用户名: 密码: 验证码:
分离CH_4/CO_2的吸附剂研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
沼气的主要成分是甲烷(CH4,55%~65%),其次是二氧化碳(CO2,30%-40%),沼气的能量来源于CH4,而过多的CO2降低了沼气的能量密度,致使单位能量的运输和贮存成本增加,影响沼气的工业化发展,因此去除沼气中的CO2,降低CH4的储运成本是沼气工业化急待解决的问题。
     与其他气体净化技术相比,吸附法因其污染小、设备简单、成本低等优点而备受关注。吸附法的核心问题是要拥有高性能的吸附剂。而目前,在分离CH4与CO2的研究领域,吸附系统的发展水平要远远超过吸附剂材料。本文研究的主要目的是找到适合从沼气中脱除CO2的吸附剂类型,并对沼气脱碳吸附剂的深入研究提供工作基础和研究思路,最终解决沼气脱碳技术的难题,为沼气的产业化运营提供技术参考。
     分子筛类和碳基吸附剂是目前发展最成熟的商业化脱碳吸附剂,本文研究了分子筛类和碳基吸附剂分离CH4与CO2的性能、再生性能和对水蒸气的敏感性。此外,本文选用硅胶为载体,乙醇胺(MEA)和乙醇胺/N-甲基-二乙醇胺复合胺(MEA/MDEA)为改性剂合成新型同体胺吸附剂,并对合成吸附剂进行了深入研究。主要研究结论如下:
     (1)常温(25℃)低压下(0.2MPa)下,在3A、4A、5A、10X、13X中,13X分子筛对CH4与CO2混合气分离效果最好,其次是5A分子筛。5A和13X分子筛经过一次使用后,性能都无法完全复原,吸附剂再生度分别为65%和7O%左右。吸附剂不能完全再生的原因是分子筛上吸附的部分CO2可以与吸附剂发生强相互作用,形成二齿或螯合状态的含碳物种,使吸附剂的活性位减少,红外光谱结果说明了这一原因。此外,分子筛对水蒸气非常敏感,水蒸气可以使吸附剂完全丧失分离CH4与CO2的能力,这一点对沼气脱碳技术是十分不利的。
     (2)市售的碳分子筛对CH4与CO2混合气的分离效果要明显好于活性炭,但还不如13X分子筛,碳分子筛对CH4的吸附量较大,这意味着会降低原料气中CH4的回收率。然而在室温条件下,碳分子筛很容易完全再生。在水蒸气存在下,碳分子筛性能有所下降,但依然具有对CH4与CO2分离的能力,即碳分子筛对水蒸气不是十分敏感,这一性能远好于沸石分子筛。碳分子筛在分离CH4与CO2方面的优点与缺点都源于碳质材料极性较弱的性质。
     (3)显微镜结果显示A型硅胶在改性过程中骨架破碎,FNG-Ⅱ型硅胶改性后骨架结果比较稳定。说明有机胺改性吸附剂的多孔载体需要筛选,这个领域有继续深入研究价值。热重、红外、低温N2吸脱附法的结果都说明浸渍法可以成功的将MEA修饰在硅胶表面,表面修饰了MEA后,吸附剂对CO2有一定的吸附能力。MEA负载率较低时,增加改性剂的负载率可以提高吸附剂对CO2的吸收能力。而当MEA在FNG-Ⅱ型硅胶上负载率增大到20%后,吸附剂对CO2的吸附能力会趋近饱和,原因是再进一步增加MEA的量,过多的MEA会大量填充吸附剂孔道,使得吸附剂的比表面及孔容大幅度下降。在室温条件下,无论是抽真空法还是惰气冲洗法都不能使MEA改性吸附剂再生。105℃以下吸附剂无法再生,在110℃和120℃时吸附剂再生效果较好,但再生后的吸附剂性能也会下降。150℃再生时,吸附剂的性能会明显下降。在水蒸气存在下,吸附剂能不受影响,可以保持原有的对CH4与CO2分离的能力,这一性能是MEA改性吸附剂的优势。
     (4)本文初步研究复合胺MEA/MDEA改性硅胶吸附剂‘试验结果表明MDEA的加入对吸附剂的再生性能有所改善。
     综上,分子筛对CH4与CO2有很好的分离效果,但是其骨架的化学结构导致其与C02、H20都有强的相互作用,这将增加沼气净化的再生耗能并对沼气脱水步骤要求苛刻。因此相比之下骨架结构是非极性的碳材料更有优势,但目前的碳材料对CH4和CO2的分离效果还不够理想,新型功能化的碳材料的研发可能会解决这个问题,但还需要相当长的一段时间。MEA改性FNG-Ⅱ型硅胶可以很好的分离CH4与CO2,对水的耐受性较强,但其再生性的缺点也是非常明显的。然而,MEA改性硅胶吸附剂只是众多有机胺改性吸附剂中的一种,由于可以作为改性剂的有机胺及多孔材料种类繁多,因此有很大的研究空间。此外,有机胺改性吸附剂的研究还可以从化学吸收工艺中取得经验,是比较有应用前景的一种吸附剂
Biogas is mainly composed of methane (CH4,55%-65%) and carbon dioxide (CO2,30%-40%). The energy source of biogas is from CH4, and CO2significantly reduces its energy content, which result in high cost for transportation and storage of the gas. Therefore, it is critical to develop effective methods for the sequestration of CO2from biogas.
     Adsorption is considered very promising compared with other technologies, because of its intrinsic eco-compatibility and low cost. It is of great importance to develop an efficient CO2adsorbent with a high CO2adsorption capacity, a high selectivity, and good regeneration property. In this paper, the main aim was to find an excellent adsorbent to separate CO2and CH4, which will be benefit for large-scale biogas purification.
     Three families of adsorbents have been studied. They are molecular sieves, carbon-based adsorbents and amino-functionalized silicas. The separation/regeneration performance of the adsorbents has been compared, and their sensitivity to moisture has been researched. The main research conclusions are as follows:
