用户名: 密码: 验证码:
镁渣、赤泥陶瓷滤球资源化利用去除废水中As试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我围社会经济迅速发展,原来并不被人们所关注的砷污染已日益严重。由于砷化物具有较大毒性且在工农业生产中广泛应用,砷对环境污染特别是对水质污染等问题,引起全世界环境学科工作者普遍关注。因此,寻找一种除砷彻底,操作简单,成本低廉的水质除砷方法。对含砷废水处理和饮水净化有着现实意义。
     本文利用镁渣与赤泥制备的新型陶瓷滤球作为吸附材料,分别为镁渣陶瓷滤球(MPB)与赤泥基生态陶瓷滤球(RPB),将其资源化利用,并且将TiO2负载在陶瓷滤球上进行改性,分别为负载TiO2镁渣陶瓷滤球与负载TiO2赤泥基生态陶瓷镁渣滤球,进行了其对水质中砷的去除规律与机理的研究。通过本课题研究得到以下结论。
     (1)本试验研究了MPB-Ti对As(V)离子的去除规律,研究表明,对于浓度为2mg/L的溶液,其最佳吸附条件为:溶液pH=2,吸附时间240min,滤球投加量20g/L,其砷的去除率可达95.96%。经L9(34)正交试验近一步分析,得到去除As(V)的最佳工艺条件为温度、时间、投加量、pH分别为323K、6h、6g、2时,MPB-Ti对As(V)离子的吸附效果可达99%以上。
     (2)MPB-Ti对As(V)的吸附动力学符合拟二级吸附动力学模型,且在不同浓度与不同温度的影响下,分别求出了其吸附速率常数,及吸附达到吸附平衡一半的时间,吸附活化能为10.517kJ/mol;研究了MPB-Ti对赴(V)吸附的热力学,研究发现MPB-Ti吸附As(V)可用Freundlich方程较好描述,求出其吸附熵(?)S=16.48J/(k-mol)。吸附焓(?)H=36.609kJ-mol。吸附自由能么G均小于零,说明吸附是个自发过程。
     (3)比较研究四种吸附材料在pH3-11范围内吸附As(Ⅲ)的规律,发现MPB-Ti吸附效果明显优于其他吸附材料;研究表明,MPB-Ti吸附As(Ⅲ)在中性与弱碱性条件下达到最佳。
     (4)经L16(45)正交试验分析,材料的种类对去除As (Ⅲ)影响最为显著。以MPB-Ti为最佳。当a取0.1时,吸附材料F=2.838>F0.1(3,15)=2.49,吸附材料差异显著此时表现显著。L9(34)正交试验表明MPB-Ti吸附去除As(Ⅲ)最佳条件为:温度、时间、投加量、pH分别为313K、3h、4g、8时,MPB-Ti对As(Ⅲ)离子的吸附效果可达85%以上;
     (5)在pH=2,投加量为4g,吸附时间为4h的条件下研究了MPB-Ti光催化氧化吸附同步去除As(Ⅲ),吸附去除率可提升11%。
With the rapid development of the social economy and technology,the pollution ofarsenic unknown in the past is increasingly serious in the water source.Recently, because the arsenic compounds are lethal toxicants and widely—used in the agriculture and industry,environmental scientists around the world have paidattention to the problems brought out by arsenic compounds that contaminates theenvironment, especially in the water sources. Therefore, it makes importantse. nse to develop a thorough, simple and economical method to remove the arsenicfrom the wastewater or drinking water source at present.
     The article uses ceramic filter material made of magnesium slag and red mud as adsorption, which is magnesium slag ceramic filter (MPB) and red mud and ecological ceramic filter (RPB)that can be put into reuse and recycle. Its utilization of TiO2 load in the ceramic filter on the ball is modified, which is magnesium slag ball loaded TiO2 and red mud and ecological ceramic magnesium slag ball loaded TiO2. And the passage also includes the research and mechanism of the removal of Arsenic. Through the research of the topic, we reach these conclusions.
