用户名: 密码: 验证码:
铁锆复合氧化物去除砷氟的性能研究及机制探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国高砷和高氟地下水分布广泛,同时工业活动导致的地下水砷、氟污染事故频发,经济高效的饮用水除砷、除氟技术受到广泛关注。本文对制备的铁锆复合氧化物进行了去除水中As(V)、F-的吸附性能研究及机制探讨。采用批式静态实验(如:吸附时间、pH、初始浓度、共存离子等因素的影响实验)和长期动态处理含砷含氟水效果的方法研究铁锆复合氧化物颗粒去除砷氟的性能。同时,采用EDX-Mapping、红外(FTIR)、X射线光电子能谱(XPS)、SO42-释放量等分析检测技术探讨了铁锆复合氧化物去除砷氟的机制。
     制备的粉末铁锆复合氧化物吸附剂为无定形结构,颗粒吸附剂的孔径分布为3.6~218μm、比表面积为95.5m2·g-1、破碎强度为22.1±2.0N、机械强度为9.1%±1.7%。
     铁锆复合氧化物对As(V)的去除研究结果表明,铁锆复合氧化物颗粒去除As(V)过程符合准二级动力学方程,吸附速率主要由颗粒内扩散控制;在较宽的pH范围(pH3.0~9.0)对吸附剂去除As(V)的效果影响不大;吸附As(V)的等温线很好的符合Langmuir I吸附等温线方程;实际应用中需考虑HCO3和腐殖酸对As(V)的去除影响;3.0%浓度的NaOH为最佳脱附As(V)浓度;进水As(V)浓度为500μg·L-1、SV (Space Velocity)2.0h-1,出水As(V)浓度达到10μg·L-1的穿透浓度前,总计处理2433BV (Bed Volume)的含As(V)水样。使用后的吸附剂颗粒浸出性毒性测试证实其为惰性的、可安全填埋的;As(V)主要被吸附在铁锆复合氧化物颗粒的表面,吸附过程中As(V)主要与吸附剂表面Fe-OH置换作用。
     铁锆复合氧化物对F-的去除研究结果表明,铁锆复合氧化物颗粒去除F-的动力学过程符合准二级动力学模型,吸附开始的0.56h内主要由膜扩散控制,0.56h后主要由颗粒内扩散控制;在pH3.5~9.0;吸附F-等温线符合Freundlich等温线模型;考虑实际水中共存离子浓度,HCO3-对吸附剂吸附F-影响;0.01mol·L-1的NaOH对吸附F-后的吸附剂脱附再生效果最佳;处理实际含氟水样时,SV分别为0.5、1.0、3.0h-1出水氟浓度超过1.0mg·L-1时,其过水床体积分别为370、239、128BV。吸附后的耗竭材料的浸出性毒性研究认为吸附剂是安全的;吸附剂的表面和内部均能吸附F-,其去除水中F-的机理主要是吸附剂表面Zr-OH与水中F-的置换作用。
Arsenic and fluoride contamination in ground water are occurring in many provinces of China and the frequent industrial activities also added excessive arsenic and fluoride into groundwater. Therefore, cost-effective technology for arsenic and fluoride removal received extensive attention. Iron-Zirconium oxide adsorbent was used for arsenic and fluoride removal in this study. The batch experiments (the adsorption effects were examined under varying conditions of adsorption time, pH, initial concentration, co-existing anions, et al.) and long-term dynamic effects were used to describe the performance of arsenic and fluoride on granular of iron-zirconium oxide. The EDX-Mapping, infrared (FTIR), X-ray photoelectron spectroscopy (XPS), release of sulfate, and other analytical techniques were explored to characterization the mechanism of arsenic and fluoride on iron-zirconium oxide.
     The powder of Iron-Zirconium oxide adsorbent had an amorphous strcture. The pore size distribution, surface area, crushing strength and mechanical strength of granular adsorbent were3.6-218μm,95.5m2·g-1,22.1±2.0N,9.1%±1.7%, respectively.
     The results of arsenic removal with Iron-Zirconium oxide adsorbent revealed that:the adsorption process was well fitted by pseudo-second-order kinetic model and was controlled by intrapartical diffusion; arsenic removal would not be effected by pH at a broad range (from3.0-9.0); the adsorption isotherms were well described by Langmuir isotherm equation; considering the normal concentration of co-existing anions and HA in natural groundwater, HCO3-and HA would take into account; the best desorption concentration of NaOH for granular adsorbent was3%; with an influent concentration of500μg·L-1and SV2h-1,2433bed volumes of water was obtained before effluent water of arsenic reaching10μg·L-1; the used granular adsorbent was inert and could be safely land filled:the adsorption sites on adsorbent for arsenic occurred at the particle surface; the mechnism of arsenic(V) removal was surface hydroxyl replacement during the adsorprion process and Fe-OH sites played key roles in arsenic removal.
     The results of fluoride removal with Iron-Zirconium oxide adsorbent revealed that:the adsorption process was well described by pseudo-second-order kinetic model; the adsorption process was mainly controlled by film diffusion in0.56h and then controlled by intrapatical diffusion; The adsorbent performed well over a wide pH range of3.5-9.0; the adsorption isotherms were fitted by Freundlich isotherm equation; considering the normal concentration of co-existing anions and HA in groundwater, HA and HCO3-would take into account; the best desorption concentration of NaOH for granular adsorbent was0.01mol·L-1; using actual groundwater as influent, about370,239and128BV of groundwater were treated before1.0mg·L-1was reached under SV of0.5,1and3h-1, respectively; the spent granular was inert and could be safely disposed of in landfill; fluoride could get into the whole granular adsorbent; the mechanism of fluoride removal was hydroxyl replacement and Zr-OH sites played key roles in F-adsorption.