     (1) Selective adsorption of CO2from its mixture with CH4on several commercial molecular sieves has been studied at ambient temperature(25℃) and low pressure (0.2MPa). The behaviors of the molecular sieves have been compared by using three basic parameters:selectivity, adsorption capacity and regenerability. The results indicate3A and4A molecular sieves have low CO2adsorption capacity. However5A and13X molecular sieves show high efficiency in dynamic separation of CH4and CO2when the adsorbents were used for the first time. The separation coefficient between CH4and CO2on13X molecular sieve is higher than5A, which prove13X molecular sieve show better performance in separating CO2from its mixture with CH4. But5A and13X molecular sieve could not be regenerated completely and the adsorption/regeneration performance became stable from their second use. The reason why separation performance of5A and13X molecular sieves decrease is explained by FTIR spectroscopy that the partial poisoning of the molecular sieves happened. That is to say, the regenerability of the two molecular sieves need improve. In addition, molecular sieves are sensitive to water vapor, vapor can make adsorbent completely lose the ability of separation of CH4and CO2, which is very disadvantageous to biogas purification technology.
     (2) The removal of CO2from a CH4/CO2mixture on commercial carbon-based adsorbents has been researched. And the performance in separating CO2from its mixture with CH4on carbon-based adsorbents was compared with13X molecular sieve. The results indicate carbon molecular sieve can separate the mixture well but its selectivity is lower than13X molecular sieve. However carbon molecular sieve can be well regenerated and are not very sensitive to water vapor, which are much better than13X molecular sieve. All the properties of carbon-based adsorbent are mainly governed by its texture. In order to improve the adsorption selectivity of carbon molecular sieve for CH4and CO2, the new preparation process should be urgently researched, which may be benefit for large-scale biogas purification.
     (3) amino-functionalized silicas were synthesized using MEA and silicas. The adsorbents were characterized by N2adsorption isotherm, thermogravimetry and FTIR, which show that MEA have been successfully modified in the FNG-Ⅱ silica pores. And the performance of adsorbents was researched by adsorption and desorption experiments. The results indicate MEA-functionalized silicas could separation CO2and CH4well in its first or second use, but the performance deducted afterwards. The MEA-functionalized silicas can not regeneration under105℃. When MEA loading is low, the performance improves with MEA loading. However, the performance would not improve when MEA more than20%, because the pores would be occupied so much that the specific surface would decrease in a large number. The most noteworthy is that MEA functionalized silicas can not be affected by vapor.