     (1) the experiment research on the regulation of MPB-Ti's removal of As(V), and research shows that the best absorptive condition of concentration of 2mg/L is pH=2,240min time, filter ball dosing quantity 20g/L. The arsenic removal can reach 95.96%. Through orthogonal test L9 (34), we find the optimum technological conditions to remove As(V) is temperature for 323K, time for 6h, dosing quantity for 6g and pH for 2. And the effect of MPB-Ti's ions adsorption of As(V) is above 99%.
     (2) MPB-Ti's adsorption kinetics for As(V) fit with secondary adsorption dynamics model. And in different concentrations and under the influence of different temperature, we reach its adsorption and absorption rate constant, the half time of adsorption equilibrium adsorption, and activation energy for 10.517 kJ/mol. The research on thermodynamics of MPB-Ti's adsorption for As(V), and find that it's easy to describe MPB-Ti's adsorption for As(V) by Freundlich equation. We reach its adsorption entropy (?)S=16.48J/(k-mol) and adsorption enthalpy (?)H=36.609kJ·mol.(?)G is less than zero which illustrates absorption is a spontaneous process.
     (3) Comparative study on the regulation of MPB-Ti's adsorption for As(Ⅲ) of four adsorption materials ranging from pH=3 to pH=11 shows that the adsorption ability of MPB-Ti is superior to other adsorption materials. Research shows that MPB-Ti's adsorption for As(Ⅲ) reaches its peak in neutral and weakly alkaline conditions.
     (4)Through L16 (45) orthogonal experiment, we find that it influence most by the types of adsorption through the removal of As(Ⅲ).And the MPB-Ti's function is the best. When alpha take 0.1 and adsorption materials F=2.838> F0.1(3,15)=2.49 by adsorption materials, it shows significant difference at performance among the adsorption materials. L9 (34) orthogonal experiment shows that the best condition of MPB-Ti's adsorption for As(Ⅲ) is temperature, time, dosing quantity, pH for 313K, 3h,4g,8. The effect of MPB-Ti's adsorption for As(Ⅲ) can reach above 85%.
     (5) We do research on photo catalytic oxidation synchronic adsorption When pH=2, dosing quantity is 4g, adsorption time is 4h and find that the removal rate can add to 11%.
引文
[1]联合国环境规划署,国际劳工组织.世界卫生组织合编,Yaopeipei(姚佩佩),Niushengtian(牛胜田)译,砷的环境卫生标准。北京:人民卫生出版社,1985,5.
    [2]Jeffer Al, Robe rt FSM, Christopher TD. Environmental toxicants. Priority Health Conditions,1993,77.
    [3]生活饮用水卫生标准(中华人民共和国国家标准:UCD613,3/GB5749-85,328-334).
    [4]天津市自来水公司科技情报站.科技情报[J],1996(3).
    [5]POntiUS FW. A Current lood at the federal drinking water regulations. J. Am Water Works Assoc,1992,84:36.
    [6]赵素莲,王玲芬,梁京辉.饮用水中砷的危害及除砷措施[J].现代预防医学,2002,29(5):651-652.
    [7]易求实,汤发宇.天然饮用水简易高教除砷方法研究[J].培训与研究—湖北教育学院学报,2002,19(2):41-45.
    [8]曹勇,蒲朝文,封雷等.三峡地区地方性环境砷污染现状谪查报告[J].预防医学情报杂志,2002,18(6):537-538.
    [9]冯克亮.水质砷污染及除砷新技术[J].海洋环境科学,1994,13(1),78-81.
    [10]Badal Kumar Mandal, Kazuo T. Suzuki. A rsenic round the world:areview[J], Talanta, 2002,58:201-235.
    [11]牛秋雅.砷污染治理及砷资源回收利用的清洁生产新技术研究:[硕士学位论]长沙:湖南大学环境工程学院,2001.
    [12]袭涛,罗启芳.影响混凝沉淀除砷剂效果的若干因素及其除砷机理探讨[J].卫生研究,2001,30(3):152-154.
    [13]袭茂林译.Bourneix矿山公司从废水(矿山和洗矿厂)中除砷[J].国外金属矿选矿,1994.11:26-30.
    [14]袁涛,曾欣,罗启芳.对混凝沉淀法分散式饮水除砷的研究[J].卫生研究,1999,28(6):331-333.
    [15]潭莉.硫酸生产废水中除砷方法的探讨[J].贵州化工,2000,25(3),18-20.