引文
[1]白艳,王志,樊智锋,等.壳聚糖絮凝-超滤法去除水中微量砷[J].膜科学与技术,2008,28(3):87-94.
    [2]查春花,张胜林,夏明芳,等.饮用水除氟方法及其机理[J].净水技术,2005,24(6):46-48.
    [3]常方方,曲久辉,刘锐平铁锰复合氧化物的制备及其吸附除砷性能[J].环境科学学报,2006,26(11):1769-1774.
    [4]常铁军,刘喜军.材料近代分析测试方法[M].哈尔滨工业大学出版社,2010,哈尔滨.
    [5]仇振琢.水氟去除技术的进展[J].化上冶金,1992,13(3):272-277.
    [6]崔亚凡.反渗透技术在高氟苦咸水处理中的应用[J].铁道标准设计,2002,10):39-41.
    [7]邓书平.改性粉煤灰吸附处理含砷废水研究[J].矿冶,2008,17(3):107-109.
    [8]董庆杰,宋宽秀.锆水合氧化物除氟剂制备的研究[J].天津理工学院学报,1998,14:35-36.
    [9]董岁明,李梦耀,董延芳.D001改性树脂脱氟剂的制备及脱氟研究[J].地球科学与环境学报,2004,26(3):88-91.
    [10]董岁明,闫英桃,董延芳.载铁改性沸石吸附剂去除含氟水中氟离子的研究[J].汉中师范学院学报(自然科学),2004,22(1):57-60.
    [11]董准勤.含砷酸性废水的处理[J].环境保护,2006,5:49-50.
    [12]豆小敏.铁铈复合氧化物材料除砷机理及应用研究[D].中国科学院生态环境研究中心.2006.
    [13]豆小敏,于新,赵蓓,等.5种铁氧化物去除As(V)性能的比较研究[J].环境工程学报,2010,4(9):1989-1994.
    [14]杜薇,陈彤,谭云怀.绿豆对砷的吸附模型研究[J].中南药学,2007,5(2):129-131.
    [15]杜宇欣,王玉海,李玉玲,等.农村饮水降氟设备运行效果研究[J].环境与健康杂志,2006,23(004):316-318.
    [16]法特金Zeta电位测定在天然资源利用领域中的应用[J].国外金属矿选矿,1999,11(1):8-10.
    [17]范丽珍,廖立兵,栾兆坤.改性蒙脱石吸附水中氟离子的实验研究[J].矿区学报,2001,21(1):34-38.
    [18]冯丙义.地下水除砷技术的研究[J].城市公用事业,2010,1(1):21-23.
    [19]盖国胜.微纳米颗粒复合与功能化设计[M].清华大学出版社,2008,北京.
    [20]顾兴平,顾永柞.环境砷污染与健康[J].四川环境,1999,18(3):11-16.
    [71]关旭.除氟剂性能的比较研究[J].市政技术,2006,24(4):228-230.
    [22]郭沁林.X射线光电子能谱[J].物理,2007,36(5):405-410.
    [23]郭维华,费忠民.水中砷混凝去除机理的研究[J].苏州城建环保学院学报,1995,8(1):70-77.
    [24]国务院办公厅.《全国地方病防治“十二五”规划》,国办发,2012,3号.
    [25]郭学军,陈甫华.载铁(β-FeOOH)球形棉纤维素吸附剂去除地下水砷(Ⅲ)的研究[J].高等学校化学学报,2005,26(7):1258-1263.
    [26]郭永才,田进军.饮用水中砷的去除技术及其风险控制[J].周口师范学院学报,2010,27(5):72-75.
    [27]胡天觉,曾光明.选择性高分子离子交换树脂处理含砷废水[J].湖南大学学报:自然科学版,1998,25(006):75-80.
    [28]蒋伟琴.饮用水除砷技术研究进展[J].科技资讯,2010,11(1):8-10.
    [29]焦中志,陈忠林,杨敏,等.无机铈基吸附剂的合成及对氟的吸附研究[J].南京理工大学学报,2004,28(5):543-547.
    [30]金银龙,梁超轲,何公理,等.中国地方性砷中毒分布调查(总报告)[J].卫生研究,2003,32(6):519-540.
    [31]孔令冬,何积秀,王爱英,等.含氟水治理研究进展[J].科技情报开发与经济,2006,16(8):142-145.
    [32]李福勤,裴成锁.微型电渗析脱盐除氟净水器的研制[J].河北建筑科技学院学报,1999,16(003):5-8.
    [33]李曼尼,杨睿媛,吴瑞凤,等.微波法磷改性斜发沸石的结构及水中除砷的研究[J].环境化学,2004,22(6):591-595.
    [34]李蕊.零价铁-炭电偶腐蚀体系去除水中As(V)的研究[D].2010,北京林业大学.
    [35]李世昌.扫描电子显微镜原理及其在材料分析应用浅析[J].2003.
    [36]李卫芬,余东游.动物氟中毒机理研究[J].饲料研究,1998,11(1):19-23.
    [37]李向东,冯启言,赵璇,等.电絮凝法去除饮用水中氟的研究[J].安全与环境学报,2006,6(002):33-35.
    [38]李晓波,吴水波,顾平.铁盐和铝盐混凝微滤工艺除As(V)的比较研究[J].环境科学,2007,28(10):2198-2202.
    [39]李晓波.饮用水除砷技术研究进展[J].环境工程学报,2009,3(5):777-781.
