用户名: 密码: 验证码:
杂合离子液体电解质、硅卟啉及吩噁嗪光敏剂在染料敏化太阳能电池中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光敏剂在染料敏化太阳能电池中起到吸收光子,并将光子转换成电子的作用,是电池的重要组成部分。发展新的光敏剂对于提高染料敏和太阳能电池的光电转换效率十分有利。早期对光敏剂的研究集中在金属配合物染料上,但是由于这类染料自身存在一些问题,人们逐渐将目光转移到摩尔消光系数较高、合成简单和结构多样的纯有机光敏剂。经过不断地发展,纯有机光敏剂已经取得长足发展。尽管如此,大部分纯有机光敏剂对近红外光区的光响应较弱,因此发展高效的纯有机近红外光敏剂对于进一步推动纯有机光敏剂的应用十分重要。
     首先,在高效吩噁嗪纯有机光敏剂TH305中引入π-桥基设计合成了3个染料,LJ101、LJ102和LJ103,π-桥基的引入有效地拓宽了光谱吸收。利用质谱、氢谱等手段对分子结构进行鉴定,并对染料的光物理和电化学性质进行了研究。将光敏剂应用于染料敏化太阳能电池,研究染料结构与电池性能之间的构效关系以及电池内部电子传递过程。与TH305相比,延长分子的共轭体系能够使染料分子的光谱吸收发生红移,但是同时降低了染料的LUMO能级,减小了激发态染料将电子注入到TiO2的驱动力,从而影响电池效率。
     因为卟啉类分子在500-700nm范围内有中等强度的吸收,并且卟啉分子具有可延长的共轭结构,因此受到广泛关注。由此本文设计合成了3种带轴向吸附基团的硅卟啉类光敏剂,LJ201、LJ202和LJ203,并对其结构进行了质谱和氢谱的表征,而后又进行了光物理和电化学性质的研究。通过测试不同CDCA浓度下,染料吸附在Ti02表面后的紫外可见吸收光谱发现,由于LJ201、LJ202和LJ203是通过轴向吸附方式吸附在Ti02上,避免了染料在膜上的聚集,因此在后续的电池测试中,没有使用CDCA做共吸附剂。将这3个染料用于染料敏化太阳能电池后,研究电池的光伏性能。由于三苯胺独特的螺旋桨结构可以抑制电子复合,LJ203获得了最高的光电转换效率。利用红外光谱研究染料吸附方式时发现,LJ201之所以表现出较差的光伏性能是因为其吸附方式是单齿,单齿吸附影响了其电子注入效率。
     电解质作为传递电子的媒介对电池性能产生很大影响。常用的I-/I3-液态电解质在可将光区有很强的吸收,并且在大面积电池的应用中会腐蚀电池中使用的金属,也会因溶剂挥发等问题对电池的封装造成影响,因此开发可替代的电解质十分有意义。
     在本论文中,S2-/Sx2-和I-杂合离子液体电解质分别与金属配合物光敏剂和纯有机光敏剂组装成电池。研究电池的光伏性能,以及电池内部电子的传递情况后发现,相比于I-/I3-电解质,这种杂合电解质几乎不吸收光,并且不论在金属配合物光敏剂敏化的电池还是纯有机光敏剂敏化的电池中均能够取得良好的实验结果。通过测试不同光照下的电池性能发现,这类杂合离子液体电解质在1个标准光强下与低光照下获得同样良好的光伏性能。最后本论文中还设计合成了一类I-/邻苯醌杂合电解质,研究了其在染料敏化太阳能电池中的应用情况。这类电解质由于存在电子复合问题,在染料敏化太阳能电池中的应用仍需要进一步的研究。
Among the components of dye-sensitized solar cells (DSCs), sensitizers play a vital role in the light-harvesting and converting photon to electron. The development of new sensitizers for DSCs is very important to improve the overall efficiency of the cell. In the early research, the focus was mainly on metal complexes as sensitizers. Lately since some disadvantages of metal complexes, more attention has been paid to metal-free organic dyes due to their high molar extinction coefficients, easy synthesis and structural modification. During recent research, metal-free organic dyes show the potential to take the place of metal complex sensitizers. However, metal-free dyes show poor performance in the near-infrared region. Therefore, it is significant to develop efficient near-infrared and metal-free sensitizers for DSCs.
     Firstly, three organic dyes (LJ101, LJ102, and LJ103) with different π-bridges such as thiophene,3-hexylthiophene and3,4-ethyldioxythiophene were prepared and applied for the dye-sensitized solar cells. The structures of LJ dyes have been characterized by mass spectra (MS) and1H NMR. The absorption and emission spectra, electrochemical measurements and density functional theory (DFT) calculation were carried out to estimate the optical and physical properties of these dyes. Furthermore, electrochemical-impedance spectroscopy (EIS) was performed to get insight into the charge transport process in DSCs. Since the introduction of π-bridges can extend the conjugation of molecules, the absorption spectra were redshift and molar extinction coefficients were increased. However, the LUMO levels are diminished and the performances of DSCs based on LJ dyes are slightly lower than that displayed by the parent dye TH305without π-bridges. This is most possibly due to the poor electron injection efficiency from excited dyes to TiO2conduction band.
     Porphyrins have gained attention as sensitizers due to their absorption in500-700nm and extended conjugation in structures. Herein, three silicon-porphyrin sensitizers based on axial adsorption have been reported, coded as LJ201, LJ202and L203. The structures of molecules have been characterized by mass spectra (MS) and1H NMR. The introduction of axial ligands units can suppress molecular aggregation. Furthermore, the bulky triphenylamine units introduced to LJ203could also reduce interfacial recombination. As a result, LJ203exhibited the highest overall efficiency. Through the resonance FTIR technique, it is found that the binding mode of LJ201is unidentate, indicating the low efficiency of electron injection.
     Electrolyte plays an important role in electron transfer in DSCs and now the most popular and efficient electrolyte system is the I-/I3-. However, I3-has strong absorption in visible region and chemical stability problem in large-scale commercial DSCs. The use of volatile organic solvents also has negative effect on the performance of DSCs in large scale application. Therefore, the development of alternative redox couples and non-volatile electrolytes is very important.
     The new binary solvent-free ionic liquid electrolytes containing the S2/Sx2-redox couple and I-were employed for DSCs based on N719and TH305. The photovoltaic properties and electron transfer process in DSCs were studied. The electrolytes are nearly colourless. Their performances are attractive as the none-iodine ionic liquid electrolytes under low light intensities or1sun intensity. At last, the binary electrolytes containing the I-/quinone redox couple were applied in DSCs. This redox couple has the tendency of recombination with electrons, therefore more work has been done for further application.
引文
[1]世界能源展望:中国选萃[R].国际能源署(IEA)2012.
    [2]Crabtree G W, Lewis N S. Solar energy conversion [J]. Phys. Today,2007,60 (3):37-42.
    [3]Ciamician G. The photochemistry of the future [J]. Science,1912,36 (926):385-94.
    [4]Armaroli N, Balzani V. The future of energy supply, Challenges and opportunities [J]. Angew. Chem. Int. Ed.,2007,46 (1-2):52-66.
