用户名: 密码: 验证码:
US-Fenton法处理炸药废水的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
炸药废水是与炸药有关的产品在工业和军事生产、运输以及销毁过程中产生的废水,其成分复杂,所含污染物具有毒性,对人体和环境具有极大的危害。传统的水处理方法很难将污染物有效降解,近些年来未处理达标的炸药废水直接排放,引发各种环境问题,也引起了世界各国的广泛关注。寻求一种高效可行的处理方法是目前有效解决炸药废水污染问题的关键所在。US-Fenton法作为一种新兴的复合高级氧化技术,在水处理领域展现出广阔的发展前景。超声的空化作用、高温热解作用以及超临界水氧化作用对Fenton反应具有良好的促进作用,二者在有机物降解过程中相互协同,能有效降解传统方法难以降解的有机物。
     本文在对实际炸药废水中有机污染物全面鉴定分析的基础上,选取TNT和DNAN为代表性污染物,将US-Fenton法引入炸药废水处理中,以实际炸药废水、TNT模拟废水和DNAN模拟废水为三种试验对象,通过室内试验对其处理效果及影响因素进行研究,并利用Batch和Semi-batch试验对TNT和DNAN的降解反应动力学进行了分析,通过GC-MS对中间产物进行了测定,明晰了TNT和DNAN的降解路径。论文的主要结论如下:
     (1)以TOC去除率为主要参考指标,选取US-Fenton法为处理方法,并通过试验研究了反应条件对三种试验对象(实际炸药废水、TNT模拟废水和DNAN模拟废水)处理效果的影响,确定了三种废水的最佳处理条件,即:在pH=2,超声强度为300w/cm2, H_2O_2与Fe~(2+)摩尔浓度比为500:1,TOC初始浓度为42mg/L,处理时间为120min,温度为25时,实际炸药废水的处理效果相对较好,色度、TOC和COD的去除率分别达到86%、65%和84%;在pH=3,超声强度为300w/cm~2, H_2O_2与Fe~(~(2+))摩尔浓度比为10:1,TNT初始浓度为30mg/L,处理时间为300min,温度为25时,TNT模拟废水的处理效果相对较好,TNT、TOC和COD的去除率分别为99.9%、66.9%和81.2%;在pH=6,超声强度为300w/cm2, H_2O_2与Fe~(2+)摩尔浓度比为100:1,DNAN初始浓度为100mg/L,处理时间为300min,温度为25时,DNAN模拟废水的处理效果相对较好,DNAN、TOC和COD的去除率分别达到100%,73.8%和87.6%。
     (2)利用Batch和Semi-batch试验分别对US-Fenton法降解TNT和DNAN的反应动力学进行了研究,结果表明,在Batch试验中,TNT和DNAN的降解反应属于二级反应,在Semi-batch试验中,TNT和DNAN的降解反应属于一级反应。
     (3)基于US-Fenton法处理TNT降解机理的研究,初步得出了TNT降解的三种可能途径:一是OH首先将TNT中的甲基氧化,然后脱出羧基,生成TNB,TNB中的硝基进一步被OH氧化取代,生成三硝基苯酚、二硝基苯酚、硝基苯和苯酚,进而开环断键,通过水解和矿化作用,生成其他低分子酸(如草酸、甲酸)、CO_2、NO_3~-、H_2O等。二是TNT中的硝基先被还原成氨基,进而氨基被OH氧化脱去,之后甲基被氧化,生成苯酚,进而发生开环水解,有机物被进一步矿化,三是临位硝基先于甲基被氧化脱去,之后甲基被氧化成羧基,之后发生开环水解。
     (4)通过对DNAN的US-Fenton法降解机理研究,揭示了DNAN降解的两种可能途径:其一是OH首先与DNAN发生脱硝基反应,生成2-羟基-4-硝基苯甲醚,4-羟基-2-硝基苯甲醚或是硝基苯甲醚,继而生成产物被进一步氧化,生成苯甲醚,之后苯甲醚被氧化成苯酚,进而开环断键,通过水解和矿化作用,生成低分子酸(如草酸、甲酸)、CO_2、NO_3~-、H_2O等。其二是DNAN中的硝基先被还原成氨基,进而氨基被OH氧化脱去,之后甲氧基被氧化,生成苯酚,进而发生开环水解,有机物被进一步矿化。
     本研究将新兴的复合高级氧化技术US-Fenton法应用于炸药废水的处理,研究结果表明US-Fenton法处理炸药废水明显优于传统处理方法,能有效地降解炸药废水中的爆炸性有机物,因此,论文研究结果为炸药废水的处理和生态环境保护提供了科学依据。
Explosive wastewater generated from manufacturing, transporting, and demilitarizationin explosive industry and army ammunition plants contains rather complex chemicals, whichis toxic and harmful to both human beings and enviroment. Conventional wastewatertreatment processes are not effective in treating explosive wastewater. Due to discharge toenviroment before treatment, explosive wastewater has caused various enviromental troubles,which has become a world enviromental problem and focus of the people's concernrecently.Now the most important thing is to seek effective explosive wastewater treatmentmethods to sovle the problem.Combined ultrasound and Fenton (US-Fenton) process as anintergrated advanced oxidation technology showed vast potential for future development.Cavitation, pyrolysis, and supercritical water oxidation of ultrasound irradiation can improveFenton reaction and at the same time Fenton reaction can enhance the degradation effectiveof organic matter by ultrasound irradiation. Comparing with conventional wastewatertreatment process, US-Fenton process showed higher removal efficience in explosivewastewater treatment.