    [40]李艳红,郑重,于广军.几种除砷剂除砷效果比较[J].内蒙古地方病防治研究所,1994,19(1):72-72.
    [41]李永华,王五一,侯少范.我国地方性氟中毒病区环境氟的安全阈值[J].环境科学,2001,23(4):118-122.
    [42]李媛.天然菱铁矿与人造菱铁矿除砷性能研究[D].中国地质大学(北京),2010.
    [43]梁美娜,刘海玲,牛义年,等.复合铁铝氢氧化物的制备及其对水中砷(V)的去除[J].环境科学学报,2006,26(3):438-446.
    [44]廖敏,王锐.菌藻共生体去除废水中砷初探[J].环境污染与防治,1997,19(2):11-12.
    [45]刘仁杰,谭万春.饮用水除氟的试验研究[J].技术交流,2004,8:23-27.
    [46]刘瑞霞,王亚雄.新型离子交换纤维去除水中砷酸根离子的研究[J].环境科学,2002,23(5):88-91.
    [47]刘振中,邓慧萍,韩瑛,等.离子交换纤维除As(V)性能研究[J].工业水处理,2009,(8):62-66.
    [48]卢宁,高乃云,徐斌.饮用水除氟技术研究的新进展[J].四川环境,2007,26(4):119-126.
    [49]栾兆刊,彭先佳,贾智萍.锆改性蒙脱石作为除砷吸附剂的应用方法[J].工业水处理,2007,27(6):86-86.
    [50]孟紫强,耿红,刘海龙.6种吸附材料饮水除氟效果的比较研究[J].中国地方病学杂志,2002,21(5):373-376.
    [51]穆庆斌,聂挺.使用活性氧化铝和离子交换法去除饮用水中的砷[J].建筑与预算,2007,1(2):85-86.
    [52]饶品华,张文启,李永峰,等.氧化铝对水体中重金属离子吸附去除研究[J].水处理技术,2009,35(12):71-74.
    [53]沈雁峰,孙殿军,赵新华,等.中国饮水型地方性砷中毒病区和高砷区水砷筛查报告[J].中国地方病学,2005,24(2):172-175.
    [54]苏庆珍,王丽萍.饮用水除氟技术及其机理[J].电力环境保护,2008,24(3):39-41.
    [55]孙立成.电凝聚法饮用水除氟的研究[J].水处理技术,1984,10(2):13-16.
    [56]孙笑非,胡春.Zr-Fe双组分复合除砷吸附剂的优化制备及性能评价[J].环境工程学报,2010,4(4):843-846.
    [57]田文,王希斌,郝静.饮用水除氟除砷的方法简介[J].内蒙古科技与经济,2004,141-143.
    [58]王桂燕,张昱,杨敏,等.氧化锆负载树脂处理含氟废水的研究[J].环境科学学报,2001,21(0S1):88-92.
    [59]上曙光,李延辉,赵丹,等.碳纳米管负载氧化铝材料的制备及其吸附水中氟离子的研究[J].高等学校化学学报,2003,24(1):95-99.
    [60]邬晓梅,杨敏.新型Fe-Al-Ce复合氧化物吸附剂应用于山阴高氟地下水的除氟研究[J].中国农村水利水电,2011,1(3):160-163.
    [61]许晓路,申秀英.半连续活性污泥法对污水中五价砷的去除[J].环境科学与技术,1995,1(3):31-34.
    [62]阎秀芝,王淑芬CaCl2+磷酸盐法处理含氟废水的探讨[J].环境保护科学,1998,24(2):12-14.
    [63]杨硕.基于羟基氧化锆的电促吸附除氟复合电极的研究[D].北京林业大学.2010.
    [64]姚瑞华.基于镧系金属改性壳聚糖的脱氟新技术研究[D].中国海洋大学.2009.
    [65]于桂生.氟离子吸附剂活性氧化锆的除氟研究[J].天津化工,2003,17(004):49-51.
    [66]詹予忠,朱小丽,李玲玲,等.硅胶负载氧化锆的吸附除氟研究[J].郑州大学学报(工学版),2007,28(4).20-23.
    [67]张超杰,周琪.含氟水治理研究进展[J].给水排水,2002,1(12):26-29.
    [68]张萃,李亚峰,田两满.活性炭吸附处理含砷废水的研究[J].工业安全与环保,2009,35(12):6-10.
    [69]张书武,刘昌俊,栾兆坤.铁改性赤泥吸附剂的制备及其除砷性能研究[J].环境科学学报,2007,27(12):1972-1977.
    [70]张小青,徐智,凌晓峰,等.红外光谱技术在医学中的应用[J].光谱学与光谱分析,2010,30(1):30-34.
    [71]张艳素,豆小敏,于新,等.铁锆复合氧化物颗粒对As(V)的去除研究[J].环境化学2011,30(8):1396-1404.
    [72]张艳素,豆小敏,赵蓓,等.As(V)在锆铁复合氧化物颗粒上的吸附动力学研究[J].化工进展,2011,30:874-877.
    [73]赵金辉,姬亚东.D401蟹合树脂除氟方法及工艺研究[J].科技情报开发与经济,2002,12(6):141-143.
    [74]赵雅萍,王军峰,陈甫华.载Fe(Ⅲ)配位体交换棉纤维吸附剂在去除饮用水中氟离子的应用[J].环境化学,2003,22(1):64-68.
    [75]郑宝山.地方性氟中毒及上业氟污染研究[M].中国环境科学出版社,1992.
    [76]郑凤英,李顺兴,韩爱琴,等.超富集植物蜈蚣草对水中As(Ⅲ)吸附行为的研究[J].分析科学学报,2006,22(4):401-405.
