用户名: 密码: 验证码:
低温水—岩相互作用过程中镁同位素行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为主要的造岩元素之一,镁有3个稳定同位素(24Mg、25Mg、26Mg),由于它们之间的相对质量差较大导致镁同位素在很多地质过程中会发生明显的质量相关分馏。因此,镁同位素有作为地球化学“示踪剂”的先决条件。目前镁同位素同位素研究已成为国际上地球化学领域新兴的研究热点。其中,地球各主要储库的Mg同位素组成特征和地质过程中Mg同位素的行为机制是两个关键的基础性问题。然而,由于缺乏高精度的Mg同位素数据和开展系统地研究,低温水-岩相互作用过程中的镁同位素行为,以及该个过程对陆壳和洋壳的Mg同位素组成的影响程度都尚不清楚。因此,本论文针对主要的低温地球化学过程,如大陆风化过程、黄土沉积形成过程以及洋壳蚀变过程中的镁同位素行为进行了系统的研究,从而为更好认识Mg地球化学循环过程以及应用Mg同位素地来示踪地质过程提供理论依据。为了实现以上研究目标,我们对典型的并有良好研究基础的经历过低温地球化学过程的样品,中国海南岛玄武岩风化剖面、国际大洋科学钻探计划(ODP)801站的蚀变洋壳剖面、全球主要黄土沉积区的黄土沉积物,进行了系统的矿物学、主微量元素、传统同位素和Mg同位素组成分析研究。通过这些研究得到以下几点主要认识:
     (1)通过测试分析来自海南新生代玄武岩风化剖面的一套富集粘土矿物的风化残余土的镁同位素组成来探讨大陆风化过程中的镁同位素行为。与未风化的玄武岩母岩相比(δ26Mg=-0.36‰),上覆的风化残余土强烈的亏损Mg(即τTh,Mg从-99.1%到-92.9%),并且具有高度不一致的镁同位素组成,δ26Mg在-0.49‰到+0.40%0之间。在风化剖面3m以下的部分,随着深度逐渐变浅,风化残余土的镁浓度和镁同位素组成均呈现增加的趋势。然而,在风化剖面3m以上的部分,越靠近表层的风化残余土,它们的镁浓度和镁同位素组成均越低。该风化剖面中镁浓度和镁同位素组成的变化趋势可以通过与次生矿物有关的吸附和解吸附过程来解释。也就是,在风化过程中,原生矿物溶解释放到流体中的Mg离子,通过吸附作用被玄武岩风化后形成的高岭土矿物固定,在这个过程中重的Mg同位素优先被高岭土等次生矿物摄取。这可以解释大部分风化残余土具有比母岩更重的镁同位素组成,并且来自风化剖面下半部分的残余土的镁同位素组成与高岭土矿物含量具有显著的正相关关系。此外,由于雨水等外来流体的加入,风化剖面靠近地表的部分经历了更强的风化作用,同时外来流体淋溶的作用使得流体中具有更低水化能的离子(如,K+、Rb+、CS+、Sr2+等)通过阳离子交换作用把之前吸附在高岭土矿物表面的重的Mg同位素被释放出来。来自风化剖面上半部分的残余土的镁同位素组成与那些具有低水化能的元素(如,Sr和Cs)之间的负相关关系,支持解吸附作用导致镁同位素分馏。该研究结果第一次强调了与粘士矿物有关的吸附与解吸附过程对极端风化过程中镁同位素的行为起到显著的影响。这个过程导致镁同位素分馏为解释河流水具有显著不均一的镁同位素组成提供了新的观点。汇编比较来自不同气候带风化产物的镁同位素组成数据揭示在大陆风化过程中的镁同位素在原生矿物溶解为主的初始风化阶段分馏程度十分有限;而在以次生矿物形成为主的高级风化阶段能导致明显的镁同位素分馏。
     (2)黄土沉积作为研究第四纪环境变化和估计上地壳平均化学组成重要的陆地地质档案。为了探讨黄土沉积能否作为有效的上地壳平均组成“代理”来正确的评估具有十分不均一组成的上地壳的Mg同位素平均组成,以及弄清控制黄土Mg同位素组成的因素。我们测试分析了来自中国、阿根廷和欧洲等地19个黄土样品的镁同位素组成,这些黄土样品之前已经用来来评估上地壳的平均化学组成。结果显示这些来自全球的黄土样品具有十分不均一的镁同位素组成,它们的δ26Mg值为-1.64‰到+0.25‰,平均值为-0.89‰,比来自地壳和地幔的硅酸岩的镁同位素组成都要轻。此外,这些黄土样品的MgO含量和δ26Mg值都与CaO/Al2O3比值呈正相关关系,可以解释为碳酸盐岩和二次硅酸岩矿物之间的二原混合。在黄土沉积形成过程中,(1)源区物质的不均一性,(2)风尘搬运过程发生的矿物分选作用,(3)化学风化作用,均可能影响黄土物质中富镁的矿物相(硅酸盐和碳酸盐矿物)的相对组成,进而影响黄士的镁同位素组成。其中,风尘搬运过程中发生的矿物分选作用和沉积过程中经历的化学风化作用都趋向使黄土中粘士矿物的相对比例增加,从而使黄士的镁同位素组成变重。这些结果指示由于黄土沉积形成过程中不同组份的混合、分选以及同位素分馏作用已经改变了黄土原始物质的镁同位素组成,所以黄土的镁同位素组成已经不能代表上地壳的平均镁同位素组成。但是,来自同一地区黄土的镁同位素组成与它们的古气候变化代理指标,如化学蚀变指数(CIA)和粒径变化指标SiO2/TiO2摩尔比值之间的具有明显的相关关系,这指示黄土的镁同位素组成具有作为示踪古气候变化代理的潜力。
     (3)蚀变洋壳记录着洋壳在蚀变过程中的相关信息,为揭示许多元素的全球物质循环过程提供关键性信息。蚀变洋壳的镁同位素组成是认识地幔、地壳以及水圈之间的镁循环的一个关键纽带,但是蚀变洋壳的镁元素和同位素通量到目前为止还不清楚。本次研究的主要目的是通过分析位于西太平洋的国际大洋科学钻探计划(ODP)801站位基底玄武岩剖面的镁同位素组成来研究低温条件下海水与洋壳玄武岩之间相互作用过程中的镁同位素行为,并评估俯冲进入地幔之前洋壳的镁同位素平均组成。研究结果显示,与未蚀变的洋壳相比,这些经历过低温海水蚀变作用的洋壳明显亏损镁,并且亏损程度(AMgO)随深度增加而呈现逐渐减弱的趋势。这些蚀变玄武岩具有十分不均一的镁同位素组成(δ26Mg从-2.82%到+0.19‰),其中蚀变程度更高的火山碎屑(VCL)混合样的镁同位素组成(δ26Mg值在-1.01到0.14‰之间)比蚀变程度较低的玄武岩熔岩混合样(FLO)的(δ26Mg值在-0.54到-0.02‰之间)变化范围更大,其平均组成更重。代表整个ODP801站玄武岩基底的平均组成的SUPER混合样(δ26Mg=-0.02‰)具有明显比新鲜玄武岩更重的镁同位素组成。这些特征指示洋壳在低温条件下与海水之间的相互作用会导致镁同位素在蚀变洋壳中重新分配。通过新鲜玄武岩与蚀变形成的次生含镁矿物之间的混合模拟计算可以很好的解释这些蚀变玄武岩的δ26Mg组成与MgO含量之间的相关关系,这表明蚀变玄武岩的镁同位素组成是受蚀变形成的次生矿物相控制的。这些次生矿物相在蚀变洋壳中的分布主要是海水与洋壳相互反应过程中水-岩比值、蚀变温度以及氧化程度等因素联合作用产生的结果。例如,随着水-岩比值的升高,蚀变程度增强,蚀变洋壳中碳酸盐岩脉的含量逐渐升高;蚀变环境越偏向还原条件,蚀变形成的次生矿物中皂石和黄铁矿的含量越高,导致蚀变玄武岩的铁同位素组成越轻,而镁同位素组成越重;此外,随着蚀变温度逐渐逐渐降低,蚀变形成的产物中碳酸盐矿物的含量越高,进入其中的Mg含量也越高,导致蚀变洋壳的镁同位素组成变轻。根据ODP801站的蚀变洋壳数据估算的低温海水蚀变过程向海洋输入的Mg通量大约为2×1010mol/yr,这可能是自新生代以来的海水中的Mg浓度和Mg/Ca比值持续升高的原因之一。另外,具有十分不均一的镁同位素组成的蚀变洋壳和大洋沉积物通过俯冲作用循环进入地幔,可能会导致地幔物质的镁同位素组成出现不同程度的不均一性。
Magnesium is a fluid-mobile, major element in both the mantle and the crust, and has three isotopes (24Mg,25Mg,26Mg) with relative mass difference of~8%between24Mg and26Mg, which can potentially lead to large mass-dependent Mg isotope fractionation. This makes Mg isotopes have several advantages to serve as promising geochemical tracers. As new geochemical tracers, Mg isotopes have attracted more and more attentions from international geologists. At present, the studies on Mg isotope geochemistry are focusing on estimating the Mg isotopic compositions of the major geochemical resvervoirs and exploring the behavior of Mg isotopes during the different geological processes. However, due to the lack of high-precision Mg isotope data and the systematic studies, the behavior of Mg isotopes during the low temperature water-rock interaction processes, and the degree of influence of these processes on Mg isotopic compositions of continental crust and oceanic crust are still unclear. In order to provide a theoretical basis for better understanding of Mg geochemical cycle and the application of Mg isotopes as geochemical tracers for the geological processes, this thesis mainly focuses on the behavior of Mg isotopes during the major low temperature gaochmical processes, such as continental weathering, oceanic crust alteration and loess deposit formation. Consequently, detailed case studies are presented from basalt weathering profile in Hainan Island, alterated oceanic crust in the ODP Site801, and loess samples from the major loess deposits in the world, considering mineralogical abundance, major and trace element concentration, and isotopic composition, and the controls on the behaviors of Mg isotopes. The main knowledges based on these studies are following:
     (1) Magnesium isotopic compositions of a set of clay-rich saprolites developed on the Neogene tholeiitic basalt from Hainan island in southern China have been measured in order to document the behavior of Mg isotopes during continental weathering. Compared with unaltered basalts (δ26Mg=-0.36%o), the overlying saprolites are strongly depleted in Mg (i.e., τTh,Mg=-99.1to-92.9), and display highly variable δ26Mg, ranging from-0.49%o to+0.40‰. Magnesium concentration and δ26Mg value of the saprolites display a general increasing trend upwards in the lower part of the profile, but a decreasing trend towards the surface in the upper part. The variations of Mg concentration and isotopic composition in this weathering profile can be explained through adsorption and desorption processes,(a) adsorption of Mg to kaolin minerals (kaolinite and halloysite), with preferential uptake of heavy Mg isotopes onto kaolin minerals; and (b) desorption of Mg through cation exchange of Mg with the relatively lower hydration energy cations in the upper profile. Evidence for adsorption is supported by the positive correlation between δ26Mg and the modal abundance of kaolin minerals in saprolite of the lower profile, while negative correlations between δ26Mg and concentrations of lower hydration energy cations (e.g., Sr and Cs) in the upper profile support the desorption process. Our results highlight that adsorption and desorption of Mg on clay minerals play an important role in the behavior of Mg isotopes during extreme weathering, which may help to explain the large variation in Mg isotopic composition of river waters. Compilation of Mg isotopic data of weathered products reveals that behavior of Mg isotopes during continental weathering can be considered as a two-stage process,(a) limited Mg isotope fractionation during primary mineral dissolution in the incipient stage of weathering and (b) large Mg isotope fractionation during secondary mineral formation in the advanced stage of weathering.