     On the basis of real explosive wastewater physical and chemical charactors analysis,TNTand DNAN were selected as the representive explosive pollutants and US-Fenton process wasinvolved as the treatment method. Through a series of experiments, effect factors of realexplosive wastewater, TNT wastewater, and DNAN wastewater treatments were determined.Degradation kinetics of TNT and DNAN were detected in batch and semi-batch experiments.The degradation pathways of TNTand DNAN were gotten through determingintermedia byGC-MS.Main conclusionswere drawn based on the study presented herein:
     (1) According to TOC removal efficience, US-Fenton process was chosen as thetreatment method. Effects of experimental conditions on real explosive wastewater, TNTwastewater, and DNAN wastewater treatment were determined and the optimal treatmentconditions were gotten. For real explosive wastewater, the optimal conditions were [TOC]0=420±20mg/L,[H_2O_2]/[Fe~(2+)]=500:1, pH=2,temperature=25, US intensity=300watts/cm2, and reaction time=120minutes. Under these conditions, color, TOC, and CODremoval were86,65, and84%, respectively; for TNT wastewater, the optimal conditionswere [TNT]0=30mg/L,[H_2O_2]/[Fe~(2+)]=10:1, pH=3, temperature=25, US intensity=300 watts/cm2, and reaction time=300minutes. TNT, TOC and COD removal were99.9,66.9,and81.2%, respectively; For DNANwastewaer,[DNAN]0=100mg/L,[H_2O_2]/[Fe~(2+)]=100:1,pH=6, temperature=25, US intensity=300watts/cm2, and reaction time=300minuteswere the optimal conditions and DNAN, TOC, and COD removal reached100,73.8, and87.6%, respectively.
     (2) The degradation kinetics of TNT and DNAN were studied in batch and semi-batchexperiments. The results showed that both TNT and DNAN removals were pseudo-first-orderin batch experiment and in semi-batch experiment they were pseudo-second-order.
     (3) Primarily proposed degradation pathways of TNT were determined through studyingthe degradation process. The first pathway was that methyl connected to benzene wasoxidated by OH to carboxyl and TNT became TNB. Subsequently, TNB was oxidatedfutherto trinitrophenol, dinitrophenol, nitrophenol, or phenol. At last, the ultimate products ofcarbon dioxide, nitrate ions and water were given by benzene ring open, hydrolysis, andmineralization; the second one was that nitro group was reduced to amino group firstly andthen cleaved from the benzene ring. Subsequently, methyl connected to benzene was oxidatedby OH to carboxyl and phenol was given; the third one was that p-nitro group was oxidatedby OH before methyl oxidation, and then methyl became carboxyl. Subsequently, benzenering open, hydrolysis, and mineralization happened and result in identical ultimate productsas mentioned.