    [77]中华人民共和国地方病与环境图集编纂委员会.中华人民共和国地方病与环境图集[M].科学出版社,1989,北京.
    [78]周元俊,谢自力,张荣,等.薄膜材料研究中的XRD技术[J].微纳电子技术,2009,46(2):108-114.
    [79]朱参胜,梁晓聪.砷的毒理及其对人体健康的影响[J].环境与健康杂志,2009,26(6):561-563.
    [80]朱慧杰,贾永峰,姚淑华,等.负载型纳米铁吸附剂去除饮用水中As(V)的研究[J].环境科学,2009,30(12):3562-3567.
    [81]朱蕾,苏艳.傅里叶红外光谱分析在环境试验中的应用[J].环境技术,2002,20(3):5-9.
    [82]庄明龙,柴立元,闵小波,等.含砷废水处理研究进展[J].工业水处理,2004,24(7):13-17.
    [83]Adhikary S K, Tipnis U K, Harkare W P, et al. Defluoridation during desalination of brackish water by electrodialysis[J]. Desalination,1989,71(3):301-312.
    [84]Aiuppa A, D'Alessandro W, Federico C, et al. The aquatic geochemistry of arsenic in volcanic groundwaters from southern Italy[J]. Appl. Geochem.,2003,18(9):1283-1296.
    [85]Alagumuthu G, Rajan M. Equilibrium and kinetics of adsorption of fluoride onto zirconium impregnated cashew nut shell carbon[J]. Chem. Eng. J.,2010,158(3):451-457.
    [86]Ali I, Khan T A, Asim M. Removal of arsenic from water by electrocoagulation and electrodialysis techniques[J]. Sep. Purif. Rev.,2011,40(1):25-42.
    [87]Amor Z, Bariou B, Mameri N, et al. Fluoride removal from brackish water by electrodialysis[J]. Desalination,2001,133(3):215-223.
    [88]Anders W M, Bull R J, Cantor K P, et al. Some drinking-water Disinfectants and Contaminants, including Arsenic[M].WHO,2004, Geneva,Switzerland.
    [89]Appelo T. Arsenic in Groundwater-A World Problem[M]. Netherlands National Committee of the IAH,2006.
    [90]Wang X C, Kawahara K, Guo X J. Fluoride contamination of groundwater and its impacts on human health in Inner Mongolia area[J].J. Water SRT-Aqua,1999,48(4):146-153.
    [91]Arienzo M, Adamo P, Chiarenzelli J, et al. Retention of arsenic on hydrous ferric oxides generated by electrochemical peroxidation[J]. Chemosphere,2002,48(10):1009-1018.
    [92]Armienta M A, Segovia N. Arsenic and fluoride in the groundwater of Mexico[J]. Environ. Geochem. Health.,2008,30(4):345-353.
    [93]Bell M C, Ludwig T G. The supply of fluoride to man:ingestion from water, fluorides and human health, WHO Monograph series 59[J]. WHO., Geneva,1970.
    [94]Biswas K, Bandhoyapadhyay D, Ghosh U C. Adsorption kinetics of fluoride on iron(Ⅲ)-zirconium(Ⅳ) hybrid oxide[J]. Adsorption,2007,13(1):83-94.
    [95]Blackwell J A, Carr P W. Study of the fluoride adsorption characteristics of porous microparticulate zirconium oxide[J]. J. Chromatogr., A,1991,549:43-57.
    [96]Borba R P, Figueiredo B R, Rawlins B, et al. Geochemical distribution of arsenic in waters, sediments and weathered gold mineralized rocks from Iron Quadrangle, Brazil[J]. Environ. Geol., 2003,44(1):39-52.
    [97]Bourke M F, Nguyen H V. Inorganic contaminant removal from water[p]. US Patent App. 20,060/011,550,2005.
    [98]Brunauer S, Emmett P H, Teller E. Adsorption of gases in multimolecular layers[J]. J. Am. Chem. Soc.,1938,60(2):309-319.
    [99]Brunauer S, Deming L S, Deming W E, et al. On a theory of the van der Waals adsorption of gases[J]. J. Am. Chem. Soc.,1940,62(7):1723-1732.
    [100]Brunt R, Vasak L, Griffioen J. Arsenic in groundwater:Probability of occurrence of excessive concentration on global scale[R]. International Groundwater Resources Assessment Centre, sp 2004-1.
    [101]Buschmann J, Berg M, Stengel C, et al. Arsenic and manganese contamination of drinking water resources in Cambodia:coincidence of risk areas with low relief topography[J]. Environ.Sci.Technol.,2007,41(7):2146-2152.
    [102]Buschmann J, Berg M, Stengel C, et al. Contamination of drinking water resources in the Mekong delta floodplains:Arsenic and other trace metals pose serious health risks to population[J]. Enviro. Int.,2008,34(6):756-764.
    [103]Celik I, Gallicchio L, Boyd K, et al. Arsenic in drinking water and lung cancer:a systematic review[J]. Environ. Res.,2008,108(1):48-55.
    [104]Chang F F, Qu J H, Liu H J, et al. Fe-Mn binary oxide incorporated into diatomite as an adsorbent for arsenite removal:Preparation and evaluation[J]. J. Colloid Interface Sci.,2009, 338(2):353-358.
    [105]Chen C J, Chen C W, Wu M M, et al. Cancer potential in liver, lung, bladder and kidney due to ingested inorganic arsenic in drinking water[J]. Br. J. Cancer.,1992,66(5):888-892.