     (4) A preliminary study on MEA/MDEA modified silica, the results showed that the addition of MDEA could improve the regeneration performance of adsorbents.
     In conclusion, molecular sieves can separate CH4and CO2well, but their skeleton chemical structures make them strong interact with CO2and they are too sensitive to vapor. Carbon-based materials have some advantages on regeneration but they also have low recovery rate of CH4. Development of new functional carbon materials may solve this problem, but this also need quite a long time. MEA modified silica can separate CH4and CO2well and has strong tolerance to water, but the disadvantage of the regeneration is very obvious. Too much work should be done to improve the regeneration of amino-functionalized absorbents, and it will be an attractive research field.
引文
[1]任东明.“十一五”时期能源供求形势、生物质能源发展及相关政策[J].化学工业,2007(6):1-7.
    [2]赵明梅,何随成,牛明芬.有效开发我国畜禽粪便资源制造生物有机肥[J].磷肥与复肥,2008,23(3):57-58.
    [3]陈祥,梁芳,盛奎川.沼气净化提纯制取生物甲烷技术发展现状[J].农业工程,2012(7):30-34.
    [4]Markus Ellersdorfer, Christian Weip. Integration of biogas plants in the building materials industry[J]. Renewable Energy,2014,61:125-131.
    [5]Martina Poschl, Shane Ward, Philip Owende. Evaluation of energy efficiency of various biogas production and utilization pathways[J]. Applied Energy,2010,87(11):3305-3321.
    [6]Emmanuel K. Yiridoe, Robert Gordon, Bettina B. Brown. Nonmarket cobenefits and economic feasibility of on-farm biogas energy production[J]. Energy Policy,2009,37(3):1170-1179.
    [7]Porsche G. The impact of national policies and economic frames for the development of biogas in Germany [A].Proceedings of The future of biogas in Europe-O[C].Denmark Esbjerg: University of Southern Denmark,2007,44-50.
    [8]Hopfner-SixtK, Amon T, Bodiroza V, et al. State of the art of biogas technology in Austria, Landtechnik,2006,61(1):30-31.
    [9]Braun R, MadlenerR, LaaberM. Efficiency of energy crop digestion-Evaluation of 41 full scale plants in Austria[A]. Proceedings of the future of biogas in Europe [C]. Denmark Esbjerg: University of Southern Denmark,2007,51-58.
    [10]Edson M. S. T. System for final disposal of waste by compaction and bagging:US, 20100287896[P],2010-11-18.
    [11]Xinyuan Jiang, Sven G. Sommer, Knud V. Christensen. A review of the biogas industry in China[J]. Energy Policy,2011,39(10):6073-6081.
    [12]Tim Patterson, Sandra Esteves, Richard Dinsdale, et al. Life cycle assessment of biogas infrastructure options on a regional scale[J]. Bioresource Technology,2011,102(15):7313-7323.
    [13]任峰,刘应宗,牛东晓.农村生物质废弃物沼气化利用回收模式优化[J].农业工程学报,2012,28(1):190-194.
    [14]Maria Berglund, Pal Borjesson. Assessment of energy performance in the life-cycle of biogas production[J]. Biomass and Bioenergy,2006,30(3):254-266.
    [15]姚向君,田宜水.生物质能资源清洁转化利用技术[M].化学工业出版社,2005,51-56;69-72.
    [16]胡安鑫.天然气脱CO2的经济可行性研究[D].西南石油大学,2007.
    [17]N.B.K. Magnowski, A.M.Avila, C.C.H. Lin, Meng Shi, et al. The removal of CO2 and N2 from natural gas:A review of conventional and emerging process technologies[J]. Journal of Petroleum Science and Engineering,2012,94-95:123-154.
    [18]David Berstad, Petter Neksa, Rahul Anantharaman. Low-temperature CO2 Removal from Natural Gas[J]. Energy Procedia,2012,26:41-48.
    [19]陆诗建.醇胺溶液捕集烟道气中CO2实验研究[D].中国石油大学,2010.