     (4) Through the study of DNAN degradation process, primarily proposed degradationpathways of DNAN were given.The first pathway was that DNAN reacted with OH togenerate2-hydroxy-4-nitroanisole,4-hydroxy-2-nitroanisole, or nitroanisole, which wereoxidated to anisole futher. Phenol as the oxidation production of anisole transformed tocarbon dioxide, nitrate ions and water through benzene ring open, hydrolysis, andmineralization; the second one was that nitro group was reduced to amino group firstly andthen cleaved from the benzene ring. Subsequently, methyl connected to benzene was oxidatedby OH to carboxyl. After that phenol was generated from benzoic acid, and then benzenering open, hydrolysis, and mineralization happened.
     In this study, US-Fenton process was involved to treat explosive wastewater and showedhigher removal efficiency than conventional wastewater treatment processes. Explosivematter in the wastewater can be degraded well by US-Fenton process. Therefore this studyprovide scientific basis for explosive wastewater treatment and enviroment protection.
引文
白敏冬,张芝涛,白希尧.2005.海洋生物入侵性传播及绿色防治.北京:科学出版社.
    白希尧,白敏冬,杨波,邓淑芳,董克兵.2004.先进氧化技术及其研究进展.自然杂志,26(2):69-74.
    常双君.2008.典型炸药废水的超临界水氧化及其动力学研究.[博士学位论文].太原:中北大学.
    车玲,孟凯中,周世星,梅自良,王斌.2005.电化学法预处理TNT废水及机理研究.工业水处理,25(4):26-28.
    范广裕.1996.磺化煤作吸附剂处理含TNT废水的研究.环境保护,11:19-21.
    靳建永,薛玉香.1986.厌氧生化处理梯恩梯废水中的污泥吸附作用和厌氧生化作用.环境科学丛刊,3:008.
    李健生,郝艳霞,沈美娟.1998.膜萃取法处理TNT生产废水的研究.华北工学院学报,3:71-74.
    李玉河,王翠萍.1999.污水的来源与途径及其危害.山西水利,5:019.
    廖征军.2006.厌氧生化塔处理TNT-RDX混合废水.四川环境,25(5):53-55.
    林中祥,程康华.2000.萃取法去除硝基苯生产废水中的硝基酚.环境导报,2:18-20.
    龙炳清,曹植菁,杨代军.2003.铁还原中和沉淀法处理TNT酸性废水的研究.重庆环境科学,47-49.
    马晓龙,伍明霞.2001.络合萃取法处理含苯胺工业废水.江苏化工,01:42-44.
    欧阳峰,陆一新,黄冬梅.2006.水污染造成的环境经济损失分析.安全与环境工程,13(1):33-36.
    钱正英,张兴斗.2000.中国可持续发展水资源战略研究综合报告——中国工程院“21世纪中国可持续发展水资源战略研究”项目组.中国工程科学:1-17.
    沙耀武,赵文超.1996.含硝基苯或硝基氯苯的废水处理研究.精细化工,05:59-60.
    盛静娴.2009. N-2-(甲氧基-5-硝基苯基)乙酰胺的合成.[硕士学位论文].南京:南京理工大学
    宋卫锋,谢光炎,林美强.2006. DSA类电极催化降解硝基苯及其动力学研究.上海环境科学,21(6):30-32.
    苏俊霞,刘玉存,柴涛.2005. TNT炸药废水处理技术的研究现状.科技情报开发与经济,15(001):122-124.
    孙荣康.1990.火炸药工业的污染及其防治.北京:兵器工业出版社.
    孙贤波,赵庆祥.2002.高级氧化法的特性及其应用.中国给水排水,18(5):33-35.
    唐婉莹,周申范.1997. TNT废水治理技术研究新进展.江苏环境科技,10(4),9-12.
    田涛,辛宝平,李玉平,牟敬海,焦宏春.2007.火炸药废水处理技术综述.安全与环境学报,7(5):60-64.
    王昕.2007.美国不敏感混合炸药的发展现状.火炸药学报,30(2):78-80.
    吴胜举.2001.超声降解处理水体污染物的研究状况与发展.物理,30(12):782-786.
    武福平,张国珍,宋小三,周旭初.2006. Fenton法处理弹药销毁废水的作用机制.兰州交通大学学报(自然科学版),25(4):33-35.
    肖湘竹.2004.以壳聚糖为载体的固定化微生物处理TNT生产废水研究.[博士学位论文].成都:四川大学.