    [5]Green M A. Photovoltaic principles [J]. Physica E,2002,14 (1-2):11-17.
    [6]Goetzberger A, Hebling C,Schock H-W. Photovoltaic materials, history, status and outlook [J]. Mater. Sci. Eng.,R,2003,40(1):1-46.
    [7]Crossley P A, Noel G T, Wolf M. Review and evaluation of past solar cell development efforts [R]. NASA,1967.
    [8]Chapin D M, Fuller C S, Pearson G L. A New Silicon p-n Junction Photocell for Converting Solar Radiation into Electrical Power [J]. J. Appl. Phys.,1954,25 (5):676-677.
    [9]Gratzel M. Photoelectrochemical cells [J]. Nature,2001 (6861),414:338-344.
    [10]杨树人,王昌宗,王兢等.半导体材料[M].北京:科学出版社,2013.
    [11]Basic Research Needs for Solar Energy Utilization [R]. US Department of Energy Office of Science, 2005.
    [12]O'regan B, Gratzel M. A low-cost high-efficiency solar cell based on dye-sensitized colloidal TiC>2 films [J]. Nature,1991,353 (6346):737-340.
    [13]Tsao H N, Yi C, Moehl T, et al. Cyclopentadithiophene bridged donor-acceptor dyes achieve high power conversion efficiencies in dye-sensitized solar cells based on the tris-cobalt bipyridine redox couple [J]. ChemSusChem,2011,4 (5):591-594.
    [14]Yella A, Lee H-W, Tsao H N, et al. Porphyrin-Sensitized Solar Cells with Cobalt (Ⅱ/Ⅲ)-Based Redox Electrolyte Exceed 12 Percent Efficiency [J]. Science,2011 (6056),334:629-634.
    [15]Hagfeld A, Gratzel M. Light-Induced Redox Reactions in Nanocrystalline Systems [J]. Chem. Rev., 1995,95 (11):49-68.
    [16]O'regan B, Durrant J R. Kinetic and Energetic Paradigms for Dye-Sensitized Solar Cells, Moving from the Ideal to the Real [J]. Acc. Chem. Res.,2009,42 (11):1799-1808.
    [17]Hagfeldt A, Gratzel M. Molecular photovoltaics [J]. Acc. Chem. Res.,2000 (5),33:269-277.
    [18]Gratzel M. Solar energy conversion by dye-sensitized photovoltaic cells [J]. lnorg. Chem.,2005,44 (20):6841-6851.
    [19]Peter L M. Characterization and modeling of dye-sensitized solar cells [J]. J. Phys. Chem. C,2007,111: 6601-6612.
    [20]Bisquert J, Cahen D, Hodes G, et al. Physical Chemical Principles of Photovoltaic Conversion with Nanoparticulate, Mesoporous Dye-Sensitized Solar Cells [J]. J. Phys. Chem. B,2004,108 (24): 8106-8118.
    [21]Ardo S, Meyer G J. Photodriven heterogeneous charge transfer with transition-metal compounds anchored to TiO2 semiconductor surfaces [J]. Chem. Soc. Rev.,2009,38 (1):115-164.
    [22]Peter L M. Dye-sensitized nanocrystalline solar cells [J]. PCCP,2007,9 (21):2630-2642.
    [23]Hagfeldt A, Boschloo G, Lindstrom H, et al. A system approach to molecular solar cells [J]. Coord. Chem. Rev.,2004,248 (13-14):1501-1509.
    [24]Koops S E, O'Regan B, Barnes P R F,et al.Parameters influencing the efficiency of electron injection in dye-sensitized solar cells [J]. J. Am. Chem. Soc.,2009,131 (13):4808-4818.
    [25]Kavban L, Gratzel M. Highly efficient semidonducting TiO2 photoelectrodes prepared by aerosol pyrolysis [J]. Electrochim. Acta,1995,40 (5):643-652.
    [26]Cameron P J, Peter L M. Characterization of titanium dioxide blocking layers in dye-sensitized nanocrystalline solar cells [J]. J. Phys. Chem. B,2003,107 (51):14394-14400.
    [27]Choi H, Kim S, Kang S O, et al. Stepwise cosensitization of nanocrystalline TiO2 films utilizing A12O3 layers in dye-sensitized solar cells [J].Angew. Chem. Int. Ed.,2008,47 (43):8259-8263.
    [28]Cameron P J, Peter L M, Zakeeruddin S M, et al. Electrochemical studies of the Co(III)/Co(II)(dbbip)2 redox couple as a mediator for dye-sensitized nanocrystalline solar cells [J]. Coord. Chem. Rev.2004, 248(13-14):1447-1453.
    [29]Kruger J, Plass R, Gratzel M,et al. Charge transport and back reaction in solid-state dye-sensitized solar cells, a study using intensity-modulated photovoltage and photocurrent spectroscopy [J]. J. Phys. Chem. B,2003,107 (31):7536-7539.
    [30]Shah A. Photovoltaic Technology, The Case for Thin-Film Solar Cells [J]. Science,1999,285 (5428): 692-698.
    [31]唐笑,钱觉时,黄佳木.染料敏化太阳能电池中的光电极制备技术[J].材料导报,2006,20(3):97-103.
    [32]Hamann T W, Jensen R A, Martinson A B F, et al. Advancing beyond current generation dye-sensitized solar cells [J]. Energ. Environ. Sci.,2008,1 (1):66-78.
    [33]Pagliaro M, Palmisano G, Ciriminna R, et al. Nanochemistry aspects of titania in dye-sensitized solar cells [J]. Energ. Environ. Sci.,2009,2 (8):838-844.
    [34]Jose R, Thavasi V, Ramakrishna S. Metal Oxides for Dye-Sensitized Solar Cells [J]. J. Am. Chem. Soc,2009,92 (2):289-301.
    [35]Zhang Q, Dandeneau C S, Zhou X, et al. ZnO Nanostructures for Dye-Sensitized Solar Cells [J]. Adv. Mater.,2009,21 (41):4087-4108.
    [36]Guo P, Aegerter M A. Ru(II) sensitized Nb2O5 solar cell made by the sol-gel process [J]. Thin Solid Films,1999,351:290-294.
    [37]Tan B, Toman E, Li Y, et al. Zinc stannate (Zn2SnO4) dye-sensitized solar cells [J]. J. Am. Chem. Soc., 2007,129 (14):4162-4163.
    [38]Tennakone K, Kumara G R R A, Kottegoda I R M,et al. An efficient dye-sensitized photoelectrochemical solar cell made from oxides of thin and zinc [J]. Chem. Commun.,1999 (1): 15-16.
    [39]Kay A, Gratzel M. Dye-sensitized core-shell nanocrystals, improved efficiency of mesoporous tin oxide electrodes coated with a thin layer of an insulating oxide [J]. Chem. Mater.,2002,14 (7): 2930-2935.
    [40]Kumara G R R A, Tennakone K, Pererea V P S,et al. Suppression of recombinations in a dye-sensitized photoelectrochemical cell made from a film of tin IV oxide crystallites coated with a thin layer of aluminium oxide [J]. J. Phys. D, Appl. Phys.,2001,34 (6):868-373.
