用户名: 密码: 验证码:
废煤基活性炭再生制备载铁复合材料及除砷机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在多晶硅材料生产过程中,材料质量的好坏,取决于氢气气体净化的好坏,而生产过程中尾气的净化与回收通常会用到大量的活性炭,由于现有技术仍然存在不足,使得活性炭的消耗量巨大且同时伴随有大量的废弃活性炭产生。废弃活性炭是一种典型的可再利用固废资源,为此本文提出将多晶硅生产过程产生的废弃煤基活性炭进行再生利用制备优质活性炭,同时用再生活性炭载铁制备复合材料制备高附加值产品,并对废弃活性炭再生以及制备铁/炭复合材料去除水中砷的技术和相关理论进行了系统深入的研究,取得了一些有意义的结果。
     1.热再生废弃煤基活性炭的技术研究
     采用不同活化剂,常规加热与微波加热等不同方法再生废弃煤基活性炭,采用基于中心组合设计的响应面法(RSM),研究对再生活性炭性能有关键性影响的再生温度,再生时间以及活化剂用量等工艺参数并进行优化。结合优化工艺参数和再生活性炭结构的研究,讨论废活性炭的再生反应机理。结果表明:工艺参数对活性炭碘吸附值和得率的影响规律符合两因子交互效应二次方程模型,通过对各个因素的显著性和交互作用进行分析,得到四种废弃煤基活性炭再生优化工艺参数,分别为:a.常规水蒸气热再生,再生温度983℃,再生时间135min,水蒸气流量2g/min,再生活性炭碘吸附值1053mg/g,再生得率61%;b.常规二氧化碳热再生,再生温度985℃,再生时间120min,二氧化碳流量600ml/min,再生活性炭碘吸附值1070mg/g,再生得率67%;c.微波水蒸气热再生,再生温度950℃,再生时间60min,水蒸气流量2.5g/min,再生活性炭碘吸附值1101mg/g,再生得率69%。;d.微波二氧化碳热再生,再生温度951℃,再生时间70min,二氧化碳流量553ml/min,再生活性炭碘吸附值1111mg/g,得率70%。四种方法再生获得的活性炭产品吸附能力都能达到国家标准GB/T7701-2008优级品的要求,其中,微波加热再生所得产品的吸附性能更佳,且再生过程的能量消耗有显著降低。通过氮气吸附与SEM对不同方法对再生活性炭孔隙结构进行研究,并分析不同活化剂再生机理,再生活性炭的比表面积均在1200m2/g以上。与常规热再生相比,微波加热再生利用加热速度快,选择性加热等特点,可迅速打开废弃活性炭被堵塞的孔道,能够进一步提高再生活性炭的吸附性能,实现活性炭的高效再生。
     以四种再生活性炭为原料,系统研究亚甲基蓝溶液浓度和吸附时间对饱和吸附量的影响,采用Langmuir和Freundlich吸附等温式对不同条件下获得的吸附平衡数据进行分析,再生活性炭吸附亚甲基蓝等温式可用Langmuir等温线描述,吸附过程可以用准二级动力学模型描述。结果表明:再生活性炭吸附亚甲基蓝的Langmuir饱和吸附量最低为370.37mg/g,这表明再生活性炭产品的具有比较发达的孔隙结构,可以用作液相吸附用途方面的商业活性炭用于处理染料废水,并且具有较好的效果。
     采用人工神经网络(Artificial Neural Networks, ANN),建立神经网络微波加热再生废弃煤基活性炭预测模型,研究结果表明,微波加热水蒸气和微波加热二氧化碳再生废弃煤基活性炭实验的改进BP神经网络预测模型,具有较好的预测效果,预测值与实际值有较好的拟合度,其均方误差为分别为0.0060和0.0043,该模型可以用于再生实验的指导预测,具有较高的可信度和实用意义,同时,以上的研究结果也表明,响应曲面优化与神经网络预测,二者结合互为辅助的实验设计方法有较好的参考价值和应用前景。
     2.再生活性炭载铁制备复合材料吸附去除水中的砷
     采用微波水蒸气热再生获得的活性炭载铁制备氧化铁/活性炭复合材料,采用氮气吸附、XRD、SEM等方法对样品的孔结构、物相组成、微观形貌等进行研究,结果表明:活性炭表面负载铁主要为磁铁矿(Fe3O4)以及赤铁矿(Fe203),载铁后再生活性炭的比表面积有明显的降低。将微波水蒸气再生活性炭和活性炭复合材料对水中砷的吸附效果进行了对比研究,并采用Langmuir和Freundlich吸附等温式对不同条件下获得的吸附平衡数据进行分析,再生活性炭与活性炭复合材料吸附砷的等温式可用Langmuir等温线描述,吸附过程可以用准二级动力学模型描述。负载过氧化铁后的活性炭复合材料对砷的饱和吸附量达到1.91mg/g,是再生活性炭饱和吸附量的2.8倍,这表明通过在活性炭中添加氧化铁制备复合材料,使二者的吸附作用相结合能够获得良好的除砷效果,与现有的载铁活性炭复合材料除砷文献报道过的饱和吸附量相比,本实验中获得的氧化铁/活性炭复合材料在载铁量较低(4.05%)的情况下获得了除砷性能较好的产品。
     采用密度泛函理论(DFT) Dmol3程序和CASTEP程序计算了几种经典的铁氧化物FeO、Fe203和Fe304以及FeAsO4数种晶体结构进行计算,获得了晶体参数以及结构特性、电子结构、能量特征、热力学常数的数据。通过比对结构稳定性,电子结构以及能量特征可以证明氧化铁在吸附砷后转变为砷酸铁的可能性,各种计算都表明砷酸铁与铁的氧化物相比,结构稳定性更高,从热力学上分析出砷酸铁的形成是一个自发过程,其方向都是向着生成砷酸铁的方向进行。通过第一性原理计算,肯定了用氧化铁除砷在理论上的可行性,验证了砷酸铁的生成理论,同时也为氧化铁体系除砷具体的机理研究打下基础,具有一定的参考价值和借鉴意义。
     综上,论文系统研究了废弃煤基活性炭资源化处置与载铁活性炭复合材料制备除砷的理论和工艺,前者采用不同热再生方法,利用不同活化剂再生制备优质活性炭,并首次提出微波加热多晶硅生产用废煤基活性炭再生新工艺技术,获得产品质量好,并且资源利用率高、无二次污染,实现了固废资源的再利用。后者为氧化铁/活性炭复合材料的制备开辟了新的原料来源,并借助量子化学和分子力学等手段,从微观角度探讨复合材料的除砷反应,阐明其内在化学机制,验证了砷酸铁生成理论,并进一步完善了不同种类氧化铁/活性炭复合材料除砷研究的理论基础。本研究为废弃煤基活性炭的再生及综合利用提供了一种有效的手段。
In the production process of polysilicon material, the quality of the material depends on the purification of hydrogen gas, also in the production and recycling process, the exhaustion of activated carbon is very large. However, the technology existed is still inadequate, which makes the activated carbon consumption is huge and there is a large number of spent activated carbon produced. Waste activated carbon is a typical solid waste, thus, this paper presents the regeneration of spent coal based activated carbon for high-quality activated carbon and preparation of iron/AC composites from the regenerated activated carbon for high-value-added products, meanwhile, the regeneneration technology of activated carbon, the adsorption technology of arsenic in drinking water by iron/AC and some related theories are studied in-depth, some meaningful conclusion are obtained.
