    112 G. L. Liu, Z. R. Huang, X. J. Liu, D. L. Jiang. Effect of Density and Surface Roughness on Optical Properties of Silicon Carbide Optical. Chinese Phys. Lett. 2008, 25:1135~1137
    113 V. Petrovsky, B. P. Gorman, H. U. Anderson, T. Petrovsky, Optical Properties of CeO2 films prepared from colloidal suspension, J. Appl. Phys. 2001, 90(5):2517
    114 E. Nichelatti, M. Montecchi, R. M. Montereali, Hemispherical and Diffuse Reflectance and Transmittance of a Slightly Inhomogeneous Film Bounded by Rough, Unparallel Interfaces, Thin Solid Films 2007, 515:4644
    115 X. P. Sun, Y. L. Luo, Preparation and Size Control of Silver Nanoparticles by a Thermal Method. Mater. Lett. 2005, 59:3847~3850
    116蔡琪.新型Ag-ITO复合薄膜的制备、微结构及光电性质表征.安徽大学博士学位论文. 2007, 5:75
    117 J. L. Wu, C. M. Wang, Nonequilibrium Electron Relaxation in Composite Thin Film Containing Silver Nano-scale Particles. Solid-State Electronics 1999, 43:1755
    118 M. Kojima, H. Kato, A. Imai, Electronic Conduction of Tin Oxide Thin Films Prepared by Chemical Vapor Deposition. J. Appl. Phys. 1988, 64(4): 1905
    119 B. M. Zhang, S. Y. Zhao, X. D. He, Experimental and Theoretical Studies on High-temperature Thermal Properties of Fibrous Insulation. J. Quant. Spectr. Radia. Tran. 2008, 109:1312~1313

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700