    谢娟.2001.混合炸药废水的处理研究.[博士学位论文].西安:长安大学.
    熊楚才,胡经纬,徐琤.1986. TNT在氧化塘中降解物的初探.环境化学,4:007.
    徐新华,赵伟荣.2003.水与废水的臭氧处理.北京:化学工业出版社.
    许海燕,刘亚菲,唐文伟,李义久,倪亚明.2004.超声、电解与Fenton试剂处理焦化废水的试验研究.工业水处理,24(2):43-45.
    许金花,汪晓军.2007.利用Fenton氧化处理TNT炸药废水.火炸药学报,6:44-47.
    尹娟娟.2009. UV/US/Fenton试剂处理HMX炸药废水研究.[硕士学位论文].太原:中北大学
    张灿.2008.液中放电等离子体技术降解TNT废水的装置和实验研究.[博士学位论文].重庆:重庆大学.
    张光全,董海山.2010.2,4-二硝基苯甲醚为基熔铸炸药的研究进展.含能材料,18(005):604-609.
    赵丽辉,王菊思,唐桂春.1985.金属对处理装药废水中TNT, RDX的研究.环境化学,4(3):40-45.
    赵泉林,叶正芳,王中友,张默贺.2010. TNT废水处理研究进展.环境化学,29(5):796-801.
    周大石,邵岱宇,胡经纬.1987. TNT废水氧化塘微生物类群和降解力的初步研究.环境科学,8(4):49~54.
    Ahn, S.C., Cha, D.K., Kim, B.J. and Oh, S.Y.2011. Detoxification of PAX-21ammunitions wastewater byzero-valent iron for microbial reduction of perchlorate. Journal of Hazardous Materials,192(2):909-914.
    Ayoub, K., Nelieu, S., van Hullebusch, E.D., Labanowski, J., Schmitz-Afonso, I., Bermond, A. and Cassir,M.2011a. Electro-Fenton removal of TNT: Evidences of the electro-chemical reduction contribution.Applied Catalysis B-Environmental,104(1-2):169-176.
    Ayoub, K., Nelieu, S., van Hullebusch, E.D., Maia-Grondard, A., Cassir, M. and Bermond, A.2011b. TNToxidation by Fenton reaction: Reagent ratio effect on kinetics and early stage degradation pathways.Chemical Engineering Journal,173(2):309-317.
    Ayoub, K., van Hullebusch, E.D., Cassir, M. and Bermond, A.2010. Application of advanced oxidationprocesses for TNT removal: A review. Journal of Hazardous Materials,178(1-3):10-28.
    Barb, W.G., Baxendale, J.H., George, P. and Hargrave, K.R.1949.Reaction of ferrous and ferric ions withhydrogen peroxide. Nature,163(4148):692-694.
    Bier, E.L., Singh, J., Li, Z.M., Comfort, S.D. and Shea, P.J.1999. Remediating hexahydro-1,3,5-trinitro-1,2,5-trazine-contaminated water and soil by fenton oxidation. Environmental Toxicology andChemistry,18(6):1078-1084.
    Bruhn, C., Lenke, H. and Knackmuss, H.-J.1987. Nitrosubstituted aromatic compounds as nitrogen sourcefor bacteria. Applied and environmental microbiology,53(1):208-210.
    Calza, P., Sakkas, V.A., Medana, C., Vlachou, A.D., Dal Bello, F. and Albanis, T.A.2013. Chemometricassessment and investigation of mechanism involved in photo-Fenton and TiO2photocatalyticdegradation of the artificial sweetener sucralose in aqueous media. Applied Catalysis B-Environmental,129:71-79.
    Chen, W.-S. and Huang, S.-C.2011a. Sonophotocatalytic degradation of dinitrotoluenes and trinitrotoluenein industrial wastewater. Chemical Engineering Journal,172(2-3):944-951.
    Chen, W.-S. and Huang, Y.-L.2011b. Removal of dinitrotoluenes and trinitrotoluene from industrialwastewater by ultrasound enhanced with titanium dioxide. Ultrasonics Sonochemistry,18(5):1232-1240.
    Chen, W.S. and Huang, G.C.2009. Sonochemical decomposition of dinitrotoluenes and trinitrotoluene inwastewater. Journal of Hazardous Materials,169(1-3):868-874.