     1. The key technology on thermal regeneration of waste coal based activated carbon
     Different activation agents, conventional heating and microwave heating methods were used for thermal regerneration of spent coal based activated carbon. Basing on central composite design of response surface methodology (RSM), the key parameters such as regeneration temperature, regeneration time and the amount of activation agent, which had important influences on the performance of activated carbon products, were studied and optimized. The reaction mechanism of regenerating activated carbon was investigated along with the optimized proeess parameters and researeh of the carbon's structures. The results indicated that:the influence of technological parameters on iodine value and yield conformed to two factor interactions and the quadratic equation model separately. By analyzing each factors'significance and the correlation, the optimized conditions for the regerneation of waste activated carbon were obtained as follows:a. Conventional steam thermal regeneration, regeneration temperature of 983℃, regeneration time of135min, steam flow rate of2g/min and iodine number of regenerated activated carbon for1053mg/g with regeneration yield of61%; b. Conventional thermal regeneration of carbon dioxide, regeneration temperature of985℃, regeneration time of120min, carbon dioxide flow rate of600ml/min and iodine number of regenerated activated carbon for1070mg/g with regeneration yield of67%; c. Microwave steam regeneration, regeneration temperature of950℃, regeneration time of60min, steam flow rate of2.5g/min and iodine number of regenerated activated carbon for1101mg/g with regeneration yield of69%; d. Microwave regeneration of carbon dioxide, regeneration temperature of951℃regeneration time of70min, carbon dioxide flow rate of553ml/min, and iodine number of regenerated activated carbon for1111mg/g with regeneration yield of70%. The adsorption capacity of activated carbon products obtained were all able to meet the national standard of China, GB/T7701-2008product requirements, among which, the absorption properties of the regenerated products by microwave perfromed better. The pore suructure of the products and mechanism of the regeneration process were ayalyed by nitrogen adsorption and SEM, the surface area of regenerated activated carbon were all abobe1200m2/g. Oweing to characteristics of selective heating, fast heating speed of microwave, the blocked pore of spent activated carbon was quickly opened, comparing with the conventional regeneration, it further improved the adsorption capacity of the regenerated activated carbon to achieve an efficient regeneration.
     The regenerated activated carbons were taken as raw materials for the adsorption of methylene blue, the influence of the methylene blue solution concentration and the adsorption time on the saturated adsorptive capacity were studied, Langmuir and the Freundlich adsorption uniform temperature type were used for the analysis of the adsorption equilibrium data, the adsorption uniform temperature type of methylene blue by regeneration activated carbon could be described by Langmuir isothermal. The second-level dynamics model described the adsorption process well. The result indicated that:the minimum adsorption capacity of methylene blue of Langmuir model for the regenerated activated carbon adsorption was3.70.3.7mg/g, which indicated that the activated carbon products with more developed pore structure could be used for commercial liquid adsorption for the treatment of dye wastewater, and the effect was good.
     Basing on the Artificial Neural Network (ANN), the neural network model was established for the prediction of microwave regeneration of spent coal based activated carbon, the results indicated that, the BP neural network prediction model of microwave regeneration with steam and CO2was reliable, the forecast and actual values fitted well, the mean square error were0.0060and0.0043, respectively. The model could be used to predict the regeneration experiments with high credibility and practical significance, while the above results also indicated that the optimization by response surface methodology and prediction by neural network could be combined, which had good reference value and application prospect.
     2. Research on arsnic removal by iron loaded activated carbon composites
     The activated carbon obtained by microwave steam thermal regeneration was taken as raw materials for the preparation of iron oxide preparation/activated carbon(AC) composite. The nitrogen adsorption, XRD, SEM were used for analysis of the sample pore structure, phase composition, microstructure, etc., the results showed that:the iron loaded on the carbon surface were mainly magnetite (Fe3O4) and hematite (Fe2O3), the surface area of the composite reduced obviously. The regenerated activated carbon and carbon composites were compared for adsorption of arsenic in drinking water, Langmuir and the Freundlich adsorption uniform temperature type were used for the analysis of the adsorption equilibrium data, the adsorption uniform temperature type of aresenic by regeneration activated carbon and carbon composites could be described by Langmuir isothermal, the second-level dynamics model described the adsorption process well. The arsenic adsorption capacity of carbon composite was1.91mg/g, which was2.8times of the regenerated activated carbon, which indicates that by adding iron oxide into the regenerated activated carbon, the carbon composites had a good adsorption performance on arsenic. Comparing with the the amount of saturated adsorption of arsenic reported in the existed literature, the carbon composites obtained in this experiment had a good ablity for the adsorption of arsenic with low iron content in weight(4.05%).