    [20]朱德臣.燃煤烟气CO2化学吸收技术研究[D].浙江大学,2011.
    [21]顾光临.二氧化碳化学吸收剂的复配研究[D].北京化工大学,2010.
    [22]晏水平.膜吸收和化学吸收分离CO2特性的研究[D].浙江大学,2009.
    [23]林保平.含硅聚酰亚胺及其复合薄膜的制备与性能[D].东南大学,2005.
    [24]Thiam Leng Chew, Abdul Latif Ahmad, Subhash Bhatia. Ba-SAPO-34 membrane synthesized from microwave heating and its performance for CO2/CH4 gas separation, Chemical Engineering Journal[J].2011,171 (3):1053-1059.
    [25]宁平,唐晓龙,易红宏.变压吸附工艺的研究与进展[J].云南化工,30(3):2003.
    [26]Seung-Hyun Moon, Jae-Woon Shim. A novel process for CO2/CH4 gas separation on activated carbon fibers-electric swing adsorption[J]. Journal of Colloid and Interface Science,2006,298 (2):523-528.
    [27]R.P.P.L. Ribeiro, C.A. Grande, A.E. Rodrigues. Activated carbon honeycomb monolith-Zeolite 13X hybrid system to capture CO2 from flue gases employing electric swing Adsorption[J]. Chemical Engineering Science,2013,104(18):304-318.
    [28]刘志军.变压吸附法从合成气中分离CO的基础研究[D].南京工业大学,2006.
    [29]Wenli Dang, Daniel Friedrich, Stefano Brandani. Characterisation of an Automated Dual Piston Pressure Swing Adsorption (DP-PSA) System[J]. Energy Procedia,2013,37:57-64
    [30]Tirzha L.P. Dantas, Francisco Murilo T. Luna, Ivanildo J. Silva Jr., et al.Carbon dioxide-nitrogen separation through pressure swing adsorption[J]. Chemical Engineering Journal, Volume 2011,172 (2-3):698-704.
    [31]杨明莉.煤层甲烷变压吸附浓缩的研究[D].重庆大学,2004.
    [32]Simone Cavenati, Carlos A Grande, Alirio E Rodrigues. Separation of CH4/CO2/N2 mixtures by layered pressure swing adsorption for upgrade of natural gas[J]. Chemical Engineering Science,2006,61(12):3893-3906.
    [33]Alonso Vicario A., Ochoa Gomez Jose R., Gil Rio S., et al. Purification and upgrading of biogas by pressure swing adsorption on synthetic and natural zeolites[J]. Microporous and Mesoporous Materials 2010,134(1-3):100-107.
    [34]宁平,陈玉保,陈云华等.合成氨弛放气变压吸附提浓技术[M].北京:冶金工业出版社,2009.
    [35]Hiscock, Willis E. Pressure swing adsorption process:US,4589888[P],1986-05-20.
    [36]Nofuchi Y. Improvement in pressure swing adsorption process for gas separation:EP, 342877[P],1989-11-23.
    [37]Tushar S. Bhatt, Giuseppe Storti, Renato Rota. Optimal design of dual-reflux pressure swing adsorption units via equilibrium theory Chemical Engineering Science,2013,102:42-55.
    [38]Marco Tagliabue, David Farrusseng, Susana Valencia, et al. Natural gas treating by selective adsorption material science and chemical engineering interplay[J]. Chemical Engineering Journal, 2009,155 (3):553-566.
    [39]Sharon Sjostrom, Holly Krutka. Evaluation of solid sorbents as a retrofit technology for CO2 capture[J]. Fuel,2010(89):1298-1306.
    [40]近藤精一,石川达熊,安部郁夫.吸附科学[M].北京:化学工业出版社,2005.
    [41]黄文强.吸附分离材料[M].北京:化学工业出版社,2005.
    [42]聂李红.炭分子筛的制备及其应用[D].大连:大连理工大学,2008.
    [43]Macadamia nut shell-derived carbon composites for post combustion CO2 capture[J]. International Journal of Greenhouse Gas Control,2013,19:174-182.