    [16]刘剑彤,肖帮定,陈珠进等.曝气、混凝一体法去除碱性废水中砷的研究[J].中国环境科学,1997,17(2):184-187.
    [17]傅贤书.含砷废水的硫化铁处理[J].环境化学,1988,7(1):50-54.
    [18]马伟,萧锦,郭丽燕.磁场效应在水处理中的作用与研究[J].工业水处理,1997,17(6):2-3.
    [19]陈维平.牛秋雅,王炎等.铟生产过程中的除砷技术研究[J].湖南人学学报(自然科学版),2001,28(5):96-99.
    [20]E. Kerngold, N. Belayer, L. A runov, Removal of arsenic from drinking water byanion eXChangers, De salination,141(2001):81-84.
    [21]付庆芜,秦毅红.无机离子交换剂除砷的研究[J].矿冶工程,1995.15(2):41-44.
    [22]李曼尼,杨睿媛,吴瑞风等.微波法磷改性斜发沸的结构及水中除砷的研究[J].环境化学,2003,22(6):591-594.
    [23]郝存江,赵犬培,本冠南.云南沱茶自混合水溶液中吸附除砷(Ⅲ)的特性研究[J].离子交换与吸附,1998,14(5):434-439.
    [24]Robc rt Y. Ni ng, ArseniC removat by reverse 0 smo si s, Desalination,143(2002),237-241.
    [25]王丽.钛柱撑蒙脱石(Ti. PLM)吸附饲料砷的研究[D].浙江:浙江大学,2006.
    [26]牛凤奇,纪锐琳,朱义年,刘辉利.地下水砷污染的研究进展[J].广西轻工业,资源与环境,2007,(4):85-87.
    [27]赵素莲,王玲芬,梁京辉.饮用水中砷的危害及除砷措施[J].现代预防医学,2002,(29):651--652.
    [28]Jeffer A L, Robert F S, Christopher T D. Environmental toxicants[J]. Priority Health Conditions,1993,77.
    [29]齐藤隆彦,加藤滕,物心名,史一.净水处理技术中逆向连续流动床式过滤法饮水除砷方法咖.公开特许公报(A),1995年.
    [30]Hoemer G. Remove of arsenic expcriellce$of commercial plants[J]. DV GW-Schriflenr, Wasser,1993, (82):189.
    [31]李树猷,何淑敏,郑字.混凝沉淀法饮水除砷研究[J].卫生研究,1989,18(4):17--20.
    [32]梅树珍等.内蒙古右旗木头湖村慢性砷中毒流行病学调查[J].中国地方病学杂志,1996,4:237.
    [33]Tseng W P, Chu H M, et al. Pervalenee of skin cancel"in an endemic area of chronicarsenicism in Taiwan[J]. Natl. Cancer Inst,1968,40:453-463.
    [34]Cebrian ME, Albores A, et al. Chronic arsenic poisoning in the north of Mexico[J]. Hum. Toxicol,1983,2:121-133.
    [35]Kono Y, Fridovich I. Superoxide radicals inhibit catalase[J]. BiO. Chem,1982(257): 5751-5754.
    [36]肖唐付等.砷的水地球化学及其环境效应[J].地质科技情报,2001,20(1):71-76.
    [37]谢立靖,邱丽君,娄涛,荣煜,张志红.硫酸生产废水中砷去除方法的研究[J].化工环保,1998,5(18):285--291.
    [38]王爱平.活性炭对溶液中重金属的吸附研究[D].云南:昆明理工大学,2003.
    [39]Hayes K F, Papelis C, Leckie J O. Modeling ionic strength effects on anion adsorption at hydrous oxide solution interface[J]. Colloid Interface Sci,1988,125:717-726.
    [40]肖亚兵,钱沙华,黄进泉等.纳米二氧化钛对砷(Ⅲ)吸附性能的研究[J].分析科学学报,2003,19(2):172-174.
    [41]Maria E.Pena,George P.Korfiatis,Manish Patel,Lee Lippincott,Xiaoguang Meng. Adsorption ofAs(V)and As(Ⅲ)by nanoerystalline titanium&oxide[J].Water Research,2005(39):2327-2337.