     Program of Dmol3and CASTEP basing on density functional theory (DFT) were used for the calculation of selected classic iron oxide FeO, Fe2O3, Fe3O4and FeAsO4for crystal structures. The data of the crystal parameters, structural properties, electronic structure, energy characteristics and the thermodynamic constants were obtained. By comparing the stability of the structure, the transformation of iron oxide into iron arsenate after adsorption could be proved by the electronic structure and energy characteristics. A variety of calculation results indicated that comparing with iron oxide, the atoms of iron arsenate were more stable, the energy was lower in electronic structure, the formation of iron arsenate is a spontaneous process basing on the thermodynamic analysis.
     In summary, the theory and techniques of recycling technology for spent activated carbon and the preparation of carbon composite material containing iron for the removal of the arsenic in water were studied systematicly. The former utilized thermal regeneration methods such as conventional heating and microwave heating, different activation agents for the preparation of high-quality activated carbon, which could obviously reduce the energy consumption, get high resource utilization, improve work condition and lower the second pollution. The latter of iron oxide/carbon composites has opened up new sources of raw materials and methods, by quantum chemistry and molecular mechanics, mechanism of arsenic removal was studied at microscopic view to clarify the intrinsic chemical mechanism of the preparation of the high-quality multi-functional composite materials to lay a solid theoretical basis. In this study, an effective way was provided for the regeneration and comprehensive utilization of spent activated carbon.
引文
[1]Xie Q.. Study on control over coal carbonization and preparation of activation carbon [D]. Xuzhou:China University of Mining & Technology, 1996.
    [2]Jankowska H., Swiatkowski A., Choma J.. Active Carbon [M]. New York: Ellis Horwood,1991.
    [3]Wigmans T.. Industrial aspects of production and use of activated carbons [J]. Carbon,1989,27 (1):13-22.
    [4]吴开金.AT型载体活性炭吸附抗癌药物试验[J].福建林业科技,1997,24(4):32-35.
    [5]解强,张香兰,李兰廷.活性炭孔结构调节:理论、方法与实践[J].新型炭材料,2005,20(2):183-190.
    [6]闫勇.有机废气中挥发性有机物(voc)净化回收技术一炭吸附和膜分离[J].化工进展,1996,(5):26-28.
    [7]Klinik J., GRZYBEK T.. The influenee of cobalt, nickl, Inanfsnees and vanadium to active carbons on their eficiency in SO2 removal from stack gases[J]. Fuel,1992,71(11):1303.
    [8]郏其庚.活性炭的应用[M].上海:华东理工大学出版社,2002,29.
    [9]杨骏兵,凌立成,刘朗.孔径分布对球形活性炭肌酐和VB 12吸附行为的影响[J].炭素技术,2001(1):8-11.
    [10]吕春祥,李开喜,吕永根,等.沥青基球状活性炭的医用性能评价[J].新型炭材料,2002,17(3):11-14.
    [11]Parra J.B., Ania C.O., Arenillas A., Rubiera F., Palacios J.M., Pis J.J. Textural development and hydrogen adsorption of carbon materials from PET waste[J]. Journal of Alloys and Compounds,2004,379:280-289.
    [12]Feng C.W., Tseng R.L., Huc C.C.. The capacitive characteristics of activated carbons—comparisons of the activation methods on the pore structure and effects of the pore structure and electrolyte on the capacitive performance[J]. Journal of Power Sources,2006,159:1532-1542.
    [13]詹亮,李开喜,吕春祥.超级活性炭的制备及其储氢性能初步研究[J].新型炭材料,2001,16(4):31-35.
    [14]Dufresne P.. Hydroprocessing catalysts regeneration and recycling [J]. Applied catalysis A:General,2007,322:67-75.
    [15]Bagreev A., Rahman H., J. Bandosz T.. Thermal regeneration of a spent activated carbon previously used as hydrogen sulfide adsorbent[J]. Carbon, 2001,39(9):1319-1326.
    [16]李亚新,陈文兵,马志毅等.粒状活性炭厌氧生物再生研究[J].煤炭转化,1995,18(2):78-83.
    [17]Shende R.V., Mahajani V.V.. Wet oxidative regeneration of activated carbon loaded with reactive dye[J]. Waste management,2002,22(1):73-83
    [18]Cooney D.O., Nagerl A., Hines A.L.. Solvent regeneration of activated carbon[J]. Water Research,1983,17 (4):403-410.
    [19]Ho T.C., Lee Y., Chu H.W.. Modeling of mercury desorption from activated carbon at elevated temperatures under fluidized/fixed bed operations[J]. Powder technology,2005,151(3):54-60.
    [20]Hamdaoui O., Naffrechoux E., Suptil J.. Ultrasonic desorption of p-chlorophenol from granular activated carbon[J]. Chemical engineering journal,2005,106(2):153-161.
    [21]吕德隆,白汾河.高频脉冲活性炭再生技术[J].江苏科技信息,1997,6:13-14.
    [22]Salvador F., Sanchez J. C.. Effect of Regeneration Treatment with Liquid water at High Pressure and Temperature on the characteristic of three commercial activated carbons[J]. Carbon,1999,37(4):577-583.
    [23]刘守新,张世润,孙承林.木质活性炭的光催化再生[J].林产化学与工业,2003,23(2):12-15.
    [24]翁元声.活性炭再生及新技术研究[J].中国给水排水,2004,30(1):86-91.
    [25]Moreno-Castilla C., Rivera-Utrilla J., Joly J. P., et al. Thermal regeneration of an activated carbon exhausted with different substituted phenols[J]. Carbon,1995,33(10):1417-1423.
    [26]Matatov-Meytal Y. I., Sheintuch M., Shter G. E., et al. Optimal temperatures for catalytic regeneration of activated carbon [J]. Carbon, 1997,35(10):1527-1531.
