用户名: 密码: 验证码:
建筑材料绿色性的6E综合评价体系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
建筑活动是人类最主要的生存活动之一。随着人口和经济的不断增长,建筑活动规模的不断壮大,尤其是建筑材料工业的快速发展,建筑材料工业在满足人们物资生活需要的同时也给环境带来了沉重负担。如何评价建筑材料的绿色性已经成为目前最受瞩目的研究方向之一。本文以基础类建筑材料硅酸盐水泥、建筑钢材和建筑陶瓷为研究对象,通过对部分建材企业的实地调研,并借鉴已有的建筑和产品的绿色性综合评价方法,建立了建筑材料绿色性6E综合评价指标体系。采用群体层次分析法(AHP)确定各评价指标权重值;基于对国家现行相关标准和文献资料的分析,采用线性插值法建立了指标的评价标准等级;基于TOSIS法、模糊综合评价法和灰色关联分析理论思想建立改进的灰色聚类理论模型作为综合评价分析方法。以Visual Basic6.0为开发平台构建了一个简单实用的建筑材料绿色性6E综合评价系统。并应用本评价系统对DOCC和DCGC两家水泥厂的PC32.5R、PO42.5R、PⅡ52.5R三种硅酸盐水泥进行绿色性6E综合评价分析。本文的主要研究工作如下:
     基于对目前综合评价指标体系结构及其构建方法的研究和绿色建筑材料在节能(Energy conservation)、健康(Exuberance)、环保(Environment protection)、生态(Ecology,)、舒适(Easement)和经济(Economy)方面的特点,建立了具有树型三层结构的建筑材料绿色性6E评价指标体系。提出石灰石当量概念,以石灰石的保有储量为参考基准,计算得到建筑材料生产常用矿产资源的石灰石当量系数。用材料生产所消耗的矿产资源的石灰石当量表示该产品的资源消耗总量,资源消耗总量模型为
     运用群体AHP法计算各级指标综合权重值。通过预先分析评价指标重要性提出改进构造判断矩阵的方法。首先根据每个指标在整体中的重要性确定相应的定量标度,然后根据两两指标的定量标度比值构造判断矩阵。采用改进的指标标度方法构造的判断矩阵指标值区分度有明显的提高。采用加权几何平均算子作为集结决策者们判断矩阵的算子。并应用灰色关联分析方法检验判断矩阵群的一致性。用完全一致性矩阵替换群体判断矩阵计算得来的群体判断矩阵一致性指标作为群体一致性阈值记作QR*,以此作为该决策群体是否具有满意一致性的阈值,当QR≥QR*时,说明A1,A2,…Am具有满意的一致性,当QR     基于对国家或行业相关规范标准、相关文献数据、国家统计年鉴等资料的分析,根据评价标准等级制定原则及依据采用线性插值法确定硅酸盐水泥、建筑钢材和建筑陶瓷的各指标评价标准等级。
     在综合评价指标属于第h等级的正理想解灰色关联度和负理想解灰色关联度的基础上,建立优属度模型,对原有的灰色聚类理论模型进行改进,建立6E综合评价模型。基于Visual Basic6.0为开发平台,采用面向对象程序的开发设计,运用动态和静态相结合的方式建立了各类产品数据表,采用由一个主窗体和若干个子窗体构成系统的操作界面,将建筑材料绿色性6E综合评价过程用软件实现,开发出建筑材料绿色性6E综合评价系统。最后,应用建筑材料绿色性6E综合评价系统对大连两家水泥公司DCGC和DOCC的三种类型水泥产品PC32.5R.P042.5R.P Ⅱ52.5R进行综合评价分析。
Architecture activity has become to one of the most important activities for human's live. Along with the increase of population and the development of economics, building activity developed rapidly, especially on building materials industry. At the same time, this development also brings on a heavy burden to the environment. So the evaluation of whether the building material is good for environment or not, has become to the focus of researching jobs. In this paper, the basic building materials such as portland cement, Construction steel and architectural pottery has been chose to be the research object. Through the investigation and analysis on some building materials enterprises, and refer to the existing buildings and products of greening evaluation methods, the greening building materials6E comprehensive evaluation index system is set up. The weights of evaluation indexes were determined by adopting the Group Analytic Hierarchy Process (GAHP). Based on the current national standards and the analysis of the literature material, the evaluation standard of index level was established by adopting the method of linear interpolation. According to TOSIS method, fuzzy comprehensive evaluation method and the grey relation analysis theory, an improved gray clustering theory model was built as a comprehensive evaluation analysis method. A simple and utilizable software,6E comprehensive evaluation system of greening building materials, was developed by using visual basic6.0programming software. And three kinds of Portland cement, PC32.5R, PO42.5R, PⅡ52.5R, of DOCC and DCGC cement plants were evaluated and analyzed by using this evaluation system. The main research work in this paper is as follows:
     The6E comprehensive evaluation index system which has three layers tree structure has been established based on the research on currently comprehensive evaluation index system and the features of greening building materials in energy conservation, exuberance, easement, environment protection, ecology, economy (6E). The building materials and the enterprises were analyzed by the method of questionnaire investigation based on the6E comprehensive evaluation index system. Limestone equivalent was put forward, and the limestone equivalent of common mineral resources was calculated by keeping the limestone reserves of reference standards. Total resource consumption was expressed by mineral resources limestone equivalent of materials that are consumed in the production. The model of total resource consumption was expressed as
     The weights of the comprehensive evaluation indexes were calculated by using the group AHP method. The improved tectonic method of judgment matrix was proposed. Firstly, determine the quantitative scale base on the important degree of index in all evaluation indexes. Secondly, structure the judgment matrix according to the ratio of quantitative scale between every two evaluation indexes. The discrimination of judgment matrix indexes has largely improved. In this paper weighted geometric average operator was adopt to gather the judgment matrixes which made by decision makers, the weighted geometric average operator was express as Using a new method which is grey relational analysis to test the consistency of the group judgment matrixes. When the consistency of the group judgment matrixes is not satisfied the requirement, the adjustment method and the model were purposed. The adjustment model was expressed as.
     According to the analysis and study on the data of national standards, references and national statistical yearbook, the principle and basis of standard level, and the method of linear interpolation, the evaluation index standard level of Portland cement, the construction steel and building ceramics.
     For the shortcoming of the gray clustering theory model, the improved method was carried out. On the base of consideration the grey relational degree of evaluation index belong to the h standard level and the grey relational degree of the index does not belong to the standard level, the optimal membership degree was introduced to improve the original gray clustering model. Regard Visual Basic6.0as development platform, adopting object oriented programming method, using multi documents interface form design style, a comprehensive evaluation system for greening building materials was developed.
引文
[1]推进全面合作实现可持续发展[Z].2007.
    [2]龚平.墙体材料的绿色度评价体系研究[D].重庆大学,2007.
    [3]龚平.墙材绿色度评价的几个关键问题分析[J].长江大学学报(自科版)理工卷.2007(01).122-125.
    [4]宋春生.室内空气污染的来源及危害[J].福建环境.2001(05).38-39.
    [5]徐晖.浅谈室内甲醛和苯的危害和治理[J].科技情报开发与经济.2007(30).295-296.
    [6]李国锐,牛贵阳.浅谈室内空气污染的危害[J].科技信息.2010(29).771-772.
    [7]肖婧,刘重.浅谈室内空气污染物TVOC及其防治措施[J].天津科技.2010(03).28-30.
    [8]张显辉,李长玉.浅谈室内环境污染问题[J].环境科学与管理.2008(10).64-66.
    [9]谭晓倩.活化生土基低碳节能村镇建筑材料研究[D].大连理工大学,2011.
    [10]孟多.定形相变材料的制备与建筑节能应用[D].大连理工大学,2010.
    [11]赵善宇.介孔SiO_2材料及相应复合气凝胶体系的合成[D].大连理工大学,2010.
    [12]徐海殉.硅基复合气凝胶的制备及其应用基础研究[D].大连理工大学,2011.
    [13]王天民译日山本良一编.环境材料[M].化学工业出版社,1997:131.
    [14]中国建筑材料科学研究院.绿色建材与建材绿色化[M].化学工业出版社,2003:383.
    [15]阮仪.国际绿色建筑评价体系[J].绿色中国(理论版).2005(19).34-35
    [16]施骞,徐莉燕.绿色建筑评价体系分析[J].同济大学学报(社会科学版).2007(2):112-117.
    [17]王祎,上随林,工清勤,等.国外绿色建筑评价体系分析[J].建筑节能.2010(2):64-66.
    [18]李路明.绿色建筑评价体系研究[D].天津大学,2003.
    [19]Potbhare V, Syal M, Arif M, et al. Emergence of green building guidelines in developed countries and their impact on India[J]. Journal of Engineering, Design and Technology.2009,7(1): 99-121.