    [42]丁亮,陈焕新.黄承武.美国Albuquerque市的地下水除砷方法介绍[J].地方病通报,2001.16(2):108-110.
    [43]Shevade,Siddhesh.Ford,Robert.Am.ChemSoc[Y].Div.Environ.Chern.(computer opficadisk),2001,4(12):131-134.
    [44]R.K. Paramguru, P.C. Rath and V.N. Misra, Trends in red mud utilization-a review, Min. Process. Extr. Metall. Rev.,2005,26(1):1-29.
    [45]刘瑞霞,王亚雄,汤鸿霄.新型离子交换纤维去除水中砷酸根离子的研究[J].环境科学,2002,23(5):88-91.
    [46]杨慧芬.环境工程材料[M].北京:化学工业出版社,2008:16-20
    [47]Ljubinka VR,Milam MM.Arsenic removal from water by chemisorption filters[J].Environmental pollution,1992,75:279.
    [48]Yah-hua Xu,Tsunenori Nakajima,Aki ra Ohki.Adsorption and removal of Arseni (V)from driaking water by aluminum-loaded Shi rasu—zeolite,JoU rnal ofHazardou S Mate rialS, B92(2002),275-287.
    [49]Yah-hua Xu,Akira Ohki,and Shigeru Maeda.Adsorption of A rseniC(V)by use of aluminium·10aded Shi rasu-Zeolite S,Chemi stry Letters,(1998),1015-1016.
    [50]Sone r Altundogan, Sema AItundogan, et al.A rseniC removal from aqueous solutions by adsorption on red mud, Waste Management,20(2000):761-767.
    [51]Shuzo Tokunaga,Syed A.Wasay and Sang-Won Park.Removal of arsenic(V) ion from aqueous solutions by lanthanum compounds.Wat.Sci.Tech.35(1997),71-78.
    [52]离乃云,徐遣民,范谨初.氧化铁涂层砂变性滤料除砷性能研究[J].上海环境科学,2001,20(9):417-419.
    [53]W. Zhang, et al. A rsenic removal from contaminated water by natural iron ores,MineralS Engineering,17(2004),517-524.
    [54]ChakraVarty S.et al, Removal of arsenic from groundwater using low stferruginous manganese ore,Water Research,36(2002).625-632.
    [55]邓春玲.稀土吸附剂除磷研究:[硕士学位论文].昆明:昆明理工大学环境科学与环境工程学院,2001.
    [56]M.P.Elizalde—GOnzalez,J.Ma rtusch.et al,Srption on natural solids fo rarsenic ramoval,Chemical Enginee ring Journal,81(2001),187-195
    [57]M.P.Elizalde—GOnzalez,J Mattusch,et al.Uptake Of arsenite and a rsenate bClinoptilelite·rich tufts,Mic roporous and MesoporeUS Materials,46(2001),277-286.
    [58]Yah-hua Xu,Tsunenori Nakajima,Akira Ohki.Adsorption and removal ofarsenic(V)from driaking water by aluminum-loaded Shi rasu—zeolite,JoU rnal ofHazardou S Mate rialS, B92(2002),275-287
    [59]Yah-hua Xu, Akira Ohki,and Shigeru Maeda. Adsorption of arsenic(V)by use of aluminium 10aded Shi rasu·Zeolite S, Chemi stry Letters, (1998),1015·1016.
    [60]H Sone r Altundogan, Sema Altundogan, et al. Arsenic removal from aqoeous olutions by adsorption on red mud, Waste Management,20(2000):761-767.
    [61]Shuzo Tokunaga, Syed A. Wasay and Sang·Won Park. Removal of arsenic(V)ion from aqueous solutions by lanthanum compounds。Wat. Sci. Tech.35(1997),71-78.
    [62]Shuzo Tokunaga, Syed A. Wasay and Sang·Won Park. Removal of arsenic(V) ion from aqueous solutions by lanthanum compounds。Wat. Sci. Tech.35(1997),71-78.
    [63]ChakraVarty S. et al, Removal of arsenic from groundwater using low cost ferruginous manganese ore, Water Research,36(2002).625-632.
    [64]W. Zhang, et al. A rsenic removal from contaminated water by natural i ron ores, MineralS Engineering,17(2004),517-524.