    [44]M.G. Plaza, K.J. Thurecht, C. Pevida, et al. Drage Influence of oxidation upon the CO2 capture performance of a phenolic-resin-derived carbon[J]. Fuel Processing Technology,2013, 110:53-60.
    [45]Aurelie Grondein, Daniel Belanger. Chemical modification of carbon powders with aminophenyl and aryl-aliphatic amine groups by reduction of in situ generated diazonium cations: Applicability of the grafted powder towards CO2 capture[J]. Fuel,2011,90(8):2684-2693.
    [46]C.S. Lee, Y.L. Ong, M.K. Aroua. Impregnation of palm shell-based activated carbon with sterically hindered amines for CO2 adsorption[J]. Chemical Engineering Journal,2013,219: 558-564.
    [47]Juan Alcaniz-Monge, Juan Pablo Marco-Lozar, Maria Angeles Lillo-Rodenas. CO2 separation by carbon molecular sieve monoliths prepared from nitrated coal tar pitch[J]. Fuel Processing Technology,2011,92 (5):915-919.
    [48]Mekala Bikshapathi, Ashish Sharma, Ashutosh Sharma. Preparation of carbon molecular sieves from carbon micro and nanofibers for sequestration of CO2[J]. Chemical Engineering Research and Design,2011,89 (9):1737-1746.
    [49]Wahby A., Silvestre-Albero J., Sepulveda-Escribano A., et al. CO2 adsorption on carbon molecular sieves[J]. Microporous and Mesoporous Materials,2012,164:280-287.
    [50]J. Donald Carruthers, Melissa A. Petruska, Edward A. Sturm. Molecular sieve carbons for CO2 capture[J]. Microporous and Mesoporous Materials,2012,154:62-67.
    [51]Donni Adinata, Wan Mohd Ashri Wan Daud, Mohd Kheireddine Aroua. Production of carbon molecular sieves from palm shell based activated carbon by pore sizes modification with benzene for methane selective separation[J]. Fuel Processing Technology,2007,88 (6):599-605.
    [52]Hye-Ryeon Yu. Seho Cho, Byong Chol Bai, et al. Effects of fluorination on carbon molecular sieves for CH4/CO2 gas separation behavior[J]. International Journal of Greenhouse Gas Control, 2012,10:278-284.
    [53]Ramesh Thiruvenkatachari, Shi Su, Hui An, et al. Post combustion CO2 capture by carbon fibre monolithic adsorbents[J]. Progress in Energy and Combustion Science,2009,35 (5): 438-455.
    [54]Moreira R F P M, Jose H J, Rodrigues A E. Modification of pore size in activated carbon by polymer deposition and its effects on molecular sieve selectivity[J]. Carbon,2001,39(15): 2269-2276.
    [55]Lei Li, Ning Zhao, Wei Wei, et al. A review of research progress on CO2 capture, storage, and utilization in Chinese Academy of Sciences[J], Fuel,2013,108:112-130
    [56]吴张雄.新型碳基有序介孔材料的合成、功能化及性质与应用[D].上海:复旦大学化学系,2011.
    [57]李翠红.分子筛吸附剂对甲醛分子吸附性能的研究[D].大连:大连理工大学,2005.
    [58]Tania Montanari, Elisabetta Finocchio, Enrico Salvatore, et al. CO2 separation and landfill biogas upgrading:A comparison of 4A and 13X zeolite adsorbents[J]. Energy,2011,36 (1): 314-319.
    [59]Jose A.C. Silva, Kristin Schumann, Alirio E. Rodrigues. Sorption and kinetics of CO2 and CH4 in binderless beads of 13X zeolite[J]. Microporous and Mesoporous Materials,2012,158: 219-228.
    [60]Tania Montanari, Guido Busca. On the mechanism of adsorption and separation of CO2 on LTA zeolites:An IR investigation[J]. Vibrational Spectroscopy,2008,46(1):45-51.
    [61]Ghoufi A., Gaberova L., Rouquerol J., et al. Adsorption of CO2, CH4 and their binary mixture in Faujasite NaY:A combination of molecular simulations with gravimetry-manometry and microcalorimetry measurements[J]. Microporous and Mesoporous Materials,2009,119(1-3): 117-128.