     (2) Loess deposits serve as important continental archives for studying Quaternary climatic variations and for estimating the average chemical composition of the upper continental crust. Here, we report high-precision Mg isotopic data for nineteen loess samples from China, Argentina and Europe, which were previously used to estimate the composition of the upper continental crust. The results show that global loess have heterogeneous Mg isotopic compositions, with δ26Mg ranging from-1.64%o to+0.25‰and a weighted average of-0.89%o, which is lighter than both crust and mantle silicates. MgO content and826Mg of loess positively correlate with CaO/Al2O3ratio, which can be explained by a two-component mixing between carbonates and secondary silicate minerals. The large variation in Mg isotopic composition of loess results from the variations in the relative proportions of carbonates to clays in loess. Three factors:(a) source heterogeneity,(b) eolian sorting during transport and (c) chemical weathering after deposition, play important roles in controlling the distribution of carbonates and clays in loess. Both processes of eolian sorting and chemical weathering during formation of loess deposit tend to enrich clays in loess and in turn drive the Mg isotopic composition of loess toward heavier values. Significant correlations between δ26Mg values of loess from the same loss deposit and climatic indices such as CIA and SiO2/TiO2molar ratio indicate that Mg isotopic composition of loess may provide insights into paleoclimatic changes. However, our results suggest that Mg isotopic composition of loess may not represent the average Mg isotopic composition of the upper continental crust due to mixing and/or sorting of isotopically distinct components and isotope fractionation during loess deposit formation.
     (3) The altered oceanic crust (AOC) records the alteration processes and reveals much information about the global geochemical cycles of many elements such as Mg, which has high abundance in the solid Earth and ocean. The AOC therefore plays a central role in the global Mg cycle; however, the Mg isotope geochemistry of the AOC remains poorly constrained. The Mg isotopic composition of the altered oceanic crust from the ODP Site801in the western Pacific have been measured in order to investigate the behaviors of Mg isotopes during low-temperature interaction of seawater with oceanic basalt, and to estimate the flux of Mg isotopes of the oceanic crust that is recycled at subduction zones for the first time. Our results show that the AOC are depleted in Mg compared to fresh mid-ocean ridge basalt (MORB), and the change in MgO content (AMgO) decreases with depth. In addition, these AOC samples display highly variable δ26Mg, ranging from-2.82%o to+0.19%o. The SUPER composite, which represents the bulk upper oceanic basement sections of the ODP Site801, has a heavier826Mg value (=-0.02%o) relative to the bulk silicate earth or fresh MORB (δ26Mg=-0.25±0.08%o) previously reported by Teng et al (2010a). Composite samples prepared from volcanoclastics (VCL,δ26Mg=-1.01to0.14‰) and contained more Mg-rich secondary minerals have larger variations in826Mg compared to composite samples prepared from basaltic flows (FLO,δ26Mg=-0.54to-0.02%o), and on average is heavier than the later one. All these findings suggest that Mg isotopes have significantly fractionated during during low-temperature interaction of seawater with oceanic crust. Moreover, δ26Mg values of the AOCs positively correlated with their MgO contents. This correlationship can be explained by a three-component mixing among the fresh MORB, secondary carbonates and secondary silicate minerals, reflecting that Mg isotopic composition of the AOC is controlled by the relative proportion of primary and secondary Mg-rich mineral. The distribution of these secondary minerals in the AOC mainly results from combination of the water-rock ratio, temperature of alteration, and seawater oxidation during alteration of seawater with oceanic crust. For examples, the degree of alteration increases with the wate-rock ratio, and in turn produces higher abundance of the secondary carbonates in the AOC and lighter826Mg values; additionally, the AOC contains more secondary silicate minerals such as saponite and pyrite, and in turn has heavier826Mg value when the reaction environment trends to deoxidation; furthermore, the temperature of alteration decreases will induces higher abundance of carbonate and lighter Mg isotopic composition of the AOC. Based on the date from this study, the flux of Mg input from low-temperature alteration of oceanic crust is estimated about2×1010mol/yr, suggesting that this process might be the main factor driving the Mg concentration and Mg/Ca raio of seawater increasing over the past100million years. More importantly, the process of the AOC with highly heterogenous Mg isotopic composition along with the marine sediment recycled into mantle through subduction may lead to Mg isotopic composition of the mantle with heterogeneity.
引文
[1]Holland H D, Lazar B, McCaffrey M. Evolution of the atmosphere and oceans. Nature,1986, 320(6057):27-33.
    [2]McDonough W F, Sun S s. The composition of the Earth. Chemical Geology,1995,120(3-4): 223-253.
    [3]Taylor S R, McLennan S M. The Continental Crust:Its Composition and Evolution. Oxford, Blackwell Scientific Publications,1985,312 pp.
    [4]Millero F J. The physical chemistry of seawater. Annual Review of Earth and Planetary Sciences,1974,2(1):101-150.
    [5]Young E D, Galy A. The isotope geochemistry and cosmochemistry of magnesium. Reviews in Mineralogy and Geochemistry,2004,55(1):197-230.
    [6]Johnson 1 M, Beard B L, Albarede F. Overview and General Concepts. In:C.M. Johnson et al. (Editors), Geochemistry of Non-Traditional Stable Isotopes. Reviews in Mineralogy and Geochemistry 2004, pp.1-24.
    [7]Teng F-Z, Li W-Y, Ke S, et al.. Magnesium isotopic composition of the Earth and chondrites. Geochimica et Cosmochimica Acta,2010,74(14):4150-4166.
    [8]Ra K, Kitagawa H. Magnesium isotope analysis of different chlorophyll forms in marine phytoplankton using multi-collector ICP-MS Journal of Analytical Atomic Spectrometry, 2007,22:817-821.
    [9]Li W-Y, Teng F-Z, Ke S, et al.. Heterogeneous magnesium isotopic composition of the upper continental crust. Geochimica et Cosmochimica Acta,2010,74(23):6867-6884.
    [10]Pogge von Strandmann P A E, Burton K W, James R H, et al.. The influence of weathering processes on riverine magnesium isotopes in a basaltic terrain. Earth and Planetary Science Letters,2008,276(1-2):187-197.
    [11]Brenot A, Cloquet C, Vigier N, et al.. Magnesium isotope systematics of the lithologically varied Moselle river basin, France Geochimica et Cosmochimica Acta,2008,72(20): 5070-5089.
    [12]Ling M-X, Sedaghatpour F, Teng F-Z, et al.. Homogeneous magnesium isotopic composition of seawater:an excellent geostandard for Mg isotope analysis. Rapid Communications in Mass Spectrometry,2011,25(19):2828-2836.
    [13]Liu S-A, Teng F-Z, He Y, et al.. Investigation of magnesium isotope fractionation during granite differentiation:Implication for Mg isotopic composition of the continental crust. Earth and Planetary Science Letters,2010,297(3-4):646-654.