    [41]Ito S, Makari Y, Kitamura T, et al. Fabrication and characterization of mesoporous Sn02/ZnO-composite electodes for efficient dye solar cells [J]. J. Mater. Chem.,2004,14 (3): 385-390.
    [42]李靖,孙明轩,张晓艳等.染料敏化太阳能电池对电极[J].物理化学学报,2011,27(10):2255-2268.
    [43]Papageorgiou N. An Iodine/Triiodide Reduction Electrocatalyst for Aqueous and Organic Media [J]. J. Electrochem. Soc.,1997,144 (3):876-884.
    [44]Kay A, Gratzel M. Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder [J]. Solar Energy Materials and Solar Cells,1996,44:99-117.
    [45]Pettersson H, Gruszecki T, Bernhard R, et al. The monolithic multicell:a tool for testing material components in dye-sensitized solar cells [J]. Prog. Photovolt:Res. Appl.,2007,15 (2):113-121.
    [46]Ramasamy E, Lee W J, Lee D Y, et al. Nanocarbon counterelectrode for dye sensitized solar cells [J]. Appl. Phys. Lett.,2007,90 (17):173103.
    [47]Suziki K, Yamaguchi M, Kumagai M, et al. Application of carbon nanotubes to counter electrodes of dye-sensitized solar cells [J]. Chem. Lett.,2003,32 (1):28-29.
    [48]Lee B, Buchholz D B, Chang R P H. An all carbon counter electrode for dye sensitized solar cells [J]. Energ. Environ. Sci.,2012,5 (5):6941-6952.
    [49]Bay L, West K, Wintherjensen B, et al. Electrochemical reaction rates in a dye-sensitised solar cell-the iodide/tri-iodide redox system [J]. Sol. Energy Mater. Sol. Cells,2006,90 (3):341-351.
    [50]Saito Y, Kubo W, Kitamura T, et al. I-/I3-redox reaction behavior on poly(3,4-ethylenedioxythiophene) counter electrode in dye-sensitized solar cells [J]. J. Photochem. Photobiol. A:Chemistry,2004,164 (1-3):153-157.
    [51]Wang M, Anghe A M, Marsan B, et al. CoS Supersedes Pt as Efficient Electrocatalyst for triiodide reduction in dye-sensitized solar cells [J]. J. Am. Chem. Soc.,2009,131 (44):15976-15977.
    [52]梁茂,陶占良,陈军。染料敏化太阳能电池中的光敏剂[J].化学通报,2005(12): 889-896.
    [53]Karlsson K M, Jiang X, Eriksson S K, et al. Phenoxazine dyes for dye-sensitized solar cells, relationship between molecular structure and electron lifetime [J]. Chemistry,2011,17 (23): 6415-6424.
    [54]Bisquert J, Zaban A, Salvador P. Analysis of the mechanisms of electron reconbiantion in nanoporous TiO2 dye-sensitized solar cells. Nonequilibrium steady-state statistics and interfacial electron transfer via surface states [J]. J. Phys. Chem. B,2002,106 (34):8774-8782.
    [55]Nazeeruddin M K, Kay A, Rodicio I, et al. Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(Ⅱ) charge-transfer sensitizers (X=Cl-,Br-, I-, CN-, and SCN-) on nanocrystalline TiO2 electrodes [J]. J. Am. Chem. Soc.,1993,115:6382-6390.
    [56]Nath M, Choudhury A, Kundu A, et al. Synthesis and characterization of magnetic iron sulfide nanowires [J]. Adv. Mater.,2003,15 (24):2098-2101.
    [57]Gao F, Wang Y, Shi D, et al. Enhance the optical absorptivity of nanocrystalline TiO2 film with high molar exitinction coefficient Ruthenium sensitizers for high performance dye-sensitized solar cells [J]. J. Am. Chem. Soc.,2008,130(32):10720-10728.
    [58]Gao F, Wang Y, Zhang J, et al. A new heteroleptic ruthenium sensitizer enhances the absorptivity of mesoporous titania film for a high efficiency dye-sensitized solar cell [J]. Chem. Commun.,2008,44 (23):2635-2637.
    [59]Cao Y, Bai Y, Yu Q, et al. Dye-sensitized solar cells with a high absorptivit ruthenium sensitizer featuring a 2-(hexylthio)thiophene conjugated bipyridine [J]. J. Phys. Chem. C,2009,113 (15): 6290-6297.
    [60]Gao F, Cheng Y, Yu Q, et al. Conjugation of selenophene with bipyridine for a high molar extinction coefficient sensitizer in dye-sensitized solar cells [J]. Inorg. Chem.,2009,48 (6):2664-2669.
    [61]Robson K C, Koivisto B D, Yella A, et al. Design and development of functionalized cyclometalated ruthenium chromophores for light-harvesting applications [J]. Inorg. Chem.,2011,50 (12): 5494-5508.
    [62]Lammi R K, Wagner R W, Arounaguiry A, et al. Mechanisms of excited-state energy-transfer gating in linear versus branched multiporphyrin arrays [J]. J. Phys. Chem. B,2001,105 (22):5341-5352.
    [63]Cherian S, Wamser C C. Adsorption and photoactivity of tera(4-carboxyphenyl)porphyrine (TCPP)on nanoparticulate TiO2 [J]. J. Phys. Chem. B,2000,104 (15):3624-3629.
    [64]Fungo F, Otero L A, Durantini E N, et al. Photosensitization thin SnO2 nanocrystalline seniconductor film electrodes with metallodiporphyrin [J]. J. Phys. Chem. B,2000,104 (32):7644-7651.
    [65]Fungo F, Otero L A, Sereno L, et al. Synthesis of porphyrin dyads with potential use in solar energy conversion [J]. J. Mater. Chem.,2000,10 (3):645-650.
    [66]Tachibana Y, Haque S A, Mercer I P, et al. Electron injection and recombination in dye sensitized nanocrystalline tianium dioxide films, a comparison of ruthenium bipyridyl and porphyrin sensitizer dyes [J]. J. Phys. Chem. B,2000,104 (6):1198-1205.
    [67]Kay A, Gratzel M. Artificial photosynthesis.1. Photosensitization of TiO2 solar cells with chlorophyll derivatives and related natural porphyrins [J]. J. Phys. Chem.,1993,97 (23):6272-6277.
    [68]Forneli A, Planells M, Sarmentero M A, et al. The role of para-alkyl substituents on meso-phenyl porphyrin sensitised TiO2 solar cells, control of the eTiO2/electrolyte+recombination reaction [J]. J. Mater. Chem.,2008,18(14):1652-1658.
    [69]Park J K, Lee H R, Chen J, et al. Photoelectrochemical properties of doubly β-functionalized porphyrin sensitizers for dye-sensitized nanocrystalline-TiO2 solar cells [J]. J. Phys. Chem. C,2008,112 (42): 16691-16699.
    [70]Koehorst R B M, Boschloo G K, Savenije T J, et al. Spectral sensitization of TiO2 substates by monolayers of porphyrin heterofimers [J]. J. Phys. Chem. B,2000,104 (6):2371-2377.