    [27]Salvador F., Sanchez Jimenez C.. A New Method for Regeneration Activated Carbon by Thermal Desorption with Liquid Water under Subcritical Conditions[J]. Carbon,1996,34(4):511-516.
    [28]Salvador F., Sanchez Jimenez C.. Effect of Regeneration Treatment with Liquid Water at High Pressure and Temperature on the Characteristic of Three Commercial Activated Carbons[J]. Carbon,1999,37(4):577-583.
    [29]Jones D.A., Lelyveld T.P., Mavrofidis S.D., Kingman S.W., Miles N.J. Microwave heating applications in environmental engineering—a review, Resource[J]. Conservation & Recycling,2002,34:75-90.
    [30]Liu X.T., Xie Q., Bo L.L..Temperature measurementof GAC and decomposition of PCP loaded on GAC and GA supposed copper catalyst in microwave irradiation[J]. Applied Catalysis A:General,2004, 264(1):53-58.
    [31]Ania C.O., Parra J.B., Menendez J.A., Pis J.J.. Microwave-assisted regeneration of activated carbons loaded with pharmaceuticals [J]. Water Research,2007,41:3299-3306.
    [32]Ania C.O., Menendez J.A., Parra J.B., Pis J.J.. Microwave induced regeneration of activated carbons polluted with phenol:a comparison with conventional thermal regeneration[J]. Carbon,2004,24:1383-1387.
    [33]Quan X., Liu X., Bo L., Chen S., Zhao Y., Cui X.. Regeneration of acid orange 7 exhausted granular activated carbons with microwave irradiation[J]. Water Research,2004,38:4484-4490.
    [34]Emamipour H., Hashisho Z., Cevallos D., Rood M.J., Thurston D.L., Hay K.J.. Steady-State and Dynamic Desorption of Organic Vapor from Activated Carbon with Electrothermal Swing Adsorption[J]. Environmental Science Technology,2007,41 (14):5063-5069.
    [35]Robers A., Figura M., Thiesen P.H.. Desorption of odor-active compounds by microwaves, ultrasound, and water[J]. AIChE Journal,2005, 5(2):502-510.
    [36]Cha C.Y., Wallace S., George A.H., Rogers S.. Microwave technology for treatment of fume hood exhaust[J]. Environmental Engineering, 2004,130(3):338-349.
    [37]Hashisho Z., Rood M., Botich L.. Microwave-swing adsorption to capture and recover vapors from air streams with activated carbon fiber cloth[J]. Environmental Science Technology,2005,39:6851-6859.
    [38]Hashisho Z., Rood M., Botich L.. Proceedings of the air and waste management association's annual conference and exhibition,2005. AWMA.
    [39]赵素莲,王玲芬,梁京辉.饮用水中砷的危害及除砷措施[J].现代预防医学,2002,29(5),651-655.
    [40]李树猷.氯化铁混凝法饮水除砷研究[J].中国供水卫生.1993,2:3-8.
    [41]丁亮泽,黄承武.地下水用含铁锰矿石除砷[J].中国卫生工程学2003,2(3):184-185.
    [42]韩利军,崔育债,骆德蓉.半导体工业废水中除砷的研究[J].青岛大学学报,2004,19(1):87-92.
    [43]Eguez H. E., ChoE. H.. Adsoprtion of arsenic on activated cabron[J]. Journal of Metallurgy,1987,39(7):38-41.
    [44]Huang C. P., Vane L. M.. Enhancing As5+ removal by Fe2+ treated activated carbon[J]. Res. J. Water. Pollution Control,1989,61(9): 1596-1603.
    [45]Huang C. P., Fu P. L. K.. Treatment of Aresnic(Ⅴ) containing water by the activated carbon process[J]. J. Water. Pollution Control,1984,56(3): 233-242.
    [46]Gupta S. K., Chen K. Y.. Arsenic removal by adsorption[J]. Journal of Water Pollution Control,1978,50(3):493-506.
    [47]Lee J.Y., Rosehart R. G.. Eeffctive methods of arsenic removal from gold mine wastes[J]. Fouth Annual Meeting of the Canadian Mineral Processors, Ottwaa, Canada,1972:107-128.
    [48]Lee J. Y., Rosehart R. G.. Arsenic removal by sorption processes from waste waters[J]. Canadian Mining and Metallurgical Bulletin,1972,65(727): 33-37.
    [49]Diamado Poulos E., Samaras P., SakellaroPoulos G.P.. The Eeffct of activated carbon properties on the adsorption of toxic substances[J]. Water Science Technology,1992,25(1):153-160.
    [50]Rajakovic L.V.. The sorption of arsenic onto activated carbon impregnated with Metallic silver and copper [J]. Seperation Science and Technology,1992,27 (11):1423-1433.
    [51]Evdokimov D.Y., Kogan E.A., Sheikina Z.P.. Soprtion of Ge(VI) and As(III)[J]. Zhurnal Prikladnoi Khimii,1973,46(9):1938-1942.
    [52]Jiang J. Q.. Removal arsenic from ground water of the developing world-a review[J]. Water Science and Technology,2001,44(6):89-98.
    [53]Booker N. A., Keir D., Priestley A.. Sewage clarification with magnetite Particles[J]. Water Science and Technology,1991,23(7): 1703-1712.
    [54]沈东,范显华,苏锡光.在磁黄铁矿上的吸附行为和机理的研究.核化学与放射化学[J].2001,23(2):72-78.
    [55]陈瑞福.磁场对磁性吸附剂吸附锌、汞的影响[J].水处理技术,1999,25(1):147-149.
    [56]Sing K. S.. Technology Profile[J]. Ground Water Monitor,1994,2(6): 60-76.
    [57]Safarik I., Safarikova M., Buricova V.. Sorption of Water soluble organic dyes on magnetic poly[J]. Collection of Czechoslovak Chemical Communications,1995,60:1448-1456.
    [58]康鸿业.磁流体净化含油污水技术[J].高等学校化学学报,1991,12(4):506-509.