    [14]Shen B, Jacobsen B, Lee C-T A, et al.. The Mg isotopic systematics of granitoids in continental arcs and implications for the role of chemical weathering in crust formation. Proceedings of the National Academy of Sciences of the United States of America,2009, 106(49):20652-20657
    [15]Tipper E T, Galy A, Bickle M J. Riverine evidence for a fractionated reservoir of Ca and Mg on the continents:Implications for the oceanic Ca cycle. Earth and Planetary Science Letters, 2006,247(3-4):267-279.
    [16]Bolou-Bi E B, Vigier N, Brenot A, et al.. Magnesium Isotope Compositions of Natural Reference Materials. Geostandards and Geoanalytical Research,2009,33(1):95-109.
    [17]Teng F-Z, Li W-Y, Rudnick R L, et al.. Contrasting lithium and magnesium isotope fractionation during continental weathering. Earth and Planetary Science Letters,2010, 300(1-2):63-71.
    [18]Chang V T C, Makishima A, Belshaw N S. et al.. Purification of Mg from low-Mg biogenic carbonates for isotope ratio determination using multiple collector ICP-MS. Journal of Analytical Atomic Spectrometry,2003,18(4):296-301.
    [19]Handler M R, Baker J A, Schiller M, et al.. Magnesium stable isotope composition of Earth's upper mantle Earth and Planetary Science Letters,2009,282(1-4):306-313
    [20]Bourdon B, Tipper E T, Fitoussi C, et al.. Chondritic Mg isotope composition of the Earth. Geochimica et Cosmochimica Acta,2010,74(17):5069-5083.
    [21]Wiechert U, Halliday A N. Non-chondritic magnesium and the origins of the inner terrestrial planets. Earth and Planetary Science Letters,2007,256(3-4):360-371.
    [22]Jacobson A D, Zhang Z, Lundstrom C, et al.. Behavior of Mg isotopes during dedolomitization in the Madison Aquifer, South Dakota. Earth and Planetary Science Letters, 2010,297(3-4):446-452.
    [23]Schiller M, Handler M R, Baker J A. High-precision Mg isotopic systematics of bulk chondrites. Earth and Planetary Science Letters,2010,297(1-2):165-173.
    [24]Tipper E T, Galy A, Gaillardet J. et al.. The magnesium isotope budget of the modern ocean: Constraints from riverine magnesium isotope ratios. Earth and Planetary Science Letters, 2006,250(1-2):241-253.
    [25]Galy A, Belshaw N S, Halicz L, et al.. High-precision measurement of magnesium isotopes by multiple-collector inductively coupled plasma mass spectrometry. International Journal of Mass Spectrometry,2001,208(1-3):89-98.
    [26]Pogge von Strandmann P A E, Elliott T, Marschall H R, et al.. Variations of Li and Mg isotope ratios in bulk chondrites and mantle xenoliths. Geochimica et Cosmochimica Acta,2011, 75(18):5247-5268.
    [27]Huang F, Zhang Z, Lundstrom C C, et al.. Iron and magnesium isotopic compositions of peridotite xenoliths from Eastern China. Geochimica et Cosmochimica Acta,2011,75(12): 3318-3334.
    [28]Hofmann A W. Mantle geochemistry:the message from oceanic volcanism. Nature,1997, 385(6613):219-229.
    [29]Teng F-Z, Wadhwa M, Helz R T. Investigation of magnesium isotope fractionation during basalt differentiation:Implications for a chondritic composition of the terrestrial mantle Earth and Planetary Science Letters,2007,261(1-2):84-92.
    [30]Rudnick R L. Making continental crust. Nature,1995,378(6557):571-578.
    [31]Lee C-T A, Morton D M, Little M G, et al.. Regulating continent growth and composition by chemical weathering. Proceedings of the National Academy of Sciences,2008,105(13): 4981-4986.
    [32]Tipper E T, Galy A, Bickle M J. Calcium and magnesium isotope systematics in rivers draining the Himalaya-Tibetan-Plateau region:Lithological or fractionation control? Geochimica et Cosmochimica Acta,2008,72(4):1057-1075.
    [33]Young E D, Ash R D, Galy A, et al.. Mg isotope heterogeneity in the Allende meteorite measured by UV laser ablation-MC-ICPMS and comparisons with O isotopes. Geochimica et Cosmochimica Acta 2002,66:683-698.
    [34]de Villiers S, Dickson J A D, Ellam R M. The composition of the continental river weathering flux deduced from seawater Mg isotopes. Chemical Geology,2005,216(1-2):133-142.
    [35]Buhl D, Immenhauser A, Smeulders G, et al.. Time series δ26Mg analysis in speleothem calcite:Kinetic versus equilibrium fractionation, comparison with other proxies and implications for palaeoclimate research. Chemical Geology,2007,244(3-4):715-729.
    [36]Black J R, Epstein E, Rains W D, et al.. Magnesium-Isotope Fractionation During Plant Growth. Environmental Science and Technology,2008,42(21):7831-7836.
    [37]柯珊,刘盛遨,李王哗,等.镁同位素地球化学研究新进展及其应用.岩石学报,2011,27(2):383-397.
    [38]Tipper E T, Lemarchand E, Hindshaw R S, et al.. Seasonal sensitivity of weathering processes: Hints from magnesium isotopes in a glacial stream. Chemical Geology,2012,312-313 80-92.
    [39]孙剑,房楠,李世珍,等.白云鄂博矿床成因的Mg同位素制约.岩石学报,2012,28(9):2890-2902.
    [40]何学贤,李世珍,唐索寒.Mg同位素应用研究进展.岩石矿物学杂志,2008,27(5):472-476.
    [41]葛璐,蒋少涌.镁同位素地球化学研究进展.岩石矿物学杂志,2008,27(4):367-374.
    [42]Berner R A, Lasaga A C, Garrels R M. The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years American Journal of Science, 1983,283:641-683.
    [43]Kisakurek B. Utility of lithium and magnesium isotopes as tracers of continental weathering processes, Open University (United Kingdom), Milton Keynes,United Kingdom,2005,626 pp.
    [44]Wimpenny J, Burton K W, James R H, et al.. The behaviour of magnesium and its isotopes during glacial weathering in an ancient shield terrain in West Greenland. Earth and Planetary Science Letters,2011,304(1-2):260-269.
    [45]Tipper E T, Gaillardet J, Louvat P, et al.. Mg isotope constraints on soil pore-fluid chemistry: Evidence from Santa Cruz, California. Geochimica et Cosmochimica Acta,2010,74(14): 3883-3896.
    [46]Pogge von Strandmann P A E, Opfergelt S, Lai Y-J, et al.. Lithium, magnesium and silicon isotope behaviour accompanying weathering in a basaltic soil and pore water profile in Iceland. Earth and Planetary Science Letters,2012,339-340:11-23.
    [47]Opfergelt S, Georg R B, Delvaux B, et al.. Mechanisms of magnesium isotope fractionation in volcanic soil weathering sequences, Guadeloupe. Earth and Planetary Science Letters,2012, 341-344:176-185.
    [48]Wimpenny J, Gfslason S R, James R H, et al.. The behaviour of Li and Mg isotopes during primary phase dissolution and secondary mineral formation in basalt. Geochimica et Cosmochimica Acta,2010,74(18):5259-5279.
    [49]Black J R, Yin Q-z, Rustad J R. et al.. Magnesium Isotopic Equilibrium in Chlorophylls. Journal of the American Chemical Society,2007,129(28):8690-8691.
    [50]Bolou-Bi E B, Poszwa A, Leyval C, et al.. Experimental determination of magnesium isotope fractionation during higher plant growth. Geochimica et Cosmochimica Acta,2010,74(9): 2523-2537
    [51]Bolou-Bi E B, Vigier N, Poszwa A, et al.. Effects of biogeochemical processes on magnesium isotope variations in a forested catchment in the Vosges Mountains (France). Geochimica et Cosmochimica Acta,2012,87(15):341-355.
    [52]Mucci A, Morse J W. The solubility of calcite in seawater solutions of various magnesium concentration, It=0.697 m at 25 [degree sign]C and one atmosphere total pressure. Geochimica et Cosmochimica Acta,1984,48(4):815-822.
    [53]Davis K J, Dove P M, De Yoreo J J. The Role of Mg2+ as an Impurity in Calcite Growth. Science,2000,290(5494):1134-1137.
    [54]Mucci A. Influence of temperature on the composition of magnesian calcite overgrowths precipitated from seawater. Geochimica et Cosmochimica Acta,1987,51:1977-1984.
    [55]Chang V T C, Williams R J P, Makishima A, et al.. Mg and Ca isotope fractionation during CaCO3 biomineralisation. Biochemical and Biophysical Research Communications,2004, 323(1):79-85.
    [56]Pogge von Strandmann P A E. Precise magnesium isotope measurements in core top planktic and benthic foraminifera. Geochemistry, Geophysics, Geosystems,2008,9(12):Q12015.
    [57]Hippler D, Buhl D, Witbaard R, et al.. Towards a better understanding of magnesium-isotope ratios from marine skeletal carbonates Geochimica et Cosmochimica Acta,2009,73(20): 34-6146
    [58]Ra K, Kitagawa H, Shiraiwa Y. Mg isotopes and Mg/Ca values of coccoliths from cultured specimens of the species Emiliania huxleyi and Gephyrocapsa oceanica. Marine Micropaleontology,2010,77(3-4):119-124.