    [65]离乃云,徐遣民等.氧化铁涂层砂变性滤料除砷性能研究[J].上海环境科学,2001,20(9):417.419
    [66]赵璇,更天宝.我国饮用水源的重金属污染及治理技术深化问题[J].给水排水,1998:22-25.
    [67]千军民.含重金属废水的处理技术展望[J].环境科学与技术,1997,(1):14.15.
    [68]曹伟,傅佩玉,韩中华等.天然沸石处理含钳废水的试验研究[J].环境导报,1998,(2):20-22.
    [69]曹瑛,李卫东,刘艳改,工业废渣赤泥的特性及回收利用现状[J]:硅酸盐通报,2007(1):143-145.
    [70]A.R. Hind, S.K Bhargava and S.C. Grocott, The surface chemistry of Bayer process solids: a review, Colloids Surf. A:Physicochem. Eng. Aspects 146 (1999), pp.359-374.
    [71]赵海晋.利用镁渣制造水泥的研究和应用[P].西安:珏安建筑科技大学,2007
    [72]建设部科学技术司.废水处理与资源化新工艺[M].北京:中国建筑工业出版社,2006.260-269
    [73]陈蓓,陈素英,赤泥的综合利用和安全堆存[J]:化工技术与开发,2006(12):32-35.
    [74]余亦政.纺织印染废水处理新技术五—BIO. UNIOUT研究和应用[J].纺织导报,2001,(6):56-58.
    [75]杨娇兰,何公里.饮用水除砷技术研究阴.中国地方病学杂志,1998,17(5):338-340.
    [76]裘小宁.Fe2O3-TiO2复合氧化物催化柠檬酸三丁酯合成的研究[J].上海化工,2008,6(33):6-8.
    [77]Sun RenDe, Nakajima Akira, Watanabe Toshiya, et al.Decompo-sition of gas-phase octamet hyltrisiloxane on TiO2 thin film photo-catalystscatalytic activity, deactivation, and regeneration[J]. Journal of Photochemistry and Photobiology A:Chemistry,2003,154 (223):203-209.
    [78]钦征骑.新型陶瓷材料手册[M].南京:江苏科学技术出版社,1996.
    [79]张后鹏,刘迪梅.水厂使用环保陶瓷滤料的可行性分析[J].长江工程职业技术学院学报,2005,24(2):52-54.
    [80]杨学华,吴剑锋.超轻多孔陶瓷滤料的研制[P].武汉理工大学硕士学位论文.
    [81]李孟,黄功洛,吴珍珍等.新型陶瓷滤料在工业废水处理中的应用[J].武汉理工大学学报,2005,27(7):30-32.
    [82]夏光华,廖润华,成岳等.高孔隙率多孔陶瓷滤料的制备[J].陶瓷学报,2004,25(1):24-27.
    [83]V.A. Mymrin, A.J. Vazquez-Vaamonde, Red mud of aluminium production waste as basic component of new construction materials[J], Waste Manage. Res.,2001,19:465-469.
    [84]丁亮,陈焕新.黄承武.美国Albuquerque市的地下水除砷方法介绍[J].地方病通报,2001.16(2):108-110.
    [85]Pujol R, et al.A keypoint of nitrification in an upflow biofiltration reaction[J]. Wat Sci Tech, 1998,38(3).
    [86]]Tokunnaga, S, Hardon, M J,Wasay,SA.Removal of fluofide ions from aqueous solutionby multivalent metal compounds[J].Environ Studies,1995, 48(1):17-28.
    [87]Nyffeler UP,Li Y,Santschi PH.A Kinetic approach to describe trace-element distribution between particles and solution in natural aquatic systems[J].Geochim Cosmoehim Acta,1984,48(7):1513-1522.
    [88]吴大清,彭金莲,刁桂仪等.沉积CaCO3与重金属离子反应动力学研究[J].地球化学,2000,29(1):56-61.
    [89]Davis JA,Kent DB.Surface complexation modeling in aqueous geochemistry[C].Washington DC:Miner Soe Am,1990,23:177-259.
    [90]Scheidegger AM,Sparks DL.Kinetics ofthe formation and the dissolution ofnickel surfaceprecipitates on pyrophyllite[J].Chem Geol,1996,132: 157-164.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700