    [59]Fierro V., Muniz G., Gonzalez-Sanchez G., Ballinas M.L., et al. Arsenic removal by iron-doped activated carbons prepared by ferric chloride forced hydrolysis Original Research Article[J]. Journal of Hazardous Materials, 2009,168(1):430-437.
    [60]Qiao L. Z., Lin Y.C., Chen X.. A method for preparing ferric activated carbon composites adsorbents to remove arsenic from drinking water[J]. Journal of Hazardous Materials,2007,148(3):671-678.
    [61]姚淑华,贾永锋,汪国庆等.活性炭负载Fe(Ⅲ)吸附剂去除饮用水中的As(V)[J].过程工程学报,2009,9(2):250-256.
    [62]Cooper A. M., Hristovski K. D., Moller Teresia, et al. The effect of carbon type on arsenic and trichloroethylene removal capabilities of iron (hydr)oxide nanoparticle-impregnated granulated activated carbons[J]. Journal of Hazardous Materials,2010,183(1-3):381-388.
    [63]Deliyanni Eleni, Bandosz Teresa J.. Importance of carbon surface chemistry in development of iron-carbon composite adsorbents for arsenate removal[J]. Journal of Hazardous Materials,2011,186(1):667-674.
    [64]Prasenjit Mondal, Chandrajit Balomajumder, Bikash Mohanty. A laboratory study for the treatment of arsenic, iron, and manganese bearing ground water using Fe3+ impregnated activated carbon:Effects of shaking time, pH and temperature[J]. Journal of Hazardous Materials,2007, 144(1-2):420-426.
    [65]Ronald L. Vaughan Jr., Reed Brian E.. Modeling As(V) removal by a iron oxide impregnated activated carbon using the surface complexation approach[J]. Water Research,2005,39(6):1005-1014.
    [66]Chen W. F., Parette Robert, Zou J. Y., et al. Arsenic removal by iron-modified activated carbon[J]. Water Research,2007,41(9):1851-1858
    [67]Gu Z. M.. Preparation and evaluation of GAC-based iron-containing adsorbents for arsenic removal[J]. Environmental Science and Technology, 2005,39(10):3833-3843.
    [68]Chang Q., Lin W., Ying W. C Preparation of iron-impregnated granular activated carbon for arsenic removal from drinking water[J]. Journal of Hazardous Materials,2010,184(1-3):515-522.
    [69]Hristovski Kiril D., Westerhoff Paul K., Moller Teresia, et al. Effect of synthesis conditions on nano-iron (hydr)oxide impregnated granulated activated carbon[J]. Chemical Engineering Journal,2009,146(2):237-243.
    [70]刘振中,邓慧萍.应用正交设计与用BP网络优化制备改性活性炭[J].同济大学学报(自然科学版),2010,38(5):704-708.
    [71]Muniz G., Fierro V., Celzard A., Furdin G., et al. Synthesis, characterization and performance in arsenic removal of iron-doped activated carbons prepared by impregnation with Fe(III) and Fe(II) [J]. Journal of Hazardous Materials,2009,165(1-3):893-902.
    [72]Liu Z. G., Sasai Ryo. Arsenate removal from water using Fe3O4-loaded activated carbon prepared from waste biomass[J]. Chemical Engineering Journal,2010,160(1):57-62.
    [73]Sharma Ajit, Verma Nishith, Sharma Ashutosh, et al. Iron doped phenolic resin based activated carbon micro and nanoparticles by milling: Synthesis, characterization and application in arsenic removal [J]. Chemical Engineering Science,2010,65(11):3591-3601.
    [74]肖粤翔,何祯.大规模定制条件下的质量控制框架研究[J].工业工程,2003,12:25-27.
    [75]张于轩.多响应问题的稳健性设计优化研究[D].天津:天津大学硕士论文,2004.
    [76]Bourquin J., Schmidli H., Hoogevest P., et al. Comparison of artificial neural networks (ANN) with classical modelling techniques using different experimental designs and data from a galenical study on a solid dosage form[J]. European Journal of Pharmaceutical Sciences,1998(7):287-300.
    [77]Kandimalla K.K., Kanikkannan N., Singh M.. Optimization of a vehicle mixture for the transdermal delivery of melatonin using artificial neural networks and response surface method[J]. Journal of Controlled Release, 1999,61(1-2):71-82.
    [78]杨静,玉米秸秆纤维素酶水解研究及响应曲面法优化[D].天津:天津大学硕士论文,2007.
    [79]Hill W. J., Hunter W. G.. A Review of Response Surface Methodology:A Literature Review[J]. Tecimometrics,1966,8:571-590.
    [80]Mead R., Pike D. J.. A Review of Response Surface Methodobgy from A Biometrics Viewpoint[J].Biometrics,1975,31(12):803-851.
    [81]Raymond H. M., Andre I K., Walter H Carter.. Response Surface Methodology:1966-1988[J].Tecimometrics,1989,3 1(2):432-438.
    [82]Carte R. W. H, Wampler G. L., Stablein D. M.. Review of the Application of Response Surface Methodobgy in the Combination Therapy of Cancer[J]. Cancer Treatment Reports,1983,70:133-140.
    [83]Gursharan S., Naveen A., Mona B., et al. Biobleaching of wheat straw-rich soda pulp with alkalophilic laccase from c-proteobacterium JB: Optimization of process parameters using response surface methodology[J]. Bioresource Technology,2008,99(16):7472-7479.
    [84]Kima M.S., Kima J.S., You Y.H., et al. Development and optimization of a novel oral controlled delivery system for tamsulosin hydrochloride using response surface methodology[J]. International Journal of Pharmaceutics,2007,341(1-2):97-104.
    [85]Ghodke S.K., Ananthanarayan L., Rodrigues L.. Use of response surface methodology to investigate the effects of milling conditions on damaged starch, dough stickiness and chapatti quality[J]. Food Chemistry,2009, 112(4):1010-1015.