    [59]Immenhauser A, Buhl D, Richter D, et al.. Magnesium-isotope fractionation during low-Mg calcite precipitation in a limestone cave-Field study and experiments. Geochimica et Cosmochimica Acta,2010,74(15):4346-4364.
    [60]Riechelmann S, Buhl D, Schroder-Ritzrau A, et al.. Hydrogeochemistry and fractionation pathways of Mg isotopes in a continental weathering system:Lessons from field experiments. Chemical Geology,2012,300-301:109-122.
    [61]Pokrovsky B G, Mavromatis V, Pokrovsky O S. Co-variation of Mg and C isotopes in Late Precambrian carbonates of the Siberian Platform:a new tool for tracing the change in weathering regime? Chemical Geology,2011,290(1-2):67-74.
    [62]Geske A, Zorlu J, Richter D K, et al.. Impact of diagenesis and low grade metamorphosis on isotope (δ26Mg,δ13C,δ18O and 87Sr/86Sr) and elemental (Ca, Mg, Mn, Fe and Sr) signatures of Triassic sabkha dolomites. Chemical Geology,2012,332-333:45-64.
    [63]Saulnier S, Rollion-Bard C, Vigier N, et al.. Mg isotope fractionation during calcite precipitation:an experimental study. Geochimica et Cosmochimica Acta,2012,91:75-91.
    [64]Pearce C R, Saldi G D, Schott J, et al.. Isotopic fractionation during congruent dissolution, precipitation and at equilibrium:Evidence from Mg isotopes. Geochimica et Cosmochimica Acta,2012,92:170-183.
    [65]Wang Z, Hu P, Gaetani G, et al.. Experimental calibration of Mg isotope fractionation between aragonite and seawater. Geochimica et Cosmochimica Acta,2012,102:113-123.
    [66]Li W, Chakraborty S, Beard B L, et al.. Magnesium isotope fractionation during precipitation of inorganic calcite under laboratory conditions. Earth and Planetary Science Letters,2012, 333-334:304-316.
    [67]Catanzaro E J, Murphy T J. Magnesium isotope ratios in natural samples. Journal of Geophysical Research,1966,71:1271-1274.
    [68]Gray C M, Compston W. Excess 26Mg in the Allende meteorite. Nature,1974,251:495-497.
    [69]Lee T, Papanastassiou D A. Mg isotopic anomalies in the Allende meteorite and correlation with O and Sr effects. Geophysical Research Letters,1974,1:225-228.
    [70]MacPherson G J, Davis A M, Zinner E K. The distribution of aluminum-26 in the early Solar System-a reappraisal. Meteoritics 1995,30:365-386.
    [71]Olivares J A, Houk R S. Suppression of analyte signal by various concomitant salts in inductively coupled plasma mass spectrometry. Analytical chemistry,1986,58:20-25.
    [72]Huang F, Glessner J, Ianno A, et al.. Magnesium isotopic composition of igneous rock standards measured by MC-ICP-MS Chemical Geology,2009,268(1-2):15-23.
    [73]Carlson R W, Hauri E H, Alexander C M O D. Matrix-induced Isotopic Mass Fractionation in the ICP-MS. Special Publications of the Royal Society of Chemistry,2001,267:288-297.
    [74]Kehm K, Hauri E H, Alexander C M O A, et al.. High precision iron isotope measurements of meteoritic material by cold plasma ICP-MS. Geochimica et Cosmochimica Acta,2003,67(15): 2879-2891.
    [75]Young E D, Tonui E, Manning C E, et al.. Spinel-olivine magnesium isotope thermometry in the mantle and implications for the Mg isotopic composition of Earth. Earth and Planetary Science Letters,2009,288(3-4):524-533.
    [76]Dauphas N, Teng F-Z, Arndt N T. Magnesium and iron isotopes in 2.7 Ga Alexo komatiites: Mantle signatures, no evidence for Soret diffusion, and identification of diffusive transport in zoned olivine Geochimica et Cosmochimica Acta,2010,74(11):3274-3291
    [77]Yang W, Teng F-Z, Zhang H-F. Chondritic magnesium isotopic composition of the terrestrial mantle:A case study of peridotite xenoliths from the North China craton Earth and Planetary Science Letters,2009,288(3-4):475-482
    [78]Li W-Y, Teng F-Z, Xiao Y, et al.. High-temperature inter-mineral magnesium isotope fractionation in eclogite from the Dabie orogen, China. Earth and Planetary Science Letters, 2011,304(1-2):224-230.
    [79]Liu S-A, Teng F-Z, Yang W, et al.. High-temperature inter-mineral magnesium isotope fractionation in mantle xenoliths from the North China craton Earth and Planetary Science Letters,2011,308(1-2):131-140.
    [80]Albarede F, Beard B L. Analytical methods for non-traditional isotopes. In:C.M. Johnson et al. (Editors), Geochemistry of Non-Traditional Stable Isotopes:Reviews in Mineralogy & Geochemistry. Mineralogical Society of America, Washington DC,2004, pp.113-152.
    [81]Norman M D, McCulloch M T, O'Neill H S, et al.. Magnesium isotopic analysis of olivine by laser-ablation multi-collector ICP-MS:composition dependent matrix effects and a comparison of the Earth and Moon. Journal of Analytical Atomic Spectrometry,2006,21: 50-54.
    [82]Pearson N J, Griffin W L, Alard O, et al.. The isotopic composition of magnesium in mantle olivine:Records of depletion and metasomatism Chemical Geology,2006,226(3-4):115-133.
    [83]Yoshimura T, Tanimizu M, Inoue M, et al.. Mg isotope fractionation in biogenic carbonates of deep-sea coral, benthic foraminifera, and hermatypic coral. Analytical and Bioanalytical Chemistry,2011,40(9):2755-2769.
    [84]Galy A, Yoffe O, Janney P E, et al.. Magnesium isotope heterogeneity of the isotopic standard SRM980 and new reference materials for magnesium-isotope-ratio measurements. Journal of Analytical Atomic Spectrometry 2003,18:1352-1356.
    [85]Gaillardet J, Dupre B, Louvat P. et al.. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers Chemical Geology,1999,159(1-4):3-30.
    [86]Dessert C, Dupr B, Gaillardet D, et al.. Basalt weathering laws and the impact of basalt weathering on the global carbon cycle. Chemical Geology,2003,202(3-4):257-273.
    [87]Pogge von Strandmann P A E, James R H, van Calsteren P, et al.. Lithium, magnesium and uranium isotope behaviour in the estuarine environment of basaltic islands Earth and Planetary Science Letters 2008,274(3-4):462-471.
    [88]Ryu J-S, Jacobson A D, Holmden C, et al.. The major ion,δ44/40Ca,δ44/42Ca, and 826/24Mg geochemistry of granite weathering at pH=1 and T=25℃:power-law processes and the relative reactivity of minerals. Geochimica et Cosmochimica Acta,2011,75(20): 6004-6026.
    [89]Ma J-L, Wei G-J, Xu Y-G, et al.. Mobilization and re-distribution of major and trace elements during extreme weathering of basalt in Hainan Island, South China. Geochimica et Cosmochimica Acta,2007,71(13):3223-3237.
    [90]Ma J, Wei G, Xu Y, et al.. Variations of Sr-Nd-Hf isotopic systematics in basalt during intensive weathering. Chemical Geology,2010,269(3-4):376-385.
    [91]朱炳泉,王慧芬.雷琼地区MORB-OIB过渡型地幔源火山作用的Nd-Sr-Pb同位素证据.地球化学,1989,18(3):193-201.
    [92]Yang W, Teng F-Z, Zhang H-F, et al.. Magnesium isotopic systematics of continental basalts from the North China craton:Implications for tracing subducted carbonate in the mantle. Chemical Geology,2012,328:185-194.
    [93]Wilson M J. The origin and formation of clay minerals in soils:past, present and future perspectives. Clay Minerals,1999,34(1):7-25.
    [94]Nesbitt H W, Markovics G, Price R C. Chemical processes affecting alkalis and alkaline earths during continental weathering. Geochimica et Cosmochimica Acta,1980,44(11):1659-1666
    [95]Nesbitt H W, Wilson R E. Recent chemical weathering of basalts. American Journal of Science,1992,292:740-777.
    [96]Trolard F, Tardy Y. The stabilities of gibbsite, boehmite, aluminous goethites and aluminous hematites in bauxites, ferricretes and laterites as a function of water activity, temperature and particle size. Geochimica et Cosmochimica Acta,1987,51(4):945-957.
    [97]Ma L, Chabaux F, Pelt E, et al.. The effect of curvature on weathering rind formation: evidence from Uranium-series isotopes in basaltic andesite weathering clasts in Guadeloupe. Geochimica et Cosmochimica Acta,2012,80:92-107.
    [98]Carroll D, Starkey H C. Effect of sea-water on clay minerals. Clays and Clay Minerals,1960, 7:80-101.
    [99]Weaver C E, Pollard L D. The chemistry of clay minerals. Developments in sedimentology. Amsterdam, Elsevier 1973,213 pp.
    [100]Ma C, Eggleton R A. Cation exchange capacity of kaolinite. Clays and Clay Minerals,1999, 47(2):174-180.
    [101]Olu-Owolabi B I, Ajayi S O. Cations adsorption on goethite-humic acid complex. Scientia Iranica,2003,10(3):329-333.