    [106]Chen Y, Ahsan H. Cancer burden from arsenic in drinking water in Bangladesh[J]. Am. J. Public Health,2004,94(5):741-744.
    [107]Clifford D, Sorg T. Removing dissolved inorganic contaminants from water[J]. Environ. Sci. Technol.,1986,20(11):1072-1079.
    [108]Choy K. Film and intraparticle mass transfer during the adsorption of metal ions onto bone char[J]. J. Colloid Interface Sci.,2004,271(2):284-295.
    [109]Dambies. Existing and prospective sorption technologies for the removal of arsenic in water[J]. Sep. Sci. Technol.,2005,39(3):603-627.
    [110]Daus B, Wennrich R, Weiss H. Sorption materials for arsenic removal from water[J]. Water Res., 2004,38(12):2948-2954.
    [111]Deng S, Li Z, Huang J, et al. Preparation,characterization and application of a Ce-Ti oxide adsorbent for enhanced removal of arsenate from water[J]. J. Hazard. Mater.,2010, 179:1014-1021.
    [112]Dieye A, Larchet C, Auclair B, et al. Elimination des fluorures par la dialyse ionique croisee[J]. Eur. Polym. J.,1998,34(1):67-75.
    [113]Dixit S, Hering J G. Comparison of arsenic(V) and arsenic(Ⅲ) sorption onto iron oxide minerals: Implications for arsenic mobility[J]. Environ. Sci. Technol,2003,37(18):4182-4189.
    [114]Dou X M, Zhang Y S, Wang H J, et al. Performance of granular zirconium-iron oxide in the removal of fluoride from drinking water[J]. Water Res.,2011,45(12):3571-3578.
    [115]Dzombak D A, Morel F. Surface complexation modeling:Hydrous ferric oxide[M]. Wiley-Interscience,1990.
    [116]Emett M T, Khoe G H. Photochemical oxidation of arsenic by oxygen and iron in acidic solutions[J]. Wat.Res.,2001,35(3):649-656.
    [117]Fukushi K, Sato T,Yanase N. Solid-solution reactions in As (V) sorption by schwertmannite[J]. Environ.l Sci. Technol.,2003,37(16):3581-3586.
    [118]Ghorai S, Pant K K. Equilibrium, kinetics and breakthrough studies for adsorption of fluoride on activated alumina[J]. Sep. Purif. Technol.,2005,42(3):265-271.
    [119]Goldberg, Johnston. Mechanisms of arsenic adsorption on amorphous oxides evaluated using macroscopic measurements, vibrational spectroscopy, and surface complexation modeling[J].J. Colloid Interface Sci.,2001,234(1):204-216.
    [120]Gomes J A G, Daida P, Kesmez M, et al. Arsenic removal by electrocoagulation using combined Al-Fe electrode system and characterization of products[J]. J. Hazard. Mater.,2007,139(2): 220-231.
    [121]Guo H M, Stuben D, Berner Z. Adsorption of arsenic(Ⅲ) and arsenic(V) from groundwater using natural siderite as the adsorbent[J]. J. Colloid Interface Sci.,2007,315(1):47-53.
    [122]Gupta K, Biswas K, Ghosh U C. Nanostructure Iron(Ⅲ)-Zirconium(IV) Binary Mixed Oxide: Synthesis, Characterization, and Physicochemical Aspects of Arsenic(Ⅲ) Sorption from the aqueous Solution[J]. Ind.Eng.Chem.Res.,2008,47:9903-9912.
    [123]Gupta K, Basu T, Ghosh U C. Sorption Characteristics of Arsenic(V) for Removal from Water 2009,54:2222-2228. [124] Gupta A, Chauhan V S, Sankararamakrishnan N. Preparation and evaluation of iron-chitosan
    composites for removal of As(Ⅲ) and As(Ⅴ) from arsenic contaminated real life groundwater[J]. Water Res.,2009,43(15):3862-3870. [125] Halem D, Bakker S A, Amy G L, et al. Arsenic in drinking water a worldwide water quality
    concern for water supply companies[J]. Drink.Water Eng.Sci.,2009,2(1):29-34. [126] Hering J G, Chen P Y, Wilkie J A. Arsenic removal from drinking water during coagulation[J].
    J.Environ Eng.,1997,123(8):800-807. [127] Hichour M, Persin F, Sandeaux J, et al. Water defluoridation by Donnan dialysis and
    electrodialysis[J]. Rev. Sci. Eau/J. Water Sci.,1999,12(4):671-686. [128] Hristovski K D, Westerhoff P K, Moller T, et al. Effect of synthesis conditions on nano-iron
    (hydr)oxide impregnated granulated activated carbon[J]. Chem. Eng. J.,2009,146(2):237-243. [129] Jacob M. Granulation Equipment, in:Salman A D, Hounslow M J, Seville J P K (Eds.) Handbook
    of Powder Technology, Granulation[M]. Elsevier Science B.V.,2007,11:417-476. [130] Jain C K, Ali l. Arsenic:occurrence, toxicity and speciation techniques[J]. Wat. Res.,2000,34:
    4304-4312. [131] Jeong Y, Fan M, Singh S, et al. Evaluation of iron oxide and aluminum oxide as potential
    arsenic(V) adsorbents[J]. Chem. Eng. Process.,2007,46(10):1030-1039. [132] Jia, Demopoulos. Adsorption of arsenate onto ferrihydrite from aqueous solution:influence of
    media (sulfate vs nitrate), added gypsum, and pH alteration[J]. Environ. Sci. Technol.,2005, 39(24):9523-9527. [133] Jiang, Yang, Zhang, et al. Facile Synthesis and Novel Application of Zirconia Catalyzed and
    Templated by Lysozyme[J]. Ind. Eng. Chem. Res.,2008,47(6):1876-1882. [134] Jing C Y, Meng X G, Liu S Q, et al. Surface complexation of organic arsenic on nanocrystalline
    titanium oxide[J]. J. Colloid Interface Sci.,2005,290(1):14-21. [135] Katsoyiannis I A, Zouboulis A I. Application of biological processes for the removal of arsenic
    from groundwaters[J]. Water Res.,2004,38(1):17-26. [136] Kohn T, Livi K J T, Roberts A L, et al. Longevity of granular iron in groundwater treatment
    processes:Corrosion product development[J]. Environ. Sci. Technol.,2005,39(8):2867-2879. [137] Korngold E. Belayev N, Aronov L. Removal of arsenic from drinking water by anion
    exchangers[J]. Desalination,2001,141(1):81-84. [138] Kumar P R, Chaudhari S, Khilar K. C, et al. Removal of arsenic from water by
    electrocoagulation[J]. Chemosphere.2004,55(9):1245-1252.