    [62]Jose A. Delgado, Maria A. Uguina, Jose L. Sotelo, et al. Carbon dioxide/methane separation by adsorption on sepiolite[J]. Journal of Natural Gas Chemistry,2007,16(3):235-243.
    [63]Youssef Belmabkhout, Abdelhamid Sayari. Adsorption of CO2 from dry gases on MCM-41 silica at ambient temperature and high pressure.2:Adsorption of CO2/N2,CO2/CH4 and CO2/H2 binary mixtures[J]. Chemical Engineering Science,2009,64(17):3729-3735.
    [64]杨海燕,李文哲,张鸿琼. CH4/CO2混合气中CH4的变压吸附法提纯试验农业机械学报[J].2013,44(3):119-123.
    [65]Rodrigo Serna-Guerrero, Abdelhamid Sayari. Modeling adsorption of CO2 on amine-functionalized mesoporous silica 2:Kinetics and breakthrough curves, Chemical Engineering Journal[J].2010,161 (1-2):182-190.
    [66]Yujun Zhu, Jianhai Zhou, Jun Hu. The effect of grafted amine group on the adsorption of CO2 in MCM-41[J]. Catalysis Today,2012,194 (1):3-59.
    [67]Xiaochun Xu, Chunshan Song, John M. Andresen, et al. Novel polyethylenimine-modified mesoporous molecular sieve of MCM-41 type as high-capacity adsorbent for CO2 capture[J]. Energy Fuels,2002 (16):1463-1469.
    [68]M.V. Gil, M. Martinez, S. Garcia, et al. Response surface methodology as an efficient tool for optimizing carbon adsorbents for CO2 capture[J]. Fuel Processing Technology,2013,106:55-61.
    [69]Xiaoxing Wang, Chunshan Song.Temperature-programmed desorption of CO2 from polyethylenimine-loaded SB A-15 as molecular basket sorbents[J]. Catalysis Today,2012 (194): 44-52.
    [70]Xiaoxing Wang, Xiaoliang Ma, Chunshan Song, et al. Molecular basket sorbents polyethylenimine-SBA-15 for CO2 capture from flue gas[J]. Microporous and Mesoporous Materials,2013,169 (15):103-111.
    [71]Xiaochun Xu, Chunshan Song, Bruce G. Miller et al. Influence of moisture on CO2 separation from gas mixture by a nanoporous adsorbent based on polyethylenimine-modified molecular sieve MCM-41[J]. Industrial and Engineering Chemistry Research,2005 (44):8113-8119.
    [72]Marta Gil, Ines Tiscornia, oscar de la Iglesia, et al. Monoamine-grafted MCM-48:An efficient material for CO2 removal at low partial pressures[J]. Chemical Engineering Journal,2011,175: 291-297.
    [73]刘辉.基于有机功能基团修饰的多孔金属有机框架化合物的合成及性能研究[D].华南理工大学,2011.
    [74]Kim J., Furukawa H., Ko. N., et al. Ultrahigh Porosity in Metal-Organic Frameworks[J]. Science,2010,329(5990):424-428.
    [75]Banerjee R, Phan A, Wang B, et al. High-Throughput Synthesis of zeolitic imidazolate Frameworks and Application to CO2 Capture[J]. Science,2008,319 (5865):939-943.
    [76]石凤娟.介微孔分子筛和金属-有机骨架材料的合成、表征及其对气体的吸附性能研究[D].北京:北京工业大学应用化学系,2012.
    [77]Da-Shu Chen, Jia-Ming Cheng, Li-Bo Sun, et al. A new porous 2D copper(Ⅱ) metal-organic framework for selective adsorption of CO2 over N2[J]. Inorganic Chemistry Communications, 2013,38:104-107.
    [78]Zhanquan Zhang, Ke Wang, John D. Atkinson. Sustainable and hierarchical porous Enteromorpha prolifera based carbon for CO2 capture[J]. Journal of Hazardous Materials,2012, 229-230(30):183-191.
    [79]谢菲.球形活性炭对CO2吸附行为研究[D].华东理工大学,2010.