    [102]Kinniburgh D G, Jackson M L, Syers J K. Adsorption of alkaline earth, transition, and heavy metal cations by hydrous oxide gels of iron and aluminum. Soil Science Society of America Journal,1976 40(5):796-799.
    [103]Bleam W F, McBride M B. Cluster formation versus isolated-site adsorption. A study of Mn(II) and Mg(II) adsorption on boehmite and goethite. Journal of Colloid and Interface Science,1985,103(1):124-132.
    [104]Scroth B K, Sposito G. Surface charge properties of kaolinite. Clays and Clay Minerals,1997, 45(1):85-91.
    [105]Kosmulski M. Surface charging and points of zero charge. Surfactant Science,145, CRC Press,2009,1092 pp.
    [106]Kosmulski M. pH-dependent surface charging and points of zero charge:III. Update. Journal of Colloid and Interface Science,2006,298(2):730-741.
    [107]Manceau A, Schlegel M L, Musso M, et al.. Crystal chemistry of trace elements in natural and synthetic goethite. Geochimica et Cosmochimica Acta,2000,64(21):3643-3661.
    [108]Peskleway C D, Henderson G S, Wicks F J. Dissolution of gibbsite:Direct observations using fluid cell atomic force microscopy. American Mineralogist,2003,88(1):18-26.
    [109]Bascetin E, Atun G. Adsorption behavior of strontium on binary mineral mixtures of Montmorillonite and Kaolinite. Applied Radiation and Isotopes,2006,64(8):957-964.
    [110]Joussein E, Petit S, Churchman J, et al.. Halloysite clay minerals—a review. Clay Minerals, 2005,40(4):383-426.
    [111]Cornell R M. Adsorption of cesium on minerals:A review. Journal of Radioanalytical and Nuclear Chemistry,1993,171(2):483-500.
    [112]Tatsuya T, Komameni S. Alkali metal and alkaline earth metal ion exchange with Na-4-mica prepared by a new synthetic route from kaolinite. Journal of Materials Chemistry,1999,9: 2475-2479.
    [113]White A F, Schulz M S, Stonestrom D A, et al.. Chemical weathering of a marine terrace chronosequence, Santa Cruz, California. Part Ⅱ:Solute profiles, gradients and the comparisons of contemporary and long-term weathering rates. Geochimica et Cosmochimica Acta,2009,73(10):2769-2803.
    [114]Evangelou V. Environmental soil and water chemistry:Principles and applications. New York, John Wiley & Sons,1998,592 pp.
    [115]Driesner T, Ha T K, Seward T M. Oxygen and hydrogen isotope fractionation by hydration complexes of Li+, Na+, K+, Mg2+, F-, Cl-, and Br-:a theoretical study Geochimica et Cosmochimica Acta,2000,64(17):3007-3033.
    [116]Sawhney B L. Selective sorption and fixation of cations by clay minerals:A review. Clays and Clay Minerals,1972,20(2):93-100.
    [117]Teppen B J, Miller D M. Hydration Energy Determines Isovalent Cation Exchange Selectivity by Clay Minerals. Soil Science Society of America Journal,2006,70(1):31-40.
    [118]James R H, Palmer M R. Marine geochemical cycles of the alkali elements and boron:the role of sediments. Geochimica et Cosmochimica Acta,2000,64(18):3111-3122.
    [119]Palmer M R, Spivack A J, Edmond J M. Temperature and pH controls over isotopic fractionation during adsorption of boron on marine clay. Geochimica et Cosmochimica Acta, 1987,51(9):2319-2323.
    [120]Pokrovsky O S, Viers J, Freydier R. Zinc stable isotope fractionation during its adsorption on oxides and hydroxides. Journal of Colloid and Interface Science,2005,291(1):192-200.
    [121]Brennecka G A, Wasylenki L E, Bargar J R, et al.. Uranium Isotope Fractionation during Adsorption to Mn-Oxyhydroxides. Environmental Science and Technology,2011,45(4): 1370-1375.
    [122]Wasylenki L E, Rolfe B A, Weeks C L, et al.. Experimental investigation of the effects of temperature and ionic strength on Mo isotope fractionation during adsorption to manganese oxides. Geochimica et Cosmochimica Acta,2008,72(24):5997-6005.
    [123]Balistrieri L S, Borrok D M, Wanty R B, et al.. Fractionation of Cu and Zn isotopes during adsorption onto amorphous Fe(III) oxyhydroxide:Experimental mixing of acid rock drainage and ambient river water. Geochimica et Cosmochimica Acta,2008,72(2):311-328.
    [124]Icopini G A, Anbar A D, Ruebush S S, et al.. Iron isotope fractionation during microbial reduction of iron:The importance of adsorption. Geology,2004,32(3):205-208.
    [125]Schwarcz H P, Agyei E K, McMullen C C. Boron isotopic fractionation during clay adsorption from sea-water. Earth and Planetary Science Letters,1969,6(1):1-5.
    [126]Lemarchand E, Schott J, Gaillardet J. How surface complexes impact boron isotope fractionation:Evidence from Fe and Mn oxides sorption experiments. Earth and Planetary Science Letters,2007,260(1-2):277-296.
    [127]Goldberg T, Archer C, Vance D, et al.. Mo isotope fractionation during adsorption to Fe (oxyhydr)oxides. Geochimica et Cosmochimica Acta,2009,73(21):6502-6516.
    [128]Pistiner J S, Henderson G M. Lithium-isotope fractionation during continental weathering processes. Earth and Planetary Science Letters,2003,214(1-2):327-339.
    [129]Fantle M S, Tollerud H, Eisenhauer A, et al.. The Ca isotopic composition of dust-producing regions:measurements of surface sediments in the Black Rock Desert, Nevada. Geochimica et Cosmochimica Acta,2012,87(15):178-193.
    [130]Kashiwabara T, Takahashi Y, Tanimizu M, et al.. Molecular-scale mechanisms of distribution and isotopic fractionation of molybdenum between seawater and ferromanganese oxides. Geochimica et Cosmochimica Acta,2011,75(19):5762-5784.
    [131]Barling J, Anbar A D. Molybdenum isotope fractionation during adsorption by manganese oxides. Earth and Planetary Science Letters,2004,217(3-4):315-329.
    [132]Zhang L, Chan L-H, Gieskes J M. Lithium isotope geochemistry of pore waters from ocean drilling program Sites 918 and 919, Irminger Basin. Geochimica et Cosmochimica Acta,1998, 62(14):2437-2450.
    [133]Schauble E A. First-principles estimates of equilibrium magnesium isotope fractionation in silicate, oxide, carbonate and hexaaquamagnesium(2+) crystals. Geochimica et Cosmochimica Acta,2011,75(3):844-869.
    [134]Hoefs J. Stable isotope geochemistry (Sixth Edition). Berlin Heidelberg, Springer Verlag, 2009.
    [135]Wasylenki L E, Weeks C L, Bargar J R, et al.. The molecular mechanism of Mo isotope fractionation during adsorption to birnessite. Geochimica et Cosmochimica Acta,2011, 75(17):5019-5031.
    [136]Li W, Beard B L, Johnson C M. Exchange and fractionation of Mg isotopes between epsomite and saturated MgSO4 solution. Geochimica et Cosmochimica Acta,2011,75(7):1814-1828.
    [137]Begum S, Khan F U, Qasiar M A. Effect of temperature on the adsorption of Mg2+ on kaolin from aqueous solutions and the stability constants for complex formation. Journal of the Chemical Society of Pakistan,1998,20(1):19-24.
    [138]Peacock C L, Sherman D M. Surface complexation model for multisite adsorption of copper(II) onto kaolinite. Geochimica et Cosmochimica Acta,2005,69(15):3733-3745.
    [139]Gu X, Evans L J. Surface complexation modelling of Cd(II), Cu(II), Ni(II), Pb(II) and Zn(II) adsorption onto kaolinite. Geochimica et Cosmochimica Acta,2008,72(2):267-276.
    [140]Srivastava P, Singh B, Angove M. Competitive adsorption behavior of heavy metals on kaolinite. Journal of Colloid and Interface Science,2005,290(1):28-38.
    [141]Marcus Y. Ionic radii in aqueous solutions. Chemical Reviews,1988,88(8):1475-1498.
    [142]Oi T, Yanase S, Kakihana H. Magnesium Isotope Fractionation in Cation-Exchange Chromatography. Separation Science and Technology,1987,22(11):2203-2215.
    [143]Pogge von Strandmann P A E, Burton K W, James R H, et al.. Assessing the role of climate on uranium and lithium isotope behaviour in rivers draining a basaltic terrain. Chemical Geology, 2010,270(1-4):227-239.
    [144]Chakrabarti R, Jacobsen S B. The isotopic composition of magnesium in the inner Solar System. Earth and Planetary Science Letters,2010,293(3-4):349-358.
    [145]Bryan K. Glacial versus desert origin of loess. American Journal of Science,1945,243(5): 245-246.
    [146]Smalley I J. The properties of glacial loess and the formation of loess deposits. Journal of Sedimentary Research,1966,36(3):669-676.
    [147]Pye K. The nature, origin and accumulation of loess. Quaternary Science Reviews,1995, 14(7-8):653-667.
    [148]Smalley I, Markovic S B, Svircev Z. Loess is [almost totally formed by] the accumulation of dust. Quaternary International,2011,240(1-2):4-11.