    [139]Kumar E, Bhatnagar A, Ji M, et al. Defluoridation from aqueous solutions by granular ferric hydroxide (GFH)[J]. Water Res.,2009,43(2):490-498.
    [140]Ramos R L, Utrilla R J, Castillo N A M, et al. Kinetic modeling of fluoride adsorption from aqueous solution onto bone char[J]. Chem. Eng. J.,2010,158(3):458-467.
    [141]Lin T F, Wu J K. Adsorption of arsenite and arsenate within activated alumina grains:equilibrium and kinetics[J]. Water Res.,2001,35(8):2049-2057.
    [142]Liu Q, Guo H, Shan Y. Adsorption of fluoride on synthetic siderite from aqueous solution[J]. J. Fluorine Chem.,2010,131 (5):635-641.
    [143]Ma Y, Zheng Y M, Chen J P. A zirconium based nanoparticle for significantly enhanced adsorption of arsenate:Synthesis, characterization and performance[J]. J. Colloid Interface Sci., 2011,354(2):785-792.
    [144]Maliyekkal S M, Sharma A K, Philip L. Manganese-oxide-coated alumina:a promising sorbent for defluoridation of water[J]. Water Res.,2006,40(19):3497-3506.
    [145]Mameri N, Yeddou A R, Lounici H, et al. Defluoridation of septentrional Sahara water of North Africa by electrocoagulation process using bipolar aluminium electrodes[J]. Water Res.,1998, 32(5):1604-1612.
    [146]Mameri N, Lounici H, Belhocine D, et al. Defluoridation of Sahara water by small plant electrocoagulation using bipolar aluminium electrodes[J]. Sep. Purif. Technol.,2001,24(1-2): 113-119.
    [147]Mandal S, Mayadevi S,Cellulose supported layered double hydroxides for the adsorption of fluoride from aqueous solution[J]. Chemosphere,2008,72(6):995-998.
    [148]Marszalek H, Wasik M. Influence of arsenic-bearing gold deposits on water quality in Zloty Stok mining area (SW Poland)[J]. Environ. Geol.,2000,39(8):888-892.
    [149]Matis K A, Zouboulis A I, Malamas F B, et al. Floation removal of As(Ⅴ) onto goethite[J]. Environ Pollut.,1997,97(3):239-245.
    [150]Meenakshi, Maheshwari R C. Fluoride in drinking water and its removal[J]. J. Hazard. Mater., 2006,137(1):456-463.
    [151]Mohan D, Pittman C U. Arsenic removal from water/wastewater using adsorbents--A critical review[J]. J.Hazard.Mater.,2007,142(1-2):1-53.
    [152]Mohapatra M, Anand S, Mishra B K, et al. Review of fluoride removal from drinking water[J]. J. Environ. Manage.,2009,91(1):67-77.
    [153]Mostafa M G, Chen Y H, Jean J S, et al. Kinetics and mechanism of arsenate removal by nanosized iron oxide-coated perlite[J]. J. Hazard. Mater.,2011,187(1-3):89-95.
    [154]Mushak P, McKinzie M, Olson E, et al. Arsenic and old laws:a scientific and public health analysis of arsenic occurrence in drinking water, its health effects, and EPA's outdated arsenic tap water standard[R]. Natural resources defense council, New York,2000.
    [155]Nakatnoto. Infrared and Raman Spectra of Inorganic and Coordination Compounds[M]. John Wiley & Sons, Inc.,2009, New York.
    [156]Nawlakhe W G Kulkarni D N, Pathak B N, et al. Defluoridation of water with alum[J]. Indian J. Environmental Health,1974,16(1).
    [157]Nesbitt H W, Canning G W, Bancroft G M. XPS study of reductive dissolution of 7A-bimessite by H3AsO3, with constraints on reaction mechanism[J]. Geochim. Cosmochim. Acta,1998,62(12): 2097-2110.
    [158]Onyango M S, Kojima Y. Aoyi O, et al. Adsorption equilibrium modeling and solution chemistry dependence of fluoride removal from water by trivalent-cation-exchanged zeolite F-9[J]. J. Colloid Interface Sci.,2004,279(2):341-350.
    [159]Ouvrard, Donato, Simonnot, et al. Natural manganese oxide:Combined analytical approach for solid characterization and arsenic retention[J]. Geochim. Cosmochim. Acta,2005,69(11): 2715-2724.