    [71]Odobel F, Blart E, Lagree M, et al. Porphyrin dyes for TiO2 sensitization [J]. J. Mater. Chem.,2003,13 (3):502-510.
    [72]Nazeeruddin M K, Humphry-Baker R, Officer D L, et al. Application of metalloporphyrins in nanocrystaline dye-sensitized solar cells for conversion of sunlight into electricity [J]. Langmuir,2004, 20 (15):6514-6517.
    [73]Gerbaldo M, Fungo F, Durantini E N, et al. Carboxyphenyl metalloporphyeins as photosensitizers of semiconductor film electrodes. A study of the effect of different central metals [J]. J. Phys. Chem. B, 2005,109 (44):20953-20962.
    [74]Balanay M P, Dipaling C V P, Lee S H, et al. AM1 molecular screening of novel porphyrin analogues as dye-sensitized solar cells [J]. Sol. Energy Mater. Sol. Cells,2007,91 (19):1775-1781.
    [75]Wang Q, Campbell W M, Bonfatani E E, et al. Efficient light harvesting by using green Zn-porphyrin-sensitized nanocrystalline TiO2 films [J]. J. Phys. Chem. B,2005,109 (32): 15397-15409.
    [76]Campbell W M, Jolley K W, Wagner P, et al. HIghly efficient porphyrin sensitizers for dye-sensitized solar cells [J]. J. Phys. Chem. C,2007,111 (32):11760-11762.
    [77]Schmidt-Mende L, Campbell W M, Wang Q, et al. Zn-porphyrin-sensitized nanocrystalline TiO2 heterojunction photovoltaic cells [J]. Chemphyschem.,2005,6 (7):1253-1258.
    [78]Eu S, Hayashi S, Umeyama T, et al. Effects of 5-membered heteroaromatic spacers on structures of porphyrin film and photovolatic properties of porphrin-sensitized TiO2 cells [J]. J. Phys. Chem. C, 2007,111 (8):3528-2537.
    [79]Tanaka M, Hayashi S, Eu S, et al. Novel unsymmetrically π-elongated porphyrin for dye-sensitized TiO2 cells [J]. Chem. Commun.,2007,43 (20):2069-2071.
    [80]Hayashi S, Tanaka M, Hayashi H, et al. Naphthyl-fused π-elongated porphyrins for dye-sensitized TiO2 cells [J]. J. Phys. Chem. C,2008,112 (39):15576-15585.
    [81]Eu S, Hayashi S, Umeyama T, et al. Quinoxaline-fused porphyrins for dye-sensitized solar cells [J]. J. Phys. Chem. C,2008,112(11):4396-4405.
    [82]Liu Y, Xiang N, Feng X, et al. Thiophene-linked porphyrin derivatives for dye-sensitized solar cells [J]. Chem. Commun.,2009,45 (18):2499-2501.
    [83]Hsieh C-P, Lu H-P, Chiu C-L, et al. Synthesis and characterization of porphyrin sensitizers with various electron-donating substituents for highly efficient dye-sensitized solar cells [J]. J. Mater. Chem.,2010,20 (6):1127-1134.
    [84]Lu H-P, Tsai C-Y, Yen W-N, et al. Control of dye aggregation and electron injection for highly efficient porphyrin sensitizers adsorbed on semiconductor films with varying ratios of coadsorbate [J]. J. Phys. Chem. C,2009,113 (49):20990-20997.
    [85]Bessho T, Zakeeruddin S M, Yeh C-Y, et al. Highly Efficient Mesoscopic Dye-Sensitized Solar Cells Based on Donor-Acceptor-Substituted Porphyrins [J]. Angew. Chem. Int. Ed.,2010,122 (37): 6796-6799.
    [86]Subbaiyan N K, Wijesinghe C A, D'souza F. Supramolecular solar cells, surface modification of nanocrytalline TiO2 with coordinating ligands to immobilize sensitizers and dyads via metal-ligand coordination for enhanced photocurrent generation [J]. J. Am. Chem. Soc.,2009,131 (11): 14646-14647.
    [87]Ragoussi M E, Cid J J, Yum J H, et al. Carboxyethynyl anchoring ligands, a means to improving the efficiency of phthalocyanine-sensitized solar cells [J]. Angew. Chem. Int. Ed.,2012,51 (18): 4375-4378.
    [88]Nazeeruddin M K, Humphry-Baker R, Gratzel M, et al. Efficient near IR sensitization of nanocrystalline TiO2 films by ruthenium phthalocyanines [J]. Chem. Commun.,1998,35 (6):719-720.
    [89]Kuciauskas D, Monat J E, Villahermosa R, et al. transient absorption spectroscopy ruthenium and osmium polypyridyl complexes adsorbed onto nanocrystalline TiO2 photoelectrodes [J]. J. Phys. Chem. B,2002,106 (36):9347-9358.
    [90]Fischer A, Hoffmann H, Medick P, et al. A novel method for the alignment of lyortopic La phases in magnetic fields [J]. J. Phys. Chem. B,2002,106 (26):6821-6826.
    [91]Sauve G, Cass M E, Doig S J, et al. High quantum yield sensitization of nanocrystalline titanium dioxide photoelectrodes with cis-dicyanobis(4,4'dicarboxy-2,2'-bipyridine)-osmium(II) or tris(4,4'-dicarboxy-2,2'-bipyridine)osmium(II) complexes [J]. J. Phys. Chem. B,2000,104 (15): 3488-3491.
    [92]Altobello S, Argazzi R, Caramori S, et al. Sensitization of nanocrystalline TiO2 with black absorbers based on Os and Ru pollypyridine complexes [J]. J. Am. Chem. Soc.,2005,127 (44):15342-15343.
    [93]Alebbi M, Bignozzi C, Heimer T A, et al. The limiting role of iodide oxidation in cis-Os(dcb)2(CN)/Ti02 photoelectrochemical cells [J]. J. Phys. Chem. B,1998,102 (39):7577-7581.
    [94]Hasselmann G M, Meyer G J. Diffusion-limited interfacial electron transfer with large apparent driving forces [J]. J. Phys. Chem. B,1999,103 (36):7671-7675.
    [95]Ferrere S, Gregg B A. Photosensitization of TiO2 by [FeII(2,2'-bipyridine-4,4'-dicarboxylic acid)2(CN)], band selective electron injecion from ultra-short-lived excited states [J]. J. Am. Chem. Soc.,1998,120 (4):843-844.
    [96]Ferrere S. New photosensitizers based upon [Fe(L)2(CN)2] and [Fe(L)3] (L= substituted 2,2'-bipyridine), yields for the photosensitization of TiO2 and effects on the band selectibity [J]. Chem. Mater.,2000,12 (4):1083-1089.
    [97]Ferrere S. New photosensitizers based upon [FeⅡ(L)2(CN)2] and [FeⅡL3], where L is substituted 2,2'-bipyridine [J]. Inorg. Chim. Acta,2002,329 (1):79-92.