    [149]Liu T. Loess and the Environment. Beijing, Science Press,1985.
    [150]Barth M G, McDonough W F, Rudnick R L. Tracking the budget of Nb and Ta in the continental crust. Chemical Geology,2000,165(3-4):197-213.
    [151]Gallet S, Jahn B-m, Van Vliet Lanoe B, et al.. Loess geochemistry and its implications for particle origin and composition of the upper continental crust. Earth and Planetary Science Letters,1998,156(3-4):157-172.
    [152]Hattori Y, Suzuki K, Honda M, et al.. Re-os isotope systematics of the Taklimakan Desert sands, moraines and river sediments around the taklimakan desert, and of Tibetan soils. Geochimica et Cosmochimica Acta,2003,67(6):1203-1213.
    [153]Hu Z, Gao S. Upper crustal abundances of trace elements:A revision and update. Chemical Geology,2008,253(3-4):205-221.
    [154]Peucker-Ehrenbrink B, Jahn B-m. Rhenium-osmium isotope systematics and platinum group element concentrations:Loess and the upper continental crust. Geochemistry, Geophysics, Geosystems,2001,2(10), doi:10.1029/2001GC000172.
    [155]Taylor S R, McLennan S M, McCulloch M T. Geochemistry of loess, continental crustal composition and crustal model ages. Geochimica et Cosmochimica Acta,1983,47(11): 1897-1905.
    [156]Teng F Z, McDonough W F, Rudnick R L, et al.. Lithium isotopic composition and concentration of the upper continental crust. Geochimica et Cosmochimica Acta,2004,68(20): 4167-4178.
    [157]Park J-W, Hu Z, Gao S, et al.. Platinum group element abundances in the upper continental crust revisited—New constraints from analyses of Chinese loess. Geochimica et Cosmochimica Acta,2012,93(0):63-76.
    [158]An Z. The history and variability of the East Asian paleomonsoon climate. Quaternary Science Reviews,2000,19(1-5):171-187.
    [159]Liu T, Ding Z. Chinese Loess and the Paleomonsoon Annual Review of Earth and Planetary Sciences,1998,26(1):111-145.
    [160]Guo Z, Biscaye P, Wei L, et al.. Summer monsoon variations over the last 1.2 Ma from the weathering of loess-soil sequences in China. Geophysical Research Letters 2000,27(12): 1751-1754.
    [161]Heller F, Liu T. Magnetism of Chinese loess deposits. Geophysical Journal of the Royal Astronomical Society,1984,77(1):125-141.
    [162]Liang M, Guo Z, Kahmann A J, et al.. Geochemical characteristics of the Miocene eolian deposits in China:Their provenance and climate implications. Geochemistry, Geophysics, Geosystems,2009,10(4):Q04004.
    [163]Wang Y-X, Yang J-D, Chen J, et al.. The Sr and Nd isotopic variations of the Chinese Loess Plateau during the past 7 Ma:Implications for the East Asian winter monsoon and source areas of loess. Palaeogeography Palaeoclimatology Palaeoecology,2007,249(3-4):351-361.
    [164]Bronger A, Heinkele T. Mineralogical and clay mineralogical aspects of loess research. Quaternary International,1990,7-8:37-51.
    [165]An Z, Kukla G J, Porter S C, et al.. Magnetic susceptibility evidence of monsoon variation on the Loess Plateau of central China during the last 130,000 years. Quaternary Research,1991, 36(1):29-36.
    [166]Ding Z, Yu Z, Rutter N W, et al.. Towards an orbital time scale for Chinese loess deposits. Quaternary Science Reviews,1994,13(1):39-70.
    [167]Chen J, An Z, Head J. Variation of Rb/Sr Ratios in the Loess-Paleosol Sequences of Central China during the Last 130,000 Years and Their Implications for Monsoon Paleoclimatology. Quaternary Research,1999,51(3):215-219.
    [168]Wimpenny J, Yin Q, Tollstrup D L, et al.. Tracing changes in the East Asian Monsoon using the Mg isotope record in a loess-paleosol sequence from Luochuan, China. Mineralogical Magazine,2011,75(3):2166.
    [169]Pecsi M. Loess is not just the accumulation of dust. Quaternary International,1990,7-8(0): 1-21.
    [170]Jahn B-m, Gallet S, Han J. Geochemistry of the Xining, Xifeng and Jixian sections, Loess Plateau of China:eolian dust provenance and paleosol evolution during the last 140 ka. Chemical Geology,2001,178(1-4):71-94.
    [171]Eden D N, Qizhong W, Hunt J L, et al.. Mineralogical and geochemical trends across the Loess Plateau, North China. Catena,1994,21(1):73-90.
    [172]Muhs D R, Bettis E A, Aleinikoff J N, et al.. Origin and paleoclimatic significance of late Quaternary loess in Nebraska:Evidence from stratigraphy, chronology, sedimentology, and geochemistry. Geological Society of America Bulletin,2008,120(11-12):1378-1407.
    [173]McLennan S M. Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochem. Geophys. Geosyst.,2001,2(4).
    [174]Rudnick R L, Gao S.3.01-Composition of the Continental Crust. In:D.H. Editors-in-Chief:Heinrich and K.T. Karl (Editors), Treatise on geochemistry. Pergamon, Oxford,2003, pp.1-64.
    [175]Gallet S, Jahn B-m, Torii M. Geochemical characterization of the Luochuan loess-paleosol sequence, China, and paleoclimatic implications. Chemical Geology,1996,133(1-4):67-88.
    [176]Ding Z L, Sun J M, Yang S L, et al.. Geochemistry of the Pliocene red clay formation in the Chinese Loess Plateau and implications for its origin, source provenance and paleoclimate change. Geochimica et Cosmochimica Acta,2001,65(6):901-913.
    [177]Graham I J, Ditchburn R G, Whitehead N E. Be isotope analysis of a 0-500 ka loess-paleosol sequence from Rangitatau East, New Zealand. Quaternary International,2001,76-77:29-42.
    [178]Bryant I D. Loess deposits in Lower Adventdalen, Spitsbergen. Polar Research,1982,2: 93-103.
    [179]Swineford A, Frye J C. Petrographic comparison of some loess samples from western Europe with Kansas loess. Journal of Sedimentary Research,1955,25 (1):3-23.
    [180]Nesbitt H W, Young G M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature,1982,299:715-717.
    [181]Yokoo Y, Nakano T, Nishikawa M, et al.. Mineralogical variation of Sr-Nd isotopic and elemental compositions in loess and desert sand from the central Loess Plateau in China as a provenance tracer of wet and dry deposition in the northwestern Pacific. Chemical Geology, 2004,204(1-2):45-62.
    [182]Zheng H, Theng B K G, Whitton J S. Mineral Composition of Loess-Paleosol Samples from the Loess Plateau of China and Its Environmental Significance. Chinese Journal of Geochemistry 1994,13(1):61-72.
    [183]Zarate M, Blasi A. Late Pleistocene-Holocene eolian deposits of the southern Buenos Aires province, Argentina:A preliminary model. Quaternary International,1993,17(0):15-20.
    [184]Teruggi M E. The nature and origin of Argentine loess. Journal of Sedimentary Research, 1957,27(3):322-332.
    [185]Galy A Y, O.; Janney, P.E.; Williams, R.W.; Cloquet, C.; Alard, O.; Halicz, L.; Wadhwa, M.; Hutcheon, I.D.; Ramon, E. Magnesium isotope heterogeneity of the isotopic standard SRM980 and new reference materials for magnesium-isotope-ratio measurements. J.Anal.At.Spectrom.,2003,18(11):1352-1356.
    [186]Huang K-J, Teng F-Z, Wei G-J, et al.. Adsorption- and desorption-controlled magnesium isotope fractionation during extreme weathering of basalt in Hainan Island, China. Earth and Planetary Science Letters,2012,359-360:73-83.
    [187]Nesbitt H W, Young G M, McLennan S M, et al.. Effects of Chemical Weathering and Sorting on the Petrogenesis of Siliciclastic Sediments, with Implications for Provenance Studies. The Journal of Geology,1996,104(5):525-542
    [188]Liu C-Q, Masuda A, Okada A, et al.. Isotope geochemistry of Quaternary deposits from the arid lands in northern China. Earth and Planetary Science Letters,1994,127(1-4):25-38.
    [189]Sun J. Provenance of loess material and formation of loess deposits on the Chinese Loess Plateau. Earth and Planetary Science Letters,2002,203(3-4):845-859.
    [190]Sayago J M. The Argentine neotropical loess:An overview. Quaternary Science Reviews, 1995,14(7-8):755-766.
    [191]Iriondo M H, Krohling D M. Non-classical types of loess. Sedimentary Geology,2007,202(3): 352-368.
    [192]Smith J, Vance D, Kemp R A, et al.. Isotopic constraints on the source of Argentinian loess-with implications for atmospheric circulation and the provenance of Antarctic dust during recent glacial maxima. Earth and Planetary Science Letters,2003,212(1-2):181-196.
    [193]Lebret P, Lautridou J-P. The Loess of West Europe. GeoJournal,1991,24(2):151-156.
    [194]Ujvari G, Varga A, Ramos F C, et al.. Evaluating the use of clay mineralogy, Sr-Nd isotopes and zircon U-Pb ages in tracking dust provenance:An example from loess of the Carpathian Basin. Chemical Geology,2012,304-305:83-96.