    [160]Parga J R, Cocke D L, Valenzuela J L, et al. Arsenic removal via electrocoagulation from heavy metal contaminated groundwater in La Comarca Lagunera Mexico[J]. J. Hazard. Mater.,2005, 124(1):247-254.
    [161]Raichur A M, Jyoti B M. Adsorption of fluoride onto mixed rare earth oxides[J]. Sep. Purif. Technol.,2001,24(1-2):121-127.
    [162]Raichur A M, Panvekar V. Removal of As(V) by adsorption onto mixed rare earth oxides[J]. Sep. Sci. Technol.,2002,37(5):1095-1108.
    [163]Reardon E J, Wang Y. A limestone reactor for fluoride removal from wastewaters[J]. Environ. Sci. Technol.,2000,34(15):3247-3253.
    [164]Regenspurg S. Characterisation of schwertmannite-geochemical interaction with arsenate and chromate and significance in sediments of lignite opencast lakes[D]. Universitatsbibliothek,2002.
    [165]Ren Z M, Zhang G S, Chen J P. Adsorptive removal of arsenic from water by an iron-zirconium binary oxide adsorbent[J]. J. Colloid Interface Sci.,2011,358(1):230-237.
    [166]Saha S. Treatment of aqueous effluent for fluoride removal[J]. Water Res.,1993,27(8): 1347-1350.
    [167]Sarkar D, Mohapatra D, Ray S, et al. Synthesis and characterization of sol-gel derived ZrO2 doped Al2O3 nanopowder[J]. Ceram. Int.,2007,33(7):12751282.
    [168]Sato Y, Kang M, Kamei T, et al. Performance of nanofiltration for arsenic removal[J]. Water Res., 2002,36(13):3371-3377.
    [169]Schmidt G T, Vlasova N, Zuzaan D, et al. Adsorption mechanism of arsenate by zirconyl-functionalized activated carbon[J]. J. Colloid Interface Sci.,2008,317(1):228-234.
    [170]Schneiter R W, Middlebrooks E J. Arsenic and fluoride removal from groundwater by reverse osmosis[J]. Environ. Int.,1983,9(4):289-291.
    [171]Seko N, Basuki F, Tamada M, et al. Rapid removal of arsenic (V) by zirconium (IV) loaded phosphoric chelate adsorbent synthesized by radiation induced graft polymerization[J]. Reac. Funct. Polym.,2004,59(3):235-241.
    [172]Shih M C. An overview of arsenic removal by pressure-drivenmembrane processes[J]. Desalination,2005,17:85-97.
    [173]Singh G, Kumar B, Sen P K, et al. Removal of fluoride from spent pot liner leachate using ion exchange[J]. Water Environ. Res.,1999,71(1):36-42.
    [174]Singh R, Maheshwari R C. Defluoridation of drinking water-A review[J]. Indian J. Environ. Prot., 2001,21(11):983-991.
    [175]Smedley P L, Kinniburgh D G. A review of the source, behaviour and distribution of arsenic in natural waters[J]. Appl. Geochem.,2002,17(5):517-568.
    [176]Smedley P L, Zhang M. Zhang G,et al. Mobilisation of arsenic and other trace elements in fluviolacustrine aquifers of the Huhhot Basin, Inner Mongolia[J]. Appl. Geochem.,2003,18(9): 1453-1477.
    [177]Smet J, Frencken J E. Fluoride in drinking water. In:Frencken JE(ed) Endemic fluorosis in developing counteies. Report of a symposium held in Delft, Netherlands, April 27th 199O[C]. Leiden:TNO Institute for Preventive Health Care,1992,10-19.
    [178]Smith A H, Claudia H R, Bates M N, et al. Cancer risks from arsenic in drinking water[J]. Environ. Hralth Persp.,1992,97(1):259-267.
    [179]Smith A H, Lopipero P A, Bates M N, et al. Arsenic epidemiology and drinking water standards[J]. Seience,2002,296(5576):2145-2146.
    [180]Simdaram C S, Viswanathan N, Meenakshi S. Fluoride sorption by nano-hydroxyapatite/chitin composite[J]. J. Hazard. Mater.,2009,172(1):147-151.
    [181]Suzuki T M, Bomani J O, Matsunaga H, et al. Preparation of porous resin loaded with crystalline hydrous zirconium oxide and its application to the removal of arsenic[J]. React. Funct. Polym., 2000,43(1-2):165-172.
    [182]Systems K M. Reverse osmosis membranes remove arsenic and salt from water supplies[J]. Membr.Tech.,2001,140(1):10-11.
    [183]Tang Y, Guan X, Wang J, et al. Fluoride adsorption onto granular ferric hydroxide:Effects of ionic strength, pH, surface loading, and major co-existing anions[J]. J. Hazard. Mater.,2009, 171(1-3):774-779.
    [184]Thirunavukkarasu O S, Viraraghavan T, Subramanian K S. Arsenic removal from drinking water using granular ferric hydroxide[J]. Water SA,2003,29(2):161-170.
    [185]Thirunavukkarasu O S, Viraraghavan T,Subramanian K S. Arsenic removal from drinking water using iron oxide-coated sand[J]. Water, Air, Soil Poll.,2003,142(1):95-111.
    [186]Thirunavukkarasu O S, Viraraghavan T, Subramanian K S, et al. Arsenic removal in drinking water—impacts and novel removal technologies[J]. Energy Sources,2005,27(1-2):209-219.
    [187]Tokunaga S, Haron M J, Wasay S A, et al. Removal of fluoride ions from aqueous solutions by multivalent metal compounds[J]. International journal of Envir.,1995,48(1):17-28.