    [80]Abdul Rahman Mohamed, Maedeh Mohammadi, Ghasem Najafpour Darzi. Preparation of carbon molecular sieve from lignocellulosic biomass:a review[J]. Renewable and Sustainable Energy Reviews,2010,14(6):1591-1599.
    [81]Seho Cho, Hye-Ryeon Yu, Ki-Dong Kim, Kwang Bok Yi, et al. Surface characteristics and carbon dioxide capture characteristics of oxyfluorinated carbon molecular sieves[J]. Chemical Engineering Journal,2012,211-212(15):89-96.
    [82]Wenming Hao, Eva Bjorkman, Malte Lilliestrale, et al. Activated carbons prepared from hydrothermally carbonized waste biomass used as adsorbents for CO2[J]. Applied Energy,2013, 112:526-532.
    [83]S. Garcia, M.V. Gil, C.F. Martin, et al. Breakthrough adsorption study of a commercial activated carbon for pre-combustion CO2 capture[J]. Chemical Engineering Journal,2011,171(2): 549-556.
    [84]M. Balsamo, T. Budinova, A. Erto. CO2 adsorption onto synthetic activated carbon:Kinetic, thermodynamic and regeneration studies[J]. Separation and Purification Technology,2013, 116(15):214-221.
    [85]M.G. Plaza, S. Garcia, F. Rubiera, et al. Post-combustion CO2 capture with a commercial activated carbon:Comparison of different regeneration strategies[J]. Chemical Engineering Journal,2010,163(1-2):41-47.
    [86]Guojun Yin, Zhenyu Liu, Qingya Liu, et al. The role of different properties of activated carbon in CO2 adsorption[J]. Chemical Engineering Journal,2013,230(15):133-140.
    [87]Hung-Yi Hsiao, Chao-Ming Huang, Ming-Yau Hsu, et al. Preparation of high-surface-area PAN-based activated carbon by solution-blowing process for CO2 adsorption[J]. Separation and Purification Technology,2011,82:19-27.
    [88]Margandan Bhagiyalakshmi, Pushparaj Hemalatha, Muthiahpillai Palanichamy, et al. Adsorption, regeneration and interaction of CO2 with a polythiophene-carbon mesocomposite[J]. Physicochemical and Engineering Aspects,2011,374 (1-3):48-53.
    [89]Zhi-hong TANG, Zhuo HAN, Guang-zhi YANG. Preparation of nanoporous carbons with hierarchical pore structure for CO2 capture[J]. New Carbon Materials,2013,28(1):55-60.
    [90]Aime Serge Ello, Luiz K.C. de Souza, Albert Trokourey, et al. Development of microporous carbons for CO2 capture by KOH activation of African palm shells[J]. Journal of CO2 Utilization, 2013,2:35-38.
    [91]Plaza M.G., Rubiera F., Pis J.J., et al. Ammoxidation of carbon materials for CO2 capture [J]. Applied Surface Science,2010,256(22):6843-6849.
    [92]杨海燕,李文哲,高海云.碳基吸附剂提纯CH4/CO2混合气中CH4的研究,农业机械学报[J].2013,44(5):154-157.
    [93]薛全民.二氧化碳与氮气或甲烷混合物的吸附分离[D].天津大学,2008.
    [94]Hou Chuan Wang, Chungsying Lu, Hsunling Bai. Pilot-scale production of mesoporous silica-based adsorbent for CO2 capture[J]. Applied Surface Science,2012 (258):6943-6951.
    [88]Baroz Aziz, Niklas Hedin, Zoltan Bacsik. Quantification of chemisorption and physisorption of carbon dioxide on porous silica modified by propylamines:Effect of amine density[J]. Microporous and Mesoporous Materials,2012,159:42-49.
    [95]Xue Quanmin, Wu Di, Zhou Yaping, et al. Improvement of amine-modification with piperazine for the adsorption of CO2[J]. Applied Surface Science,2012,258:3859-3863.
    [96]Xingrui Wang, Huiquan Li, Haitao Liu, et al. AS-synthesized mesoporous silica MSU-1 modified with tetraethylenepentamine for CO2 adsorption[J]. Microporous and Mesoporous Materials,2011(142):564-569.