    [195]Pett-Ridge J C, Derry L A, Kurtz A C. Sr isotopes as a tracer of weathering processes and dust inputs in a tropical granitoid watershed, Luquillo Mountains, Puerto Rico. Geochimica et Cosmochimica Acta,2009,73(1):25-43.
    [196]Chen J, Li G, Yang J, et al.. Nd and Sr isotopic characteristics of Chinese deserts:Implications for the provenances of Asian dust. Geochimica et Cosmochimica Acta,2007,71(15): 3904-3914.
    [197]Liu C-Q, Masuda A, Okada A, et al.. A geochemical study of loess and desert sand in northern China:Implications for continental crust weathering and composition. Chemical Geology, 1993,106(3-4):359-374.
    [198]Peng S, Guo Z. Geochemical indicator of original eolian grain size and implications on winter monsoon evolution. Science in China Series D:Earth Sciences,2001,44(0):261-266.
    [199]Yang S, Ding F, Ding Z. Pleistocene chemical weathering history of Asian arid and semi-arid regions recorded in loess deposits of China and Tajikistan. Geochimica et Cosmochimica Acta, 2006,70(7):1695-1709.
    [200]Ujvari G, Varga A, Balogh-Brunstad Z. Origin, weathering, and geochemical composition of loess in southwestern Hungary. Quaternary Research,2008,69(3):421-437.
    [201]McLennan S M, Hemming S, McDaniel D K, et al.. Geochemical approaches to sedimentation, provenance and tectonics. In:M.J. Johnsson and A. Basu (Editors), Processes Controlling the Composition of Clastic Sediments. Geological Society of America Special Paper,1993, pp.21-40.
    [202]Nesbitt H W, Young G M. Formation and diagenesis of weathering profiles. The Journal of Geology,1989,97(2):129-147.
    [203]McLennan S M. Weathering and Global Denudation. The Journal of Geology,1993,101(2): 295-303.
    [204]Jiang H, Ding Z. Eolian grain-size signature of the Sikouzi lacustrine sediments (Chinese Loess Plateau):Implications for Neogene evolution of the East Asian winter monsoon. Geological Society of America Bulletin,2010,122(5-6):843-854.
    [205]Yang J, Chen J, An Z, et al.. Variations in 87Sr/86Sr ratios of calcites in Chinese loess:a proxy for chemical weathering associated with the East Asian summer monsoon. Palaeogeography Palaeoclimatology Palaeoecology,2000,157(1-2):151-159.
    [206]Kisakurek B, Widdowson M, James R H. Behaviour of Li isotopes during continental weathering:the Bidar laterite profile, India. Chemical Geology,2004,212(1-2):27-44.
    [207]Rudnick R L, Tomascak P B, Njo H B, et al.. Extreme lithium isotopic fractionation during continental weathering revealed in saprolites from South Carolina. Chemical Geology,2004, 212(1-2):45-57.
    [208]Gao S, Luo T-C, Zhang B-R, et al.. Chemical composition of the continental crust as revealed by studies in East China. Geochimica et Cosmochimica Acta,1998,62(11):1959-1975.
    [209]Staudigel H, Hart S R. Alteration of basaltic glass:Mechanisms and significance for the oceanic crust-seawater budget. Geochimica et Cosmochimica Acta,1983,47(3):337-350
    [210]Brady P V, Gislason S R. Seafloor weathering controls on atmospheric CO2 and global climate Geochimica et Cosmochimica Acta,1997,61(5):965-973
    [211]Hart S R, Erlank A J, Kable E J D. Sea floor basalt alteration:Some chemical and Sr isotopic effects. Contributions to Mineralogy and Petrology,1974,44(3):219-230.
    [212]Thompson G. A geochemical study of the low-temperature interaction of sea-water and oceanic igneous rocks. EOS Transactions AGU,1973,54(11):1015-1019.
    [213]Staudigel H, Plank T, White B, et al.. Geochemical fluxes during seafloor alteration of the basaltic upper oceanic Crust:DSDP sites 417 and 418. In:E. Bebout et al. (Editors), Subduction:Top to Bottom. Geophysical Monograph Series. AGU, Washington, D. C.,1996, pp.19-38.
    [214]Alt J C, Teagle D A H. The uptake of carbon during alteration of ocean crust. Geochimica et Cosmochimica Acta,1999,63(10):1527-1535.
    [215]Wheat C G, Mottl M J. Composition of pore and spring waters from Baby Bare:global implications of geochemical fluxes from a ridge flank hydrothermal system. Geochimica et Cosmochimica Acta,2000,64(4):629-642.
    [216]Kelley K A, Plank T, Ludden J, et al.. Composition of altered oceanic crust at ODP Sites 801 and 1149. Geochemistry, Geophysics, Geosystems,2003,4(6):8910.
    [217]Elderfield H, Schultz A. Mid-Ocean Ridge Hydrothermal Fluxes and the Chemical Composition of the Ocean. Annual Review of Earth and Planetary Sciences,1996,24: 191-224.
    [218]Drever J I. The magnesium problem. In:E.D. Goldberg (Editor), Marine Chemistry. The Sea: Ideas and Observations on Progress in the Study of the Seas. Wiley Interscience, New York, 1974, pp.337-357.
    [219]Holland H D. Sea level, sediments and the composition of seawater. American Journal of Science,2005,305(3):220-239.
    [220]Edmond J M, Measures C, McDuff R E, et al.. Ridge crest hydrothermal activity and the balances of the major and minor elements in the ocean:The Galapagos data. Earth and Planetary Science Letters,1979,46(1):1-18.
    [221]Mottl M J, Wheat C G. Hydrothermal circulation through mid-ocean ridge flanks:Fluxes of heat and magnesium. Geochimica et Cosmochimica Acta,1994,58(10):2225-2237
    [222]Carpenter J H, Manella M E. Magnesium to Chlorinity Ratios in Seawater. Journal of Geophysical Research,1973,78(18):3621-3626.
    [223]Berner E K, Berner R A. Global Environment:Water, Air, and Geochemical Cycles (Second Edition), Princeton University Press,2012.
    [224]Wombacher F, Eisenhauer A, Bohm F, et al.. Magnesium stable isotope fractionation in marine biogenic calcite and aragonite. Geochimica et Cosmochimica Acta,2011,75(19): 5797-5818.
    [225]Brant C, Coogan L A, Gillis K M, et al.. Lithium and Li-isotopes in young altered upper oceanic crust from the East Pacific Rise. Geochimica et Cosmochimica Acta,2012,96(0): 272-293.
    [226]Gao Y, Vils F, Cooper K M, et al.. Downhole variation of lithium and oxygen isotopic compositions of oceanic crust at East Pacific Rise, ODP Site 1256.Geochem. Geophys. Geosyst.,2012,13:Q10001.
    [227]Barnes J D, Cisneros M. Mineralogical control on the chlorine isotope composition of altered oceanic crust. Chemical Geology,2012,326-327:51-60.
    [228]Barnes J D, Sharp Z D, Fischer T P. Chlorine isotope variations across the Izu-Bonin-Mariana arc. Geology,2008,36(11):883-886.
    [229]Chan L-H, Alt J C, Teagle D A H. Lithium and lithium isotope profiles through the upper oceanic crust:a study of seawater-basalt exchange at ODP Sites 504B and 896A. Earth and Planetary Science Letters,2002,201(1):187-201.
    [230]Philippot P, Agrinier P, Scambelluri M. Chlorine cycling during subduction of altered oceanic crust. Earth and Planetary Science Letters,1998,161(1,A14):33-44.
    [231]Chan L H, Edmond J M, Thompson G, et al.. Lithium isotopic composition of submarine basalts:implications for the lithium cycle in the oceans Earth and Planetary Science Letters, 1992,108(1-3):151-160.
    [232]Spivack A J, Edmond J M. Boron isotope exchange between seawater and the oceanic crust. Geochimica et Cosmochimica Acta,1987,51(5):1033-1043.
    [233]Klein E M.3.13-Geochemistry of the Igneous Oceanic Crust. In:D.H. Editors-in-Chief:Heinrich and K.T. Karl (Editors), Treatise on geochemistry. Pergamon, Oxford,2003, pp.433-463.
    [234]Hofmann A W. Chemical differentiation of the Earth:the relationship between mantle, continental crust, and oceanic crust. Earth and Planetary Science Letters,1988,90(3): 297-314.
    [235]Plank T, Langmuir C H. The chemical composition of subducting sediment and its consequences for the crust and mantle. Chemical Geology,1998,145(3-4):325-394.
    [236]Wang S-J, Teng F-Z, Williams H M, et al.. Magnesium isotopic variations in cratonic eclogites:Origins and implications. Earth and Planetary Science Letters,2012,359,Ai360(0): 219-226.
    [237]Alt J C. Stable isotopic composition of upper oceanic crust formed at a fast spreading ridge, ODP Site 801. Geochemistry, Geophysics, Geosystems,2003,4(5):8908.
    [238]Shipboard Scientific Party. Site 801,2000.
    [239]Larson R L, Lancelot Y, Fisher A. et al.. Proceedings of the Ocean Drilling Program, Initial Reports, Texas A&M University, College Station, TX(Ocean Drilling Program),1990.
    [240]Koppers A A P, Staudigel H, Duncan R A. High-resolution 40Ar/39Ar dating of the oldest oceanic basement basalts in the western Pacific basin. Geochemistry, Geophysics, Geosystems,2003,4(11):8914.