    Chen, W.S., Juan, C.N. and Wei, K.M.2005. Mineralization of dinitrotoluenes and trinitrotoluene of spentacid in toluene nitration process by Fenton oxidation. Chemosphere,60(8):1072-1079.
    Cho, Y.S., Lee, B.U. and Oh, K.H.2008. Simultaneous degradation of nitroaromatic compounds TNT,RDX, atrazine, and simazine by Pseudomonas putida HK-6in bench-scale bioreactors. Journal ofChemical Technology and Biotechnology,83(9):1211-1217.
    CRC1975. Handbook of chemistry and physics, Cleveland OH: CRC press Ine
    Davies, P.J. and Provatas, A.2006. Characterisation of2,4-dinitroanisole: an ingredient for use in lowsensitivity melt cast formulations, DTIC Document.
    Della Torre, C., Corsi, I., Arukwe, A., Valoti, M. and Focardi, S.2008a. Interactions of2,4,6-trinitrotoluene (TNT) with xenobiotic biotransformation system in European eel Anguilla anguillaLinnaeus,1758.. Ecotoxicology and Environmental Safety,71(3):798-805.
    Della Torre, C., Corsi, I., Focardi, S. and Arukwe, A.2008b. Effects of2,4,6-trinitrotoluene (TNT) onneurosteroidogenesis in the European eel Anguilla anguilla; Linnaeus1758. Chemistry and Ecology,24:1-7.
    Doll, D.W., Hanks, J.M., Allred, A.G. and Niles, J.B.2001. Reduced sensitivity, melt-pourable TNTreplacements,us2003/0005988
    Doppalapudi, R.B., Sorial, G.A. and Maloney, S.W.2002. Electrochemical reduction of simulatedmunitions wastewater in a bench-scale batch reactor. Environmental Engineering Science,19(2):115-130.
    Fenton, H.J.H.1894. Oxidation of tartaric acid in presence of iron. Journal of the Chemical Society,Transactions,65:899-910.
    Fritz, H. and Joseph, W.1934. The catalytic decomposition of hydrogen peroxide by iron salts. Proceedingsof the Royal Society London,147(Series A):332-351.
    Fu, D., Zhang, Y.H., Lv, F.Z., Chu, P.K. and Shang, J.W.2012. Removal of organic materials from TNTred water by Bamboo Charcoal adsorption. Chemical Engineering Journal,193:39-49.
    Gogate, P.R., Mujumdar, S. and Pandit, A.B.2003. Sonochemical reactors for waste water treatment:comparison using formic acid degradation as a model reaction. Advances in Environmental Research,7(2):283-299.
    Guo, Z.B., Feng, R., Li, J.H., Zheng, Z. and Zheng, Y.F.2008. Degradation of2,4-dinitrophenol bycombining sonolysis and different additives. Journal of Hazardous Materials,158(1):164-169.
    Hamdaoui, O. and Naffrechoux, E.2008. Sonochemical and photosonochemical degradation of4-chlorophenol in aqueous media. Ultrasonics Sonochemistry,15(6):981-987.
    Hermosilla, D., Cortijo, M. and Huang, C.P.2009. Optimizing the treatment of landfill leachate byconventional Fenton and photo-Fenton processes. Science of the Total Environment407(11):3473-3481.
    Hill, F.C., Sviatenko, L.K., Gorb, L., Okovytyy, S.I., Blaustein, G.S. and Leszczynski, J.2012a. DET M06-2X investigation of alkaline hydrolysis of nitroaromatic compounds. Chemosphere,88(5):635-643.
    Hill, F.C., Sviatenko, L.K., Gorb, L., Okovytyy, S.I., Blaustein, G.S. and Leszczynski, J.2012b. DFT M06-2X investigation of alkaline hydrolysis of nitroaromatic compounds. Chemosphere,88(5):635-643.
    Huang, C.P., Dong, C. and Tang, Z.1993. Advanced chemical oxidation: Its present role and potentialfuture in hazardous waste treatment. Waste Management,13(5–7):361-377.