    [98]Islam A, Sugihara H, Hara K, et al. Dye sensitization of nanocrystalline titanium dioxide with square planar platimun(II) diimine dithiolate complexes [J]. Inorg. Chem.,2001,40 (21):5371-5380.
    [99]Bessho T, Constable E C, Gratzel M, et al. An element of surprise--efficient copper-functionalized dye-sensitized solar cells [J]. Chem. Commun.,2008,44 (32):3717-3719.
    [100]Hara K, Wang Z-S, Sato T, et al. Oligothiophene-containing coumarin dyes for efficient dye-sensitized solar cells [J]. J. Phys. Chem. B,2005,109 (32):15476-15482.
    [101]Hara K, Sato T, Katoh R, et al. Molecular design of coumarin dyes for efficient dye-sensitized solar cells [J]. J. Phys. Chem. B,2003,107 (2):597-606.
    [102]Hara K, Sayama K, Arakawa H, et al. A coumarin-derivative dye sensitized nanocrystalline TiO2 solar cell having a high solar-energy conversion efficiency up to 5.6%[J]. Chem. Commun.,2001,38 (6):569-570.
    [103]Hara K, Kurashige M, Dan-Oh Y, et al. Design of new coumarin dyes having thiophene moieties for highly efficient organic-dye-sensitized solar cells [J]. New J. Chem.,2003,27 (5):783-785.
    [104]Hara K, Miyamoto K, Abe Y, et al. Electron transport in coumarin-dye-sensitized nanocrystalline TiO2 electrodes [J]. J. Phys. Chem. B,2005,109 (50):23776-23778.
    [105]Hara K, Dan-Oh Y, Kasada C, et al. Effect of additives on the photovoltaic performance of coumarin-dye-sensitized nanocrystalline TiO2 solar cells [J]. Langmuir,2004,20 (10):4205-4210.
    [106]Hara K, Tachibana Y, Ohga Y, et al. Dye-sensitized nanocrystalline TiO2 solar cells based on novel coumarin dyes [J]. Sol. Energy Mater. Sol. Cells,2003,77 (1):89-103.
    [107]Furube A, Katoh R, Hara K, et al. Lithium ion effect on electon injection from a photoexcited coumarin derivative into a TiO2 noanocrystalline film investigated by visible-to-IR ultrafast spectroscopy [J]. J. Phys. Chem. B,2005,109 (34):16406-16414.
    [108]Wang Z-S, Hara K, Dan-Oh Y, et al. Photophysical and (photo)electrochemical properties of a coumarin dye [J]. J. Phys. Chem. B,2005,109 (9):3907-3914.
    [109]Wang Z-S, Cui Y, Dan-Oh Y, et al. Thiophene-functionalized coumarin dye for efficient dye-sensitized solar cells, electron lifetime improved by coadsorption of deoxychiolic acid [J]. J. Phys. Chem. C,2007,111(19):7224-7230.
    [110]Wang Z S, Cui Y, Hara K, et al. A High-Light-Harvesting-Efficiency Coumarin Dye for Stable Dye-Sensitized Solar Cells [J]. Adv. Mater.,2007,19 (8):1138-1141.
    [111]Wang Z-S, Cui Y, Dan-Oh Y, et al. Molecular design of coumarin dyes for stable and efficient organic dye-sensitized solar cells [J]. J. Phys. Chem. C,2008,112 (50):17011-17017.
    [112]Rehm J M. Femtosecond electon-transfer dynamics at a sensitizing dye-semiconductor (TiO2) interface [J]. J. Phys. Chem.,1996,100 (23):9577-9578.
    [113]Horiuchi T, Miura H, Uchida S. Highly-efficient metal-free organic dyes for dye-sensitized solar cells [J]. Chem. Commun.,2003,39 (24):3036-3037.
    [114]Ito S, Miura H, Uchida S, et al. High-conversion-efficiency organic dye-sensitized solar cells with a novel indoline dye [J]. Chem. Commun.,2008,44 (41):5194-5196.
    [115]Kuang D, Uchida S, Humphry-Baker R, et al. Organic dye-sensitized ionic liquid based solar cells, remarkable enhancement in performance through molecular design of indoline sensitizers [J]. Angew. Chem. Int. Ed.,2008,47 (10):1923-1927.
    [116]陈瑞奎.四氢喹啉类光敏染料用于染料敏化太阳能电池的研究[D].大连:大连理工大学化工与环境生命学部,2007.
    [117]Hao Y, Yang X, Cong J, et al. Engineering of highly efficient tetrahydroquinoline sensitizers for dye-sensitized solar cells [J]. Tetrahedron,2012,68 (2):552-558.
    [118]Hao Y, Yang X, Zhou M, et al. Molecular design to improve the performance of donor-π acceptor near-IR organic dye-sensitized solar cells [J]. ChemSusChem,2011,4 (11):1601-1605.
    [119]Zhang G, Bala H, Cheng Y, et al. High efficiency and stable dye-sensitized solar cells with an organic chromophore featuring a binary pi-conjugated spacer [J]. Chem. Commun.,2009,45 (16):2198-2200.
    [120]Marinado T, Hagberg D P, Hedlund M, et al. Rhodanine dyes for dye-sensitized solar cells spectroscopy, energy levels and photovoltaic performance [J]. PCCP,2009,11 (1):133-141.
    [121]Kitamura T, Ikeda M, Shigaki K, et al. Phenyl-conjugated oligoene sensitizers for TiO2 solar cells [J]. Chem. Mater.,2004,16 (9):1806-1812.
    [122]Thomas K R J, Lin J T, Hsu Y-C, et al. Organic dyes containing thienylfluorene conjugation for solar cells [J]. Chem. Commun.,2005,41 (32):4098-4100.
    [123]Velusamy M, Thomas K R J, Lin J T, et al. Organic dyes incorporating low-band-gap chromophores fordye-sensitized solar cells [J]. Org Lett,2005,7(10):1899-1902.
    [124]Thomas K R J, Hsu Y-C, Lin J T, et al.2,3-Disubstituted thiophene-based organic dyes for solar cells [J]. Chem. Mater.,2008,20 (5):1830-1840.
    [125]Baheti A, Tyagi P, Thomas K R J, et al. Simple triphenylamine-based dye containing fluorene and biphenyl linkers for efficient dye-sensitized solar cells [J]. J. Phys. Chem. C,2009,113 (20):8541-8647.
    [126]Lin J T, Chen P-C, Yen Y-S, et al. Organic dyes containing furan moiety for high-performance dye-sensitized solar cells [J]. Org. Lett.,2009,11 (1):97-100.
    [127]Hagberg D P, Edvinsson T, Marinado T, et al. A novel organic chromophore for dye-sensitized nanostructured solar cells [J]. Chem. Commun.,2006,42 (21):2245-2247.
    [128]Hagberg D P, Yum J-H, Lee H, et al. Molecular engineering of organic sensitizers for dye-densitized dolar cell applications [J]. J. Am. Chem. Soc.,2008,130 (19):6259-6266.
    [129]Yum J H, Hagberg D P, Moon S J, et al. A light-resistant organic sensitizer for solar-cell applications [J]. Angew. Chem. Int. Ed. Engl,2009,48 (9):1576-1580.