    [86]Hamzaoui A.H., Jamoussi B., Mnif A.. Lithium recovery from highly concentrated solutions:Response surface methodology (RSM) process parameters optimization[J]. Hydrometallurgy,2008,90(1):1-7.
    [87]Geoffrey S.S., Ndlovu S., Gericke M.. Bacterial leaching of nickel laterites using chemolithotrophic microorganisms:Process optimisation using response surface methodology and central composite rotatable design[J]. Hydrometallurgy,2009,98(3-4):241-246.
    [88]McCulloch W. S., Pitts W.. A logical calculus of ideas immanent in nervous activity [J]. Bulletin of Mathematical Biophysics,1943, (5): 115-133.
    [89]Rosenblatt F.. The Perceptron:A probabilistic model for information storage and organization in the brain [J]. Psychological Review,1958, (65): 386-458.
    [90]Minsky M. and Papert S.. Perceptrons [M]. MIT Press,1969.
    [91]王梦松.RBF神经元网络的研究及其在复杂化学信息处理中的应用[D].杭州:浙江大学,2002.
    [92]王丹.径向基函数神经网络用于细菌MALDI飞行时间质谱的分类判别[D].长春:东北师范大学,2002.
    [93]沈阳.人工神经网络在定量化学分析和定量结构活性关系(QSAR)中的应用研究[D].合肥:中国科技大学,2001.
    [94]蒋宗礼.人工神经网络[R].北京:北京工业大学计算机学院,2004.
    [95]Hopfield J. J.. Neural networks and physical systems with emergent collective computational abilities[C]. Proceedings of the National Academy of Science,1982,79,2554-2558.
    [96]于晓辉.进化计算和人工神经网络在多目标优化问题中的应用[D].济南:山东师范大学,2004.
    [97]叶微.关于神经网络若干理论问题的研究[D].西安:西安交通大学,2003.
    [98]施海蓉.基于MATLAB的人工神经网络在穆斯堡尔谱学中的应用[D].南京:南京大学,2000.
    [99]Rumelhart D. E. and McClelland J. L.. Parallel Distributed Processing: Explorations in the Microstructure of Cognition [M]. Cambridge MA:MIT Press,1986.
    [100]Agarwal M.. A Systematic Classification of Neural Network Based Control. IEEE Control System.1997,4.
    [101]Ishida M. and Zhan J.. Neural Modal Predictive Control of Distributed Parameter Crystal Growth Process, AICEJ.1995,41.
    [102]Naidu S. R..Use of Neural Networks for Sensor Failure Detection in a Control System. IEEE Control System Magazine,1990,4.
    [103]Heikki T. S.. Neural Networks in Process Fault Diagnosis. IEEE Trans.on SMC,1991,21 (4).
    [104]Sorsa T. and Koivo H. N.. Application of Artificial Neural Networks in Process Fault Diagnosis. Automatica,1993,29 (4).
    [105]Benedikt S. and Mukul A.. Predictive Control of a Bench-Scale Chemical Reactor Based on Neural Network Models. IEEE Transactions on Control Systems Technology. Vol.6, No.3,1998,5.
    [106]田禹,王宝贞,周定.BP及RBF人工神经元网络对臭氧生物活性炭 水处理系统建模的比较[J].中国环境科学,1998,18(5):394-397.
    [107]刘振中,邓慧萍.应用正交设计与BP网络优化制备改进活性炭[J].同济大学学报(自然科学版),2010,38(5):704-708.
    [108]姚兵,李家璜,姚忠,应汉杰,周华,韦萍.活性炭吸附,络合洗脱提取L-苯丙氨酸[J].南京工业大学学报,2002,24(2):1-5.
    [109]Aghav R. M., Kumar Sunil, Mukherjee S. N.. Artificial neural network modeling in competitive adsorption of phenol and resorcinol from water environment using some carbonaceous adsorbents [J]. Journal of Hazardous Materials,2011,188 (1-3):67-77.
    [110]Van Deventer J. S. J., Liebenberg S. P., Lorenzen L., Aldrich C. Dynamic modeling of competitive elution of activated carbon in columns using neural networks [J]. Minerals Engineering,1995,8 (12):1489-1501.
    [111]Namvar-Asl M., Soltanieh M., Rashidi A., Irandoukht A.. Modeling and preparation of activated carbon for methane storage. Modeling of activated carbon characteristics with neural networks and response surface method [J]. Energy Conversion and Management,2008,49:2471-2477.
    [112]Namvar-Asl M., Soltanieh M., Rashidi A.. Modeling and preparation of activated carbon for methane storag. Neural network modeling and experimental studies of the activated carbon preparation [J]. Energy Conversion and Management,2008,49:2478-2482.
    [113]Faur-Brasquet C., Le Cloirec P.. Modeling of the flow behavior of activated carbon cloths using a neural network approach [J]. Chemical Engineering and Processing,2003,42:645-652.
    [114]刘建军,多晶硅生产中回收氢气的净化[J].有色冶炼,2000,29:17-19.
    [115]Das D.P., Parida K.M., Mishra B.K.. A study on the structural properties of mesoporous silica spheres [J]. Materials Letters,2007,61(18): 3942-3945.
    [116]Ravikovitcha P.I., Haller G.L., Neimark A. V.. Density functional theory model for calculating pore size distributions:Pore structure of nanoporous catalysts [J]. Advances in Colloid and Interface Science,1998, 76-77:203-226.
    [117]Zabaniotou A., Stavropoulos G., Skoulou V... Activated carbon from olive kernels in a two-stage process:Industrial improvement[J]. Bioresource Technology,2008,99:320-326.
    [118]Sing, K.S.W., Everett, D.H. and Haul, R.A.W.. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity[J]. Pure & Applied Chemistry, 1985,57(4):603-619.
    [119]Seaton. N.A, Walton. P.R.B. and Quirke N.. A new analysis method for the determination of the pore size distribution of porous carbons from nitrogen adsorption measurements[J]. Carbon,1989,27(16):853-861.