    [188]Tokunaga S, Wasay S A, Park. S W Removal of arsenic(V)ion from aqueous solutions by lanthanum compounds[J]. Water Sci. Technol.,1997,35(7):71-78. [189]Tseng W P, Chu H M, How S W, et al. Prevalence of skin cancer in an endemic area of chronic arsenicism in Taiwan[J]. J. natl. Cancer Inst.,1968,40(3):453.
    [190]Turner B D, Binning P, Stipp S L S. Fluoride Removal by Calcite:Evidence for Fluorite Precipitation and Surface Adsorption[J]. Environ.Sci.Technol.,2005,39(24):9561-9568.
    [191]US.EPA.Intergrated risk information system, arsenic, inorganic[S].1998
    [192]US.EPA. Toxicity Characteristics Leaching Procedure[S].1999.
    [193]US.EPA. Implementation Guidance for the Arsenic Rule[S]. Recycled Paper,2006.
    [194]Vickerman J C, Gilmore L S. Surface Analysis:The Principal Techniques-2nd[M]. John Wiley and Sons Ltd,2009.
    [195]Viswanathan N, Meenakshi S. Synthesis of Zr(IV) entrapped chitosan polymeric matrix for elective fluoride sorption[J]. Colloids Surf., B,2009,72(1):88-93.
    [196]Viswanathan N, Meenakshi S. Development of chitosan supported zirconium (IV) tungstophosphate composite for fluoride removal[J]. J. Hazard. Mater.,2010,176(1-3):459-465.
    [197]Wang L, Turson H, Ding W. Arsenic Captured from Drinking Water with Fe-Zr Adsorbents[C]. IEEE.,2008,2:3463-3465.
    [198]Wang S G, Ma Y, Shi Y J, et al. Defluoridation performance and mechanism of nano-scale aluminum oxide hydroxide in aqueous solution[J]. J. Chem. Technol. Biotechnol.,2009,84(7): 1043-1050.
    [199]Weber W G, Morris J C. Kinetics of adsorption on carbon from solution[J]. J. Sanit. Eng. Div. Am. Soc. Civ. Eng,1963,89(17):31-60.
    [200]Wei Y T, Zheng Y M, Chen J P. Enhanced adsorption of arsenate onto a natural polymer-based sorbent by surface atom transfer radical polymerization[J]. J. Colloid Interface Sci.,2011,356(1): 234-239.
    [201]WHO. Guidelines for Drinking-Water Quality Volume 3[S]. World Health Organization,1985.
    [202]WHO. Guidelines for drinking-water quality[S]. World Health Organization,2006.
    [203]WHO. Drinking Water Guidelines and Standards[S]. World Health Organization,2006.
    [204]Wickramasinghe S R, Han B, Zimbron J, et al. Arsenic removal by coagulation and filtration: comparison of groundwaters from the United States and Bangladesh[J]. Desalination,2004,169(3): 231-244.
    [205]Woo N C, Choi M J. Arsenic and metal contamination of water resources from mining wastes in Korea[J]. Environ. Geol.,2001,40(3):305-311.
    [206]Wu X, Zhang Y, Dou X M, et al. Fluoride removal performance of a novel Fe-Al-Ce trimetal oxide adsorbent[J]. Chemosphere,2007,69(11):1758-1764.
    [207]Younger P L. Groundwater in the Environment:an introduction[M]. Wiley-Blackwell,2007.
    [208]Yuchi A, Matsuo K. Adsorption of anions to zirconium(Ⅳ) and titanium(IV) chemically immobilized on gel-phase[J]. J. Chromatogr., A,2005,1082(2):208-213.
    [209]Zhang Y, Yang M, Huang X. Arsenic(V) removal with a Ce(Ⅳ)-doped iron oxide adsorbent[J]. Chemosphere,2003,51(9):945-952.
    [210]Zhang Y, Yang M, Dou X M, et al. Arsenate Adsorption on an Fe-Ce Bimetal Oxide Adsorbent: Role of Surface Properties[J]. Environ.Sci.Technol.,2005,39:7246-7253.
    [211]Zhang G S, Qu J H, Liu H J, et al. Preparation and evaluation of a novel Fe-Mn binary oxide adsorbent for effective arsenite removal[J]. Water Res.,2007,41 (9):1921-1928.
    [212]Zhang G S, Liu H J, Liu R P, et al. Adsorption behavior and mechanism of arsenate at Fe-Mn binary oxide/water interface[J]. J. Hazard. Mater.,2009,168(2-3):820-825.
    [213]Zhang Y, Dou X M, Zhao B, et al. Removal of arsenic by a granular Fe-Ce oxide adsorbent:Fabrication conditions and performance[J]. Chem. Eng. J.,2010,162(1):164-170.
    [214]Zhang Y, Dou X M, Yang M, et al. Removal of arsenate from water by using an Fe-Ce oxide adsorbent:Effects of coexistent fluoride and phosphate[J]. J. Hazard. Mater.,2010,179(1-3): 208-214.
    [215]Zhao H, Moore R C. Zirconium-modified materials for selective adsorption and removal of aqueous arsenic[P]. US Patent App.10/269,596,2004
    [216]Zheng Y M, Lim S F, Chen J P. Preparation and characterization of zirconium-based magnetic sorbent for arsenate removal[J]. J.Colloid Interface Sci.,2009,338(1):22-29.
    [217]Zhu M Q, Paul K W, Kubicki J D, et al. Quantum Chemical Study of Arsenic (Ⅲ,Ⅴ) Adsorption on Mn-Oxides:Implications for Arsenic(Ⅲ) Oxidation[J]. Environ. Sci. Technol.,2009,43(17): 6655-6661.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700