    [130]Tian Z, Huang M, Zhao B, et al. Low-cost dyes based on methylthiophene for high-performance dye-sensitized solar cells [J]. Dyes Pigment.,2010,87 (3):181-187.
    [131]Zeng W, Cao Y, Bai Y, et al. Efficient Dye-Sensitized Solar Cells with an Organic Photosensitizer Featuring Orderly Conjugated Ethylenedioxythiophene and Dithienosilole Blocks [J]. Chem. Mater., 2010,22(5):1915-1925.
    [132]Wu Y, Marszalek M, Zakeeruddin S M, et al. High-conversion-efficiency organic dye-sensitized solar cells, molecular engineering on D-A-π-A featured organic indoline dyes [J]. Energ. Environ. Sci., 2012,5 (8):8261-8272.
    [133]Mann J R, Gannon M K, Fitzgibbons T C, et al. Optimizing the photocurrent efficiency of dye-sensitized solar cells through the controlled aggregation of chalcogenoxanthylium dyes on nanocrystalline titania films [J]. J. Phys. Chem. C,2008,112 (34):13057-13061.
    [134]Zhou G, Pschirer N, Schoneboom J C, et al. Ladder-type pentaphenylene dyes for dye-sensitized solar cells [J]. Chem. Mater.,2008,20(5):1808-1815.
    [135]Hara K, Horiguchi T, Kinoshita T, et al. Highly efficient photon-to-electron conversion with mercurochrome-sensitized nanoporous oxide semiconductor solar cells [J]. Sol. Energy Mater. Sol. Cells,2000,64 (2):115-134.
    [136]Hattori S, Hasobe T, Ohkubo K, et al. Enhanced energy and quantum efficiencies of a nanocrystalline photoelectrochemical cell sensitized with a donor-acceptor dyad derived from fluorescein [J]. J. Phys. Chem. B,2004,108 (39):15200-15205.
    [137]Ooyama Y, Harima Y. Molecular Designs and Syntheses of Organic Dyes for Dye-Sensitized Solar Cells [J]. Eur. J. Org. Chem.,2009,2009 (18):2903-2934.
    [138]Tian H, Yang X, Chen R, et al. A metal-free "black dye" for panchromatic dye-sensitized solar cells [J]. Energ. Environ. Sci.,2009,2 (6):674-677.
    [139]Wang Z-S, Koumura N, Cui Y, et al. Hexylthiophene-functionalized carbazole dyes for efficient molecular photovoltaics, tuning of solar-cell performance by structural modification [J]. Chem. Mater., 2008,20 (12):3993-4003.
    [140]Ooyama Y, Shimada Y, Kagawa Y, et al. Synthesis of new-type donor-acceptor π-conjugated benzofuro[2,3-c]oxazolo[4,5-a]carbazole fluorescent dyes and their photovoltaic performances of dye-sensitized solar cells [J]. Tetrahedron Lett.,2007,48 (52):9167-9170.
    [141]Hara K, Kurashige M, Ito S, et al. Novel polyene dyes for highly efficient dye-sensitized solar cells [J]. Chem. Commun.,2003,39 (2):252-253.
    [142]Hara K, Sato T, Katoh R, et al. Novel conjugated organic dyes for efficient dye-sensitized solar cells [J]. Ad. Funct. Mater.,2005,15 (2):246-252.
    [143]Li S-L, Jiang K-J, Shao K-F, et al. Novel organic dyes for efficient dye-sensitized solar cells [J]. Chem. Commun.,2006,42 (26):2792-2794.
    [144]Wang Z-S, Li F-Y, Huang C-H. Highly efficient sensitization of nanocrystalline TiO2 films with styryl benzothiazolium propylsulfonate [J]. Chem. Commun.,2000,36 (20):2063-2064.
    [145]Wang Z-S, Li F-Y, Huang C-H, et al. Photoelectric conversion properties of nanocrystalline TiO2 electrodes sensitized with hemicyanine derivatives [J]. J. Phys. Chem. B,2000,104 (41):9676-9682.
    [146]Wang Z-S, Li F-Y, Huang C-H. Photocurrent enhancement of hemicyanine dyes containing RSO3-group through treating TiO2 films with hydrochloric acid [J]. J. Phys. Chem. B,2001,105 (38): 9210-9217.
    [147]Yao Q-H, Meng F-S, Li F-Y, et al. Photoelectric conversion properties of four novel carboxylated hemicyanine dyes on TiO2 electrode [J]. J. Mater. Chem.,2003,13 (5):1048-1053.
    [148]Yao Q-H, Shan L, Li F-Y, et al. An expanded conjugation photosensitizer with two different adsorbing groups for solar cells [J]. New J. Chem.,2003,27 (8):1277-1283.
    [149]Sayama K, Hara K, Sugihara H, et al. Photosensitization of a porous TiO2 electrode with merocyanine dyes containing a carboxyl group and a long alkyl chain [J]. Chem. Commun.,2000,36 (13): 1173-1174.
    [150]Sayama K, Tsukagoshi S, Hara K, et al. Photoelectrochemical properties of J aggregates of benzothiazole merocyanine dyes on a nanostructured TiO2 film [J]. J. Phys. Chem. B,2002,106 (6): 1363-1371.
    [151]Sayama K, Tsukagoshi S, Mori T, et al. Efficient sensitization of nanocrystalline TiO2 films with cyanine and merocyanine organic dyes [J]. Sol. Energy Mater. Sol. Cells,2003,80 (1):47-71.
    [152]Yum J H, Walter P, Huber S, et al. Efficient far red sensitization of nanocrystalline TiO2 films by an unsymmetrical squaraine dye [J]. J. Am. Chem. Soc.,2007,129 (34):10320-10321.
    [153]Ferrere S, Zaban A, Gregg B A. Dye sensitization of nanocrystalline tin oxide by perylene derivatives [J]. J. Phys. Chem. B,1997,101 (23):4490-4493.
    [154]Fortage J, Severac M, Houarner-Rassin C, et al. Synthesis of new perylene imide dyes and their photovoltaic performances in nanocrystalline TiO2 dye-sensitized solar cells [J]. J. Photochem. Photobiol. A:Chemistry,2008,197 (2-3):156-169.
    [155]Li C, Yum J H, Moon S J, et al. An improved perylene sensitizer for solar cell applications [J]. ChemSusChem,2008,1 (7):615-618.
    [156]Keerthi A, Liu Y, Wang Q, et al. Synthesis of perylene dyes with multiple triphenylamine substituents [J]. Chemistry,2012,18 (37):11669-11676.
    [157]Kolemen S, Bozdemir O A, Cakmak Y, et al. Optimization of distyryl-Bodipy chromophores for efficient panchromatic sensitization in dye sensitized solar cells [J]. Chem. Sci.,2011,2 (5): 949-954.
    [158]Mao M, Wang J-B, Xiao Z-F, et al. New 2,6-modified BODIPY sensitizers for dye-sensitized solar cells [J]. Dyes Pigment.,2012,94 (2):224-232.