    [120]Peter I. Ravikovitch, Alexander V. Neimark.. Characterization of nanoporous materials from adsorption and desorption isotherms[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2001,187: 11-21.
    [121]Ustinov E.A., Do D.D., Jaroniec M.. Adsorption of argon and nitrogen in cylindrical pores of MCM-41 materials:application of density functional theory[J]. Applied Surface Science,2005,252:1013-1028.
    [122]Ravikovitcha Peter I., Haller Gary L., Neimark Alexander V.. Density functional theory model for calculating pore size distributions:pore structure of nanoporous catalysts[J]. Advances in Colloid and Interface Science,1998,76:203-226.
    [123]Rouquerol F., Rouquerol J., Sing K.S.W.. Adsorption byPowders and Porous Solids:Principles, Methodology andApplications [M]. Academic Press, San Diego,1999.
    [124]Yener J., Kopac T., Dogu G., et al. Dynamic analysis of sorption of Methylene Blue dye on granular and powdered activated carbon[J]. Chemical Engineering Journal,2008,144(3):400-406.
    [125]Demirbas A.. Agricultural based activated carbons for the removal of dyes from aqueous solutions:A review[J]. Journal of Hazardous Materials, 2009,167(1-3):1-9.
    [126]Nuithitikul K., Srikhun S., Hirunpraditkoon S.. Influences of pyrolysis condition and acid treatment on properties of durian peel-based activated carbon[J]. Bioresource Technology,2010,101(1):426-429.
    [127]Kannan N., Sundaram M. M.. Kinetics and mechanism of removal of methylene blue by adsorption on various carbons—a comparative study[J]. Dyes and Pigments,2001,51(1):25-40.
    [128]Zhang Z.Y., Zhang Z.B., Ferna'ndez Y., et al. Adsorption isotherm and kinetic of methylene blue on low-cost adsorbent recovery from spent catalyst of vinyl acetate synthesis. Applied Surface Science,2010,256(8): 2569-2576.
    [129]Juang R.S., Wu F.C., Tseng R.L.. Characterization and use of activated carbons prepared from bagasses for liquid-phase adsorption[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2002,201(1-3): 191-199.
    [130]Hameed B.H., E1-Khaiary M.I.. Batch removal of malachite green from aqueous solutions by adsorption on oil palm trunk fibre:Equilibrium isotherms and kinetic studies[J]. Journal of Hazardous Materials,2008,154 (1-3):237-244.
    [131]Ahmad A.A., Hameed B.H.. Fixed-bed adsorption of reactive azo dye onto granular activated carbon prepared from waste[J]. Journal of Hazardous Materials,2010,175(1-3):298-303.
    [132]Onal Y.. Kinetics of adsorption of dyes from aqueous solution using activated carbon prepared from waste apricot[J]. Journal of Hazardous Materials,2006,137(3):1719-1728.
    [133]E1 Qada E. N., Allen S. J., Walker G. M.. Adsorption of Methylene Blue onto activated carbon produced from steam activated bituminous coal: A study of equilibrium adsorption isotherm[J]. Chemical Engineering Journal,2006,124(1-3):103-110.
    [134]Rao M. M., Rao G. P. C., Seshaiah K., et al. Activated carbon from Ceiba pentandra hulls, an agricultural waste, as an adsorbent in the removal of lead and zinc from aqueous solutions [J]. Waste Management,2008,28(5): 849-858.
    [135]Karagoz S., Tay T., Ucar S., et al. Activated carbons from waste biomass by sulfuric acid activation and their use on methylene blue adsorption [J]. Bioresource Technology,2008,99(14):6214-6222.
    [136]Weber T.W., Chakkravorti R.K.. Pore and solid diffusion models for fixed bed adsorbers[J]. American Institute of Chemical Engineers,1974,20: 224-228.
    [137]Fytianos K., Voudrias E., Kokkalis E.. Sorption-desorption behaviour of 2,4-dichlorophenol by marine sediments[J]. Chemosphere,2000,40(1): 3-6.
    [138]Hameed B.H., Din A.T.M., Ahmad A.L.. Adsorption of methylene blue onto bamboo-based activated carbon:Kinetics and equilibrium studies[J] Journal of Hazardous Materials,2007,141(3):819-825.
    [139]Tan I. A. W., Ahmad A. L., Hameed B. H.. Adsorption of basic dye on high-surface-area activated carbon prepared from coconut husk: Equilibrium, kinetic and thermodynamic studies[J]. Journal of Hazardous Materials,2008, (154):337-346.
    [140]Altenor S., Carene B., Emmanuel E., Lambert J., Ehrhardt J. J., Gaspard S.. Adsorption studies of methylene blue and phenol onto vetiver roots activated carbon prepared by chemical activation[J]. Journal of Hazardous Materials,2009, (165):1029-1039.
    [141]王春红.吸附树脂吸附动力学研究[D].南京:南开大学博士论文,2005.
    [142]Srivastava V. C., Mall I. D., Mishra I. M.. Adsorption of toxic metal ions onto activated carbon:Study of sorption behaviour through characterization and kinetics [J]. Chemical Engineering and Processing: Process Intensification,2008,47(8):1269-1280.
    [143]Tseng R.L., Wu F.C.. Analyzing a liquid-solid phase countercurrent two-and three-stage adsorption process with the Freundlich equation[J]. Journal of Hazardous Materials,2009,162(1):237-248.
    [144]E1 Qada E. N., Allen S. J., Walker G. M.. Adsorption of basic dyes from aqueous solution onto activated carbons[J]. Chemical Engineering Journal,2008,135(3):174-184.
    [145]Dabrowski A., Podkoscielny P., Hubicki Z., et al. Adsorption of phenolic compounds by activated carbon—a critical reviews[J]. Chemosphere,2005,58(8):1049-1070.
    [146]Ho Y.S., McKay G.. Sorption of dye from aqueous solution by peat [J]. Chemical Engineering Journal,1998,70(2):115-124.