    Huang, C.P. and Myoda, P.S.2007. Sonochemical Treatment of Wastewater Effluent for the Removal ofPathogenic Protozoa Exemplified by Cryptosporidium. Practice Periodical of Hazardous, Toxic, andRadioactive Waste Management11:114-122.
    Huang, R.X., Fang, Z.Q., Yan, X.M. and Cheng, W.2012. Heterogeneous sono-Fenton catalyticdegradation of bisphenol A by Fe3O4magnetic nanoparticles under neutral condition. ChemicalEngineering Journal197:242-249.
    Ikem, A. and Egiebor, N.O.2009. Oxidative Destruction of Picric Acid in Aqueous Media by Fenton'sReagent. Environmental Engineering Science26(2):343-349.
    Fernando,B.1989.Ozone reaction kinetics for water and wastewater systerm.周云端译.2007.北京:中国建筑工业出版社
    Jardim, W.F., Pasquini, C., Guimaraes, J.R. and Defaria, L.C.1990.Sort-term toxicity test usingescherichia-coli-monitoring CO2production by flow-injection analysis. Water Research,24(3):351-354.
    Jardim, W.F. and Pearson, H.W.1984. A STUDY OF THE COPPER-COMPLEXING COMPOUNDSRELEASED BY SOME SPECIES OF CYANOBACTERIA. Water Research,18(8):985-989.
    Kang, K.H., Lim, D.M. and Shin, H.2006. Oxidative-coupling reaction of TNT reduction products bymanganese oxide. Water Research40(5):903-910.
    Karnjanapiboonwong, A., Mu, R.P., Yuan, Y., Shi, H.L., Ma, Y.F. and Burken, J.G.2012. Plant tissueanalysis for explosive compounds in phytoremediation and phytoforensics. Journal of EnvironmentalScience and Health Part a-Toxic/Hazardous Substances&Environmental Engineering47(14):2219-2229.
    Kim, I.K. and Huang, C.P.2005. Sonochemical degradation of polycyclic aromatic sulfur hydrocarbons(PASHs) in aqueous solutions exemplified by benzothiophene. Journal of the Chinese Institute ofEngineers28(7):1107-1118.
    Kim, I.K., Huang, C.P. and Chiu, P.C.2001. Sonochemical decomposition of dibenzothiophene in aqueoussolution. Water Research35(18):4370-4378.
    Knackmuss, H.J.1996. Basic knowledge and perspectives of bioelimination of xenobiotic compounds.Journal of Biotechnology51(3):287-295.
    Koutsospyros, A., Pavlov, J., Fawcett, J., Strickland, D., Smolinski, B. and Braida, W.2012. Degradationof high energetic and insensitive munitions compounds by Fe/Cu bimetal reduction. Journal ofHazardous Materials219:75-81.
    Kremer, M.L.1985.“Complex” versus “free radical” mechanism for the catalytic decomposition of H2O2by ferric ions. International Journal of Chemical Kinetics17:1299-1314
    Li, J.T., Lan, R.J., Bai, B. and Song, Y.L.2013. Ultrasound-Promoted Degradation of Acid Brown348byFenton-Like Processes. Asian Journal of Chemistry25(4):2246-2250.
    Li, Z.M., Comfort, S.D. and Shea, P.J.1997. Destruction of2,4,6-trinitrotoluene by fenton oxidation.Journal of Environmental Quality26(2):480-487.
    Liang, H.-c., Li, X.-z., Yang, Y.-h. and Sze, K.-h.2008. Effects of dissolved oxygen, pH, and anions on the2,3-dichlorophenol degradation by photocatalytic reaction with anodic TiO2nanotube films.Chemosphere73(5):805-812.
    Liang, J., Komarov, S., Hayashi, N. and Kasai, E.2007. Improvement in sonochemical degradation of4-chlorophenol by combined use of Fenton-like reagents. Ultrasonics Sonochemistry14(2):201-207.
    Lin, J.G., Chang, C.N., Wu, J.R. and Ma, Y.S.1996. Enhancement of decomposition of2-chlorophenolwith ultrasound/H2O2process. Water Science and Technology34(9):41-48.
    Liou, M.-J., Lu, M.-C. and Chen, J.-N.2004. Oxidation of TNT by photo-Fenton process. Chemosphere57(9):1107-1114.