    [159]Tan S, Zhai J, Fang H, et al. Novel carboxylated oligothiophenes as sensitizers in photoelectric conversion systems [J]. Chemistry,2005,11 (21):6272-6276.
    [160]Miyazaki E, Okanishi T, Suzuki Y, et al. Simple Oligothiophene-Based Dyes for Dye-Sensitized Solar Cells (DSCs), Anchoring Group Effects on Molecular Properties and Solar Cell Performance [J]. Bull. Chem. Soc. Jpn.,2011,84 (5):459-465.
    [161]Hao Y, Yang M, Yu C, et al. Photoelectrochemical studies on acid-doped polyaniline as sensitizer for TiO2 nanoporous film [J]. Sol. Energy Mater. Sol. Cells,1998,56 (1):75-84.
    [162]Kim Y-G, Walker J, Samuelson L A, et al. Efficient light harvesting polymers for nanocrystalline TiO2 photovoltaic cells [J]. NANO Letters,2003,3(4):523-525.
    [163]Ohshita J, Matsukawa J, Hara M, et al. Attachment of Disilanylene-Oligothienylene Polymers on TiO2 Surface by Photochemical Cleavage of the Si-Si Bonds [J]. Chem. Lett.,2008,37 (3):316-317.
    [164]Liu X, Zhu R, Zhang Y, et al. Anionic benzothiadiazole containing polyfluorene and oligofluorene as organic sensitizers for dye-sensitized solar cells [J]. Chem. Commun.,2008,44 (32):3789-3791.
    [165]Miyasaka T. Toward Printable Sensitized Mesoscopic Solar Cells, Light-Harvesting Manageme nt with Thi n TiO2 Films [J]. J. Phys. Chem. Lett.,2011,2 (3):262-269.
    [166]Senadeera G K R, Kitamura T, Wada Y, et al. Photosensitization of nanocrystalline TiO2 films by a polymer with two carboxylic groups, poly (3-thiophenemalonic acid) [J]. Sol. Energy Mater. Sol. Cells,2005,88 (3):315-322.
    [167]Mwaura J K, Zhao X, Jiang H, et al. Spectral broadening in Nanocrystalline TiO2 solar cells based on poly(p-phenylene ethynylene) and polythiophene sensitizers [J]. Chem. Mater.,2006,18 (26): 6109-6111.
    [168]Meng S, Ren J, Kaxiras E. Natural dyes adsorbed on TiO2 nanowire for photovoltaic applications, enhanced light absorption and ultrafast electron injection [J]. NANO Letters,2008,8 (10): 3266-3272.
    [169]Calogero G, Di Marco G, Caramori S, et al. Natural dye senstizers for photoelectrochemical cells [J]. Energ. Environ. Sci.,2009,2 (11):1162-1172.
    [170]Ito S, Saitou T, Imahori H, et al. Fabrication of dye-sensitized solar cells using natural dye for food pigment, Monascus yellow [J]. Energ. Environ. Sci.,2010,3 (7):905-909.
    [171]Narayan M R. Review, Dye sensitized solar cells based on natural photosensitizers [J]. Renew. Sust. Energ. Rev.,2012,16 (1):208-215.
    [172]Boschloo G, Hagfeldt A. Characteristics of the iodide/triiodide redox mediator in dye-sensitized solar cells [J]. Acc. Chem. Res.,2009,42 (11):1819-1826.
    [173]Marcus R A. On the Theory of Oxidation-Reduction Reactions Involving Electron Transfer. I [J]. J. Chem. Res.,1956,24 (5):966-978.
    [174]Nusbaumer H, Moser J E, Zakeeruddin S M, et al. CoⅡ(dbbip)22+complex rivals tri-iodide/Iodide redox mediator in dye-sensitized photovoltaic cells [J]. J. Phys. Chem. B,2001,105 (43): 10461-10464.
    [175]Nelson J, Amick T J, Elliott C M. Mass transport of polypyridyl cobalt complexes in dye-sensitized solar cells with mesoporous TiO2 photoanodes [J]. J. Phys. Chem. C,2008,112 (46):18255-18263.
    [176]Hagberg D P, Jiang X, Gabrielsson E, et al. Symmetric and unsymmetric donor functionalization. comparing structural and spectral benefits of chromophores for dye-sensitized solar cells [J]. J. Mater. Chem.,2009,19 (39):7232-7238.
    [177]Feldt S M, Gibson E A, Gabrielsson E, et al. Design of organic dyes and cobalt polypyridine redox mediators for high-efficiency dye-sensitized solar cells [J]. J. Am. Chem. Soc.,2010,132 (46): 16714-16724.
    [178]Daeneke T, Kwon T-H, Holmes A B, et al. High-efficiency dye-sensitized solar cells with ferrocene-based electrolytes [J]. Nat Chem.,2011,3 (3):211-215.
    [179]Daeneke T, Uemura Y, Duffy N W, et al. Aqueous dye-sensitized solar cell electrolytes based on the ferricyanide-ferrocyanide redox couple [J]. Adv. Mater.,2012,24 (9):1222-1225.
    [180]Bai Y, Yu Q, Cai N, et al. High-efficiency organic dye-sensitized mesoscopic solar cells with a copper redox shuttle [J]. Chem. Commun.,2011,47 (15):4376-4378.
    [181]Li T C, Spokoyny A M, She C, et al. Ni(Ⅲ)/(IV) bis(dicarbollide) as a fast, noncorrosive redox shuttle for dye-sensitized solar cells [J]. J. Am. Chem. Soc.,2010,132 (13):4580-4582.
    [182]Zhang Z, Chen P, Murakami T N, et al. The 2,2,6,6-tetramethyl-l-piperidinyloxy radical, an efficient, iodine-free redox mediator for dye-sensitized solar cells [J]. Adv. Funct. Mater.,2008,18 (2): 341-346.
    [183]Kato F, Hayashi N, Murakami T, et al. Nitroxide radicals for highly efficient redox mediation in dye-sensitized solar cells [J]. Chem. Lett.,2010,39 (5):464-465.
    [184]Wang M, Chamberland N, Breau L, et al. An organic redox electrolyte to rival triiodide/iodide in dye-sensitized solar cells [J]. Nat. Chem.,2010,2 ():385-389.
    [185]Cheng M, Yang X, Li S, et al. Efficient dye-sensitized solar cells based on an iodine-free electrolyte using L-cysteine/L-cystine as a redox couple [J]. Energ. Environ. Sci.,2012,5 (4):6290-6293.
    [186]Teng C, Yang X, Yuan C, et al. Two novel carbazole dyes for dye-sensitized solar cells with open-circuit voltages up t o 1 V based on Br-/Br3- electrolytes [J]. Org. Lett.,2009,11 (23): 5542-5545.
    [187]Oskam G, Bergeron B V, Meyer G J, et al. Pseudohalogens for dye-sensitized TiO2 photoelectrochemical cells [J]. J. Phys. Chem. B,2001,105 (29):6867-6873.
    [188]Kubo W, Murakoshi K, Kitamura T, et al. Quasi-solid-state dye-sensitized TiO2 solar cells, effective charge transport in mesoporous space filled with gel electrolytes containing iodide and iodine [J]. J. Phys. Chem. B,2001,105 (51):12809-12815.