    [241]Alt J C, France-Lanord C, Floyd P A, et al.. Low temperature hydrothermal alteration of Jurassic ocean crust, Site 801. Proceedings of the Ocean Drilling Program, Scientific Results, 129. College Station, TX, Ocean Drilling Program,1992.
    [242]Alt J C, Teagle D A H. Hydrothermal alteration of upper oceanic crust formed at a fast-spreading ridge:mineral, chemical, and isotopic evidence from ODP Site 801. Chemical Geology,2003,201(3-4):191-211.
    [243]Talbi E H, Honnorez J. Low-temperature alteration of mesozoic oceanic crust, Ocean Drilling Program Leg 185. Geochemistry, Geophysics, Geosystems,2003,4(5):8906.
    [244]Staudigel H, Davies G R, Hart S R. et al.. Large scale isotopic Sr, Nd and O isotopic anatomy of altered oceanic crust:DSDP/ODP sites417/418. Earth and Planetary Science Letters,1995, 130(1-4):169-185.
    [245]Alt J C, Teagle D A H, Bach W, et al.. Stable and strontium isotopic profiles through hydrothermally altered upper oceanic crust, Hole 504B. Proceedings of the Ocean Drilling Program Scientific Results 1996,148:57-69.
    [246]Hart R. Chemical exchange between sea water and deep ocean basalts. Earth and Planetary Science Letters,1970,9(3):269-279.
    [247]Hart S R.K, Rb, Cs contents and K/Rb, K/Cs ratios of fresh and altered submarine basalts. Earth and Planetary Science Letters,1969,6(4):295-303.
    [248]Muehlenbachs K, Clayton R N. Oxygen Isotope Studies of Fresh and Weathered Submarine Basalts. Canadian Journal of Earth Sciences,1972,9(2):172-184.
    [249]Humphris S E, Thompson G. Hydrothermal alteration of oceanic basalts by seawater. Geochimica et Cosmochimica Acta,1978,42(1):107-125.
    [250]James R H, Allen D E, Seyfried Jr W E. An experimental study of alteration of oceanic crust and terrigenous sediments at moderate temperatures (51 to 350℃):insights as to chemical processes in near-shore ridge-flank hydrothermal systems. Geochimica et Cosmochimica Acta, 2003,67(4):681-691.
    [251]Li L, Bebout G E, Idleman B D. Nitrogen concentration and δ15N of altered oceanic crust obtained on ODP Legs 129 and 185:Insights into alteration-related nitrogen enrichment and the nitrogen subduction budget. Geochimica et Cosmochimica Acta,2007,71(9):2344-2360.
    [252]Hauff F, Hoernle K, Schmidt A. Sr-Nd-Pb composition of Mesozoic Pacific oceanic crust (Site 1149 and 801, ODP Leg 185):Implications for alteration of ocean crust and the input into the Izu-Bonin-Mariana subduction system. Geochemistry, Geophysics, Geosystems,2003, 4(8):8913.
    [253]Chauvel C, Marini J-C, Plank T, et al.. Hf-Nd input flux in the Izu-Mariana subduction zone and recycling of subducted material in the mantle. Geochemistry, Geophysics, Geosystems, 2009,10(1):Q01001.
    [254]Smith H J, Spivack A J, Staudigel H, et al.. The boron isotopic composition of altered oceanic crust. Chemical Geology,1995,126(2):119-135.
    [255]Rouxel O, Dobbek N, Ludden J, et al.. Iron isotope fractionation during oceanic crust alteration. Chemical Geology,2003,202(1-2):155-182.
    [256]Fisk M, Kelley K A. Probing the Pacific's oldest MORB glass:mantle chemistry and melting conditions during the birth of the Pacific Plate. Earth and Planetary Science Letters,2002, 202(3-4):741-752.
    [257]Ryan J G, Langmuir C H. The systematics of lithium abundances in young volcanic rocks. Geochimica et Cosmochimica Acta,1987,51:1727-1741.
    [258]Fisk M. New Shipboard Laboratory May Answer Questions about Deep Biosphere. Eos Transactions AGU,1999,80(48):580.
    [259]Seyfried W E J, Bischoff J L. Low temperature basalt alteration by sea water:an experimental study at 70℃ and 150℃. Geochimica et Cosmochimica Acta,1979,43(12):1937-1947.
    [260]Seyfried W E J, Mottl M J. Hydrothermal alteration of basalt by seawater under seawater-dominated conditions Geochimica et Cosmochimica Acta,1982,46(6):985-1002.
    [261]Mottl M J, Holland H D. Chemical exchange during hydrothermal alteration of basalt by seawater-Ⅰ. Experimental results for major and minor components of seawater Geochimica et Cosmochimica Acta,1978,42(8):1103-1115.
    [262]Fisk M R, Giovannoni S J, Thorseth I H. Alteration of Oceanic Volcanic Glass:Textural Evidence of Microbial Activity. Science,1998,281(5379):978-980.
    [263]Pringle M S. Radiometric ages of basaltic basement recovered at Sites 800,801, and 802, Leg 129, western Pacific Ocean, Ocean Drilling Program, College Station, TX,1992.
    [264]Larson R L, Fisher A T, Jarrard R D, et al.. Highly permeable and layered Jurassic oceanic crust in the weatern Pacific. Earth and Planetary Science Letters,1993,119:71-83.
    [265]Alt J C, Laverne C, Vanko D A, et al. Hydrothermal alteration of a section of upper oceanic crust in the eastern equatorial Pacific:A synthesis of results from Site 504 (DSDP Legs 69,70, and 83, and ODP legs 111,137,140, and 148). Proceedings of the ocean Drilling Program, Scientific Results,1996,148:417-434.
    [266]Bach W, Erzinger J, Alt J C, et al.. Chemistry of the lower sheeted dike complex in ODP Hole 504B, Leg 148:influence of magmatic differentiation and hydrothermal alteration. Proceedings of the Ocean Drilling Program, Scientific Results,1996,148:39-55.
    [267]Staudigel H.3.15-Hydrothermal Alteration Processes in the Oceanic Crust. In:D.H. Editors-in-Chief:Heinrich and K.T. Karl (Editors), Treatise on Geochemistry. Pergamon, Oxford,2003, pp.511-535.
    [268]Bischoff J L, Seyfried W E. Hydrothermal chemistry of seawater from 25 degrees to 350 degrees C.American Journal of Science,1978,278(6):838-860.
    [269]Mottl M J. Metabasalts, axial hot springs, and the structure of hydrothermal systems at mid-ocean ridges. Geological Society of America Bulletin,1983,94(2):161-180.
    [270]Hart S R.A model for chemical exchange in the basalt seawater system of oceanic layer 2. Canadian Journal of Earth Sciences,1973,10:799-816.
    [271]Alt J, Honnorez J. Alteration of the upper oceanic crust, DSDP site 417:mineralogy and chemistry. Contributions to Mineralogy and Petrology,1984,87(2):149-169.
    [272]Alt J C, Teagle D A H, Laverne C, et al.. Ridge-flank alteration of upper ocean crust in the eastern Pacific:synthesis of results for volcanic rocks of Holes 504B and 896 A. In:J.C. Alt et al. (Editors), Proceedings of the ocean drilling program, Scientific results. Ocean Drilling Program, College Station, TX,1996, pp.435-450.
    [273]Gieskes J M. The chemistry of interstitial waters of deep sea sediments:interpretation of Deep Sea Drilling data. Chemical Oceanography,1983,8:221-269.
    [274]Thompson G. Hydrothermal fluxes in the ocean. In:R. Chester (Editor), Chemical oceanography. Academic Press, London,1983, pp.272-337.
    [275]Spivack A J, Staudigel H. Low-temperature alteration of the upper oceanic crust and the alkalinity budget of seawater. Chemical Geology,1994,115(3-4):239-247.
    [276]Bach W, Alt J C, Niu Y, et al.. The geochemical consequences of late-stage low-grade alteration of lower ocean crust at the SW Indian Ridge:results from ODP Hole 735B (Leg 176). Geochimica et Cosmochimica Acta,2001,65(19):3267-3287.
    [277]Broecker W, Yu J. What do we know about the evolution of Mg to Ca ratios in seawater? Paleoceanography,2011,26(3):PA3203.
    [278]Li G, Elderfield H. Evolution of carbon cycle over the past 100 million years. Geochimica et Cosmochimica Acta,2013,103(0):11-25.
    [279]Coggon R M, Teagle D A H, Smith-Duque C E, et al.. Reconstructing Past Seawater Mg/Ca and Sr/Ca from Mid-Ocean Ridge Flank Calcium Carbonate Veins. Science,2010,327(5969): 1114-1117.
    [280]Sun S s, McDonough W F. Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes. Geological Society, London, Special Publications, 1989,42(1):313-345.
    [281]Zindler A, Hart S. Chemical Geodynamics. Annual Review of Earth and Planetary Sciences, 1986,14(1):493-571.
    [282]Higgins J A, Schrag D P. Records of Neogene seawater chemistry and diagenesis in deep-sea carbonate sediments and pore fluids. Earth and Planetary Science Letters,2012,357-358: 386-396.
    [283]Higgins J A, Schrag D P. Constraining magnesium cycling in marine sediments using magnesium isotopes. Geochimica et Cosmochimica Acta,2010,74(17):5039-5053.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700