    [97]Shiyou Hao, Qiang Xiao, Hui Yang, et al. Synthesis and CO2 adsorption property of amino-functionalized silica nanospheres with centrosymmetric radial mesopores[J]. Microporous and Mesoporous Materials,2010(132):552-558.
    [98]Dirgarini J.N. Subagyono, Zhijian Liang, Gregory P. Knowles, et al. Amine modified mesocellular siliceous foam (MCF) as asorbent for CO2[J]. Chemical Engineering Research and Design,2011(89):1647-1657.
    [99]K.S.N. Kamarudin, N. Alias. Adsorption performance of MCM-41 impregnated with amine for CO2 removal[J]. Fuel Processing Technology,2013 (106):332-337.
    [100]Jiawei Wang, Lee A. Stevens, Trevor C. Drage, et al.Preparation and CO2 adsorption of amine modified layered double hydroxide via anionic surfactant-mediated route[J]. Chemical Engineering Journal,2012,181-182:267-275.
    [101]郝仕油.氨基功能化多孔氧化硅材料合成及其CO2吸附性能研究[D].浙江大学,2010.
    [102]何平.多胺基材料的制备表征及其对CO2吸附性能的研究[D].北京化工大学,2010.
    [103]Xinlong Yan, Sridhar Komarneni, Zifeng Yan. CO2 adsorption on Santa Barbara Amorphous-15 (SBA-15) and amine-modified Santa Barbara Amorphous-15 (SBA-15) with and without controlled microporosity[J]. Journal of Colloid and Interface Science,390(1):217-224.
    [104]魏建文.介孔二氧化硅改性及其吸附CO2研究[D].浙江大学,2008.
    [105]Ji-Ye Kim, Jun Kim, Seung-Tae Yang, et al. Mesoporous SAPO-34 with amine-grafting for CO2 capture[J]. Fuel,2013,108:515-520.
    [106]Rodrigo Serna-Guerrero, Youssef Belmabkhout, Abdelhamid Sayar. Influence of regeneration conditions on the cyclic performance of amine-grafted mesoporous silica for CO2 capture[J]. Chemical Engineering Science,2010,65 (14-15):4166-4172.
    [107]Tsuyoshi Watabe, Yosuke Nishizaka, Shingo Kazama, et al. Development of amine-modified solid sorbents for postcombustion CO2 capture[J]. Energy Procedia,2013,37:199-204.
    [108]Jian-Lin Liu, Ren-Bin Lin, Structural properties and reactivities of amino-modified silica fume solid sorbents for low-temperature CO2 capture Influence of regeneration conditions on the cyclic performance of amine-grafted mesoporous silica for CO2 capture[J]. Powder Technology, 2013,241:188-195.
    [109]Chen-Chia Huang, Shu-Chun Shen. Adsorption of CO2 on chitosan modified CMK-3 at ambient temperature Influence of regeneration conditions on the cyclic performance of amine-grafted mesoporous silica for CO2 capture[J]. Journal of the Taiwan Institute of Chemical Engineers,2013,44 (1):89-94.
    [110]Kamarudin K.S.N., Alias N.. Adsorption performance of MCM-41 impregnated with amine for CO2 removal Influence of regeneration conditions on the cyclic performance of amine-grafted mesoporous silica for CO2 capture [J]. Fuel Processing Technology,2013,106,332-337.
    [111]Ramanathan Vaidhyanathan, Simon S. Iremonger, George K. H. Shimizu, et al. Direct Observation and Quantification of CO2 Binding Within an Amine-Functionalized Nanoporous Solid [J]. Science,2010,29:650-653.
    [112]刘秀芹.改性介孔SiO2材料的制备及其CO2吸附性能[D].华东师范大学,2009.
    [113]Yujun Zhu, Jianhai Zhou, Jun Hu. The effect of grafted amine group on the adsorption of CO2 in MCM-41 [J]. Catalysis Today,2012,194(1):3-59.
    [114]刘亚敏.新型固体胺吸附分离烟气中二氧化碳[D].浙江大学,2011.
    [115]侯洪蕾.有机胺改性MCM-41吸附富集CO2[D].大连理工大学,2012.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700