    [189]Priya A R S, Subramania A, Jung Y-S, et al. High-Pprformance quasi-solid-state dye-sensitized solar cell based on an electrospun PVdF-HFP membrane electrolyte [J]. Langmuir,2008,24 (17): 9816-9819.
    [190]Papageorgiou N, Athanassov Y, Armand M, et al. The Performance and Stability of Ambient Temperature Molten Salts for Solar Cell Applications [J]. J. Electrochem. Soc.,1996,143 (10): 3099-3108.
    [191]Bai Y, Cao Y, Zhang J, et al. High-performance dye-sensitized solar cells based on solvent-free electrolytes produced from eutectic melts [J]. Nat Mater.,2008,7 (8):626-630.
    [192]Chen Z, Li F, Yang H, et al. A thermostable and long-term-stable ionic-liquid-based gel electrolyte for efficient dye-sensitized solar cells [J]. Chemphyschem,2007,8 (9):1293-1297.
    [193]Bach U, Lupo D, Comte P, et al. Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies [J]. Nature,1998,395 (6702):583-585.
    [194]Burschka J, Dualeh A, Kessler F,et al. Tri(2-(1H-pyrazol-1-yl)pyridine)cobalt(III) as p-type dopant for organic semiconductors and its application in highly efficient solid-state dye-sensitized solar cells [J]. J. Am. Chem. Soc.,2011,133 (45):18042-18045.
    [195]Chung I, Lee B, He J, et al. All-solid-state dye-sensitized solar cells with high efficiency [J]. Nature, 2012,485 (7399):486-489.
    [196]Nazeeruddin M K, Angelis F D, Fantacci S, et al. Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers [J]. J. Am. Chem. Soc.,2005, 127(48):16835-16847.
    [197]Yang J-S, Liau K-L, Wang C-M, et al. Substituent-dependent photoinduced intramolecular charge transfer in N-aryl-substituted trans-4-aminostilbenes [J]. J. Am. Chem. Soc.,2004,126 (39): 12325-12335.
    [198]田海宁.芳胺类光敏染料用于染料敏化太阳能电池的研究[D].大连:大连理工大学化工与环境生命学部,2009.
    [199]Tian H, Yu Z, Hagfeldt A, et al. Organic redox couples and organic counter electrode for efficient organic dye-sensitized solar cells [J]. J. Am. Chem. Soc.,2011,133 (24):9413-9422.
    [200]Maree M, Nyokong T. Synthesis, spectroscopy and electrochemistry of octaphenoxyphthalocyaninato silicon complexes [J]. J. Porphyrins Phthalocyanines,2001; 5 (7):555-563.
    [201]Lim B, Margulis G Y, Yum J, et al. Silicon-naphthalo/Phthalocyanine-hybrid sensitizer for efficient red response in dye-sensitized solar cells [J]. Org. Lett.,2013,15 (4):784-787.
    [202]Cheng G, Peng X, Hao G, et al. Synthesis, photochemistry, and electrochemistry of a series of phthalocyanines with graded steric hindrance [J]. J. Phys. Chem. A,2003,107 (18):3503-3514.
    [203]Wang Z-S, Sugihara H. N3-sensitized TiO2 films, in situ proton exchange toward open-circuit photovoltage enhancement [J]. Langmuir,2006,22 (23):9718-9722.
    [204]Tian H, Yang X, Pan J, et al. A triphenylamine dye model for the study of intramolecular energy transfer and charge transfer in dye-sensitized solar cells [J]. Adv. Funct. Mater.,2008,18 (21): 3461-3468.
    [205]Nazeeruddin M K, Humphry-Baker R, Liska P, et al. Investigation of sensitizer adsorption and the influence of protons on current and voltage of a dye-sensitized nanocrystalline TiO2 solar cell [J]. J. Phys. Chem. B,2003,107 (34):8981-8987.
    [206]Deacon G B, Phillips R J. Relationships between the carbon-oxygen stretching frequencies of carboxylato complexes and the type of carboxylate coordination [J]. Coord. Chem. Rev.1980,33 (3): 227-250.
    [207]Bauer C, Boschloo G, Mukhtar E, et al. Interfacial electron-transfer synamics in Ru(tcterpy)(NCS)3-sensitized TiO2 nanocrystalline solar cells [J]. J. Phys. Chem. B,2002,106 (49): 12693-12704.
    [208]Lopez-Duarte I, Wang M, Humphry-Baker R, et al. Molecular engineering of zinc phthalocyanines with phosphinic acid anchoring groups [J]. Angew. Chem. Int. Ed.,2012,51(8):1895-1898.
    [209]Yu Q, Wang Y, Yi Z, et al. High-efficiency dye-sensitized solar cells, The influence of lithium ions on exciton dissociation, charge recombination, and surface states [J].ACS NANO,2010,4 (10): 6032-6038.
    [210]Gorlov M, Kloo L. Ionic liquid electrolytes for dye-sensitized solar cells [J]. Dalton Trans,2008,37 (20):2655-2666.
    [211]Dupont J, Souza R, Suarez P. A. Z. Ionic liquid (molten salt) phase organometallic catalysis [J].Chem. Rev.,2002,102 (10):3667-3692.
    [212]Sakaebe H, Matsumoto H. N-Methyl-N-propylpiperidinium bis(trifluorome-thanesulfonyl)imide (PP13-TFSI)-novel electrolyte base for Li battery [J]. Electrochem. Commun.,2003,5 (7):594-598.
    [213]丛家彦.染料敏化太阳能电池中含二氢喹啉、希夫碱、硝基结构三种染料和硫、碘双组分电解质的研究[D].大连:大连理工大学化工与环境生命学部,2011.
    [214]Cheng M, Yang X, Zhang F, et al. Efficient dye-sensitized solar cells based on hydroquinone/benzoquinone as a bioinspired redox couple [J]. Angew. Chem. Int. Ed.,2012,51 (39): 9896-9899.
    [215]Cao Y, Zhang J, Bai Y, et al. Dye-sensitized solar cells with solvent-free ionic liquid electrolytes [J]. J. Phys. Chem. B,2008,112(44):13775-13781.
    [216]Liu Q-X, Yin L-N, Feng J-C. New N-heterocyclic carbene silver(I) and mercury(II) 2-D supramolecular layers by the n-n stacking interactions [J]. J. Organomet. Chem.,2007,692 (17): 3655-3663.
    [217]Gao F, Wang Y, Shi D, et al. Enhance the optical absorptivity of nanocrystalline TiO2 film with high molar extinction coefficient ruthenium sensitizers for high performance DSSCs [J]. J. Am. Chem. Soc, 2008,130(32):10720-10728.
    [218]Wang P, Zakeeruddin S M, Moser J E, et al. A new ionic liquid electrolyte enhances the conversion efficiency of dye-sensitized solar cells [J]. J. Phys. Chem. B,2003,107 (48):13280-13285.
    [219]Harley-Mason J, Laird A H. The dimer of o-benzoquinone [J]. J. Chem. Soc. (Resumed),1958: 1718-1719.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700