    Liou, M.J., Lu, M.C. and Chen, J.N.2003. Oxidation of explosives by Fenton and photo-Fenton processes.Water Research37(13):3172-3179.
    Liu, G.-h., Zhu, S.-N. and Ye, Z.2012. Reduction in the Acute Toxicity of Explosive WastewaterContaining Toxic Nitroaromatic Compounds by a Nanoscale Zerovalent Iron Pretreatment Process.Water Air and Soil Pollution223(8):5049-5055.
    Liu, S.T., Huang, J., Ye, Y., Zhang, A.B., Pan, L. and Chen, X.G.2013. Microwave enhanced Fentonprocess for the removal of methylene blue from aqueous solution. Chemical Engineering Journal215:586-590.
    Lyman, W.J., Reehl, W.F. and Rosenblatt, D.H.1982. Handbook of chemical property estimation methods:environmental behavior of organic compounds, New York: McGraw-Hill
    Mandt, M.G. and Bell, B.A.1982. Oxidation ditches in wastewater treatment. Ann Arbor Science, AnnArbor MI.169.
    Miller, K.C.1973. Toxicity and Adverse Effects of Trinitrotoluene (TNT): A Partially AnnotatedBibliography, Toxicology Information Response Center, Oak Ridge National Library.
    Nehrenheim, E., Odlare, M. and Allard, B.2011. Retention of2,4,6-trinitrotoluene and heavy metals fromindustrial waste water by using the low cost adsorbent pine bark in a batch experiment. Water Scienceand Technology64(10):2052-2058.
    Oh, S.Y., Chiu, P.C., Kim, B.J. and Cha, D.K.2003. Enhancing Fenton oxidation of TNT and RDXthrough pretreatment with zero-valent iron. Water Research37(17):4275-4283.
    Palaniswamy, D.K., Sorial, G.A. and Maloney, S.W.2004. Electrochemical reduction of2,4,6-trinitrotoluene. Environmental Engineering Science21(2):203-218.
    Perreault, N.N., Manno, D., Halasz, A., Thiboutot, S., Ampleman, G. and Hawari, J.2012a. Aerobicbiotransformation of2,4-dinitroanisole in soil and soil Bacillus sp. Biodegradation23(2):287-295.
    Perreault, N.N., Manno, D., Halasz, A., Thiboutot, S., Ampleman, G. and Hawari, J.2012b. Aerobicbiotransformation of2,4-dinitroanisole in soil and soil Bacillus sp. Biodegradation23(2):287-295.
    Platten Iii, W.E., Bailey, D., Suidan, M.T. and Maloney, S.W.2010. Biological transformation pathways of2,4-dinitro anisole and N-methyl paranitro aniline in anaerobic fluidized-bed bioreactors.Chemosphere81(9):1131-1136.
    Platten, W.E., Bailey, D., Suidan, M.T. and Maloney, S.W.2013. Treatment of Energetic WastewaterContaining2,4-Dinitroanisole and N-Methyl Paranitro Aniline. Journal of EnvironmentalEngineering-Asce139(1):104-109.
    Potter, F.J. and Roth, J.A.1993. OXIDATION OF CHLORINATED PHENOLS USING FENTONREAGENT. Hazardous Waste&Hazardous Materials10(2):151-170.
    Qiao, H., Feng, H.-j., Liu, S.-y., Wang, C.-j., Zhang, Y., Gao, Y.-n., Li, W.-b., Yao, J., Wang, M.-z. andShen, D.-s.2011. The possible reduction pathways of2,4,6-trinitrotoluene (TNT) by sulfide undersimulated anaerobic conditions. Water Science and Technology64(12):2474-2482.
    Rao, B., Wang, W., Cai, Q., Anderson, T. and Gu, B.2013. Photochemical transformation of theinsensitive munitions compound2,4-dinitroanisole. Science of the Total Environment443(0):692-699.
    Saad, R., Radovic-Hrapovic, Z., Ahvazi, B., Thiboutot, S., Ampleman, G. and Hawari, J.2012. Sorption of2,4-dinitroanisole (DNAN) on lignin. Journal of Environmental Sciences-China24(5):808-813.
    Sagi-Ben Moshe, S., Dahan, O., Weisbrod, N., Bernstein, A., Adar, E. and Ronen, Z.2012. Biodegradationof explosives mixture in soil under different water-content conditions. Journal of Hazardous Materials203:333-340.