    [147]Sharma Y. C., Weng C.H.. Removal of chromium (VI) from water and wastewater by using riverbed sand:Kinetic and equilibriym studies[J]. Journal of Hazardous Materials,2007, 142(1-2):449-454.
    [148]Mohan D., Chander S.. Single component and multi-component adsorption of metal ions by activated carbons [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2001, 177(2-3):183-196.
    [149]Ho Y. S., John Wase D. A., Forster C. F.. Batch nickel removal from aqueous solution by sphagnum moss peat[J]. Water Research,1995,29(5): 1327-1332.
    [150]焦李成.神经网络系统导论[M].西安:西安电子科技大学出版社,1992.
    [151]袁亚湘,孙文瑜.最优化理论与方法[M].北京:科学出版社,1997.
    [152]Jacobs R. A.. Increased rates of convergence through learning rate adaptation [J]. Neural Networks,1998,1 (1):295-307.
    [153]韩力群.人工神经网络理论、设计及应用[M].北京:化学工业出版社,2007.
    [154]林俊,章兢.反向传播神经网络收敛性的探讨[J].计算机与现代化,2005,7:9-12.
    [155]蔡正国,屈梁生.共轭梯度神经网络的研究[J].西安交通大学学报,1995,29(8):72-76.
    [156]周建华.共轭梯度法在BP网络中的应用[J],计算机工程与应用,1999.17-19.
    [157]Hagan M. T., Demuth H. B. and Beale M. H神经网络设计[M].北京:机械工业出版社,2002.
    [158]Vijander S., Indra G., Gupta H. O.. ANN-based estimator for distillation using Levenberg - Marquardt approach [J]. Engineering Applications of Artificial Intelligence.2007,20 (2):249-259.
    [159]Bezerra E. M., Bento M. S., Rocco J. A. F. F., Iha K., Lourenco V. L., Pardini L. C Artificial neural network (ANN) prediction of kinetic parameters of (CRFC) composites [J]. Computational Materials Science, 2008,44 (2):656-663.
    [160]Costa M. A., Braga A. D. P., Menezes B. R. D.. Improving generalization of MLPs with sliding mode control and the Levenberg-Marquardt algorithm [J]. Neurocomputing,2007,70 (7-9): 1342-1347.
    [161]Ubeyli E. D., Guler I.. Multilayer perceptron neural networks to compute quasistatic parameters of asymmetric coplanar waveguides [J]. Neurocomputing,2004,62 (1-4):349-365.
    [162]Short M.A., Walker P.L.. Measurement of interlayer spacing and cyrstal sizes in tutbrostratic carbons[J]. Cabron,1963, 1(1):3-9.
    [163]Fuller C.F., Davis J.A., Waychunas G. A.. Surface chemistry of ferrihydrite:part 2, kinetics of arsenate adsorption and co precipitation [J]. Gecochimica Cosmochimica Acta,1993,57:2271-2282.
    [164]Srivastava V.C., Swamy M.M., Mall I.D., Prasad B., Mishra I.M. Adsorptive removal of phenol by bagasse fly ash and activated carbon: equilibrium, kinetic and thermodynamics [J]. Colloids Surface,2006,272: 89-104.
    [165]Hongshao Z., Seith R.. Competitive adsorption of phosphate and arsenate on goethite[J]. Environmental Science Technology,2001,35: 4753-4757.
    [166]Sperlich A., Werner A., Genz A., Amy G., Worch E., Jekel M. Breakthrough behaviour of granular ferric hydroxide (GFH) fixed bed adsorption filters:modeling and experimental approaches[J]. Water Research,2005,39:1190-1198.
    [167]Mostafa M.G., ChenY. H., Jean J. S., Liu C. C.. Kinetics and mechanism of arsenate removal by nanosized iron oxide-coated perlite[J]. Journal of Hazardous Materials,2011,187:89-95.
    [168]Chang Q., Lin W., Ying W. C Preparation of iron-impregnated granular activated carbon for arsenic removal from drinking water[J]. Journal of Hazardous Materials,2010,184:515-522.
    [169]Jain A.,Rvaen K. P.. Arsenite and arsenate adsorption on efrrihydrite: surface charge reduction and net OH" release stoichiometyr [J]. Environmental Science Technology,1999,33:1179-1184.
    [170]李新,黄显怀,伍昌年.饮用水除砷吸附剂的研究进展[J].工业用水与废水,2011,42(10):1-5.
    [171]Touzelin B., Revue Internationale des Hautes Temperatures et des Refractaires,1974.
    [172]Baron V.,Gutzmer J.,Rundloef H.,Tellgren R.. Neutron powder diffraction study of Mn-bearing hematite[J]. Solid State Sciences,2005,7: 753-759.
    [173]Jorgensen J.E.,Mosegaard L.,Thomsen L.E.Jensen T.R.,Hanson J.C. Formation of γ-Fe2O3 nanoparticles and vacancy ordering:An in situ X-ray powder diffraction study[J]. Journal of Solid State Chemistry,2007,180(1), 180-185.
    [174]Fleet M.E.. Next-nearest neighbor effects in the Mossbauer spectra of (Cr, Al) spinels[J]. Journal of Solid State Chemistry 1986,62,75-82.
    [175]Reiff W.M.,Kwiecien M.J.Jakeman R.J.B., Cheetham A.K.,Torardi C.C.. Structure and Magnetism of Anhydrous FeAsO4:Inter- vs Intradimer Magnetic Exchange Interactions[J]. Journal of Solid State Chemistry,1993, 107:401-412.
    [176]Bazan B., Mesa J.L., Pizarro J.L., Aguayo A.T., Arriortua M.I., Rojo T.. Fe(AsO4):A new iron(Ⅲ) arsenate synthesized from thermal treatment of (NH4)[Fe(AsO4)F][J].Chemical Communications (2003),2003,622-623
    [177]Chen R.Z., Zhang Zh.. Use of ferric-impregnated volcanic ash for arsenate (V) adsorption from contaminated water with various mineralization degrees[J]. Journal of Colloid and Interface Science,2011, 353:542-548.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700