    Schmelling, D.C., Gray, K.A. and Kamat, P.V.1996. Role of reduction in the photocatalytic degradation ofTNT. Environmental Science&Technology30(8):2547-2555.
    Segura, Y., Martinez, F., Melero, J.A., Molina, R., Chand, R. and Bremner, D.H.2012. Enhancement of theadvanced Fenton process (Fe-0/H2O2) by ultrasound for the mineralization of phenol. AppliedCatalysis B-Environmental113:100-106.
    Son, H.S., Lee, S.J., Cho, I.H. and Zoh, K.D.2004. Kinetics and mechanism of TNT degradation in TiO2photocatalysis. Chemosphere57(4):309-317.
    Soon, A.N. and Hameed, B.H.2013. Degradation of Acid Blue29in visible light radiation using ironmodified mesoporous silica as heterogeneous Photo-Fenton catalyst. Applied Catalysis a-General450:96-105.
    Sun, H.H., Sun, S.P., Sun, J.Y., Sun, R.X., Qiao, L.P., Guo, H.Q. and Fan, M.H.2007. Degradation of azodye Acid black1using low concentration iron of Fenton process facilitated by ultrasonic irradiation.Ultrasonics Sonochemistry14(6):761-766.
    Suslick, K.S.1990. Sonochemistry. Science247(4949):1439-1445.
    Uchimiya, M., Gorb, L., Isayev, O., Qasim, M.M. and Leszczynski, J.2010. One-electron standardreduction potentials of nitroaromatic and cyclic nitramine explosives. Environmental Pollution158(10):3048-3053.
    Vilar, A., Eiroa, M., Kennes, C. and Veiga, M.C.2013. Optimization of the landfill leachate treatment bythe Fenton process. Water and Environment Journal27(1):120-126.
    Wilbrand, J.1863. Notiz über Trinitrotoluol. Justus Liebigs Annalen der Chemie128(2):178-179.
    William, G., Joon-Wun, K. and H., C.D.1987. The Chemistry of Water Treatment Processes InvolvingOzone, Hydrogen Peroxide and Ultraviolet Radiation. Ozone: Science&Engineering: The Journal ofthe International Ozone Association94:335–352.
    Xu, Z.H., Hao, J.M., Braida, W., Strickland, D., Li, F.S. and Meng, X.G.2011. Surface-Enhanced RamanScattering Spectroscopy of Explosive2,4-Dinitroanisole using Modified Silver Nanoparticles.Langmuir27(22):13773-13779.
    Yamazaki, I. and Piette, L.H.1991. EPR spin-trapping study on the oxidizing species formed in thereaction of the ferrous ion with hydrogen peroxide. Journal of the American Chemical Society113(20):7588-7593.
    Yin, H., Wood, T.K. and Smets, B.F.2005. Reductive transformation of TNT by Escherichia coli: pathwaydescription. Applied Microbiology and Biotechnology67(3):397-404.
    Yinon, J.1990. Toxicity and Metabolism of Explosive.
    Zhang, H., Choi, H.J. and Huang, C.P.2005. Optimization of Fenton process for the treatment of landfillleachate. Journal of Hazardous Materials125(1-3):166-174.
    Zhang, H., Choi, H.J. and Huang, C.P.2006. Effects of important reaction conditions on landfill leachatetreatment by Fenton process. Fresenius Environmental Bulletin15(1):43-47.
    Zhang, H., Fu, H. and Zhang, D.B.2009. Degradation of CI Acid Orange7by ultrasound enhancedheterogeneous Fenton-like process. Journal of Hazardous Materials172(2-3):654-660.
    Zhang, X., Lin, Y.-m., Shan, X.-q. and Chen, Z.-l.2010. Degradation of2,4,6-trinitrotoluene (TNT) fromexplosive wastewater using nanoscale zero-valent iron. Chemical Engineering Journal158(3):566-570.
    Zhang, Y.H., Wei, F.F., Xing, J., Lv, F.Z., Meng, X.H. and Chu, P.K.2012. Adsorption Behavior andRemoval of Organic Materials from TNT Red Water by Lignite Activated Carbon. Journal ofResiduals Science&Technology9(3):121-129.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700