    [20]Lee W L, Burnett J. Benchmarking energy use assessment of HK-BEAM, BREEAM and LEED[J]. Building and Environment.2008,43(11):1882-1891.
    [21]吴贤国,刘惠涛,陈跃庆等.绿色建筑评价体系研究[J].建筑经济.2008(10).106-109
    [22]俞伟伟.中美绿色建筑评价标准认证体系比较研究[D].重庆大学,2008.
    [23]黄琪英.国内绿色建筑评价的研究[D].四川大学,2005.
    [24]工祎,王随林,王清勤,等.国外绿色建筑评价体系分析[J].建筑节能.2010(2):64-66.
    [25]万一梦,徐蓉,黄涛.我国绿色建筑评价标准与美国LEED比较分析[J].建筑科学.2009(8):6-8.
    [26]江亿,秦佑国,朱颖心.绿色奥运建筑评估体系研究[J].中国住宅设施.2004(5):9-14.
    [27]万一梦,徐蓉,黄涛.我国绿色建筑评价标准与美国LEED比较分析[J].建筑科学.2009(8):6-8.
    [28]刘翼,蒋荃.建筑“冷屋而”制品及评价与认证技术进展[J].中国建材科技.2010:57-60.
    [29]李志.浅析中新天津生态城绿色建筑评价标准[J].中国房地产.2009(7):55-56.
    [30]王建廷,肖忠钰,李媛.《中新天津生态城绿色建筑评价标准》解读[J].天津建设科技.2009(4):2-6.
    [31]Zeff C. The Ultimate green building material[J]. Inwood International.2003,52:36-37.
    [32]Shi Q, Xu Y. The selection of green building materials using GA-BP hybrid algorithm[Z], Shanghai, China:200940-45.
    [33]Chatterjee A K. Sustainable construction and green buildings on the foundation of building ecology[J]. Indian Concrete Journal.2009,83(5):27-30.
    [34]肖国增,张建林.风景园林景观规划方案综合评价体系的研究[J].西南农业大学学报(社会科学版).2006(1):150-155.
    [35]王贤.保定市电力客户服务中心能源竞争策略研究[D].华北电力大学(河北),2005.
    [36]陆斌.室内环境质量综合评价体系初探[J].环境科学导刊.2007(1):86-89.
    [37]甘露.大型综合医院科技持续创新能力评价的研究[D].第三军医大学,2006.
    [38]丁仕达.乡镇企业发展水平综合评价体系研究[D].中国社会科学院研究生院,2000.
    [39]Shao Fei, Deng Wei, Yi Fu Jun, etc. Comprehensive evaluation method of metropolitan public transportation system based on analysis hierarchical process and grey theory[J]. Jiefangjun Ligong Daxue Xuebao/Journal of PLA University of Science and Technology (Natural Science Edition).2009,10(6):536-541.
    [40]Quan O. Design and implementation of the network evaluation system based on comprehensive evaluation method[Z]. Hong Kong, Hong kong:2010285-288.
    [41]Li Hong Ping, Pei Yu Long. Fuzzy comprehensive evaluation of service level of expressway system[J]. Huanan Ligong Daxue Xuebao/Journal of South China University of Technology (Natural Science).2009,37(7):26-30.
    [42]Ge S Y, Cheng P, Liu H, et al. Research on the comprehensive evaluation index system of distribution network reliability[Z]. Nanjing, China:2010.
    [43]曾珍香,李艳双.复杂系统评价指标体系研究[J].河北工业大学学报.2001(01).70-73.
    [44]张天云.工程材料综合评价系统研究与实现[D].兰州理工大学,2008.
    [45]Yokoyama Y, Inoue R, Ikeda A, et al. Evaluation index on periodic and continuous floor vibration caused by occupant walking[J]. Journal of Environmental Engineering.2009,74(636): 125-132.
    [46]Fei Min S, Bo Hui C, Jian Y. Study on construction and quantification of evaluation index system of mine ventilation system[J]. Procedia Earth and Planetary Science.2009,1(1):114-122.
    [47]Chu M T, Khosla R. Index evaluations and business strategies on communities of practice[J]. Expert Systems with Applications.2009,36(2 PART 1):1549-1558.
    [48]刘葵阳.扩展角色行为流程图及其应用研究[D].华中科技大学,2005.
    [49]陈红,魏风虎.公路生态系统评价指标体系构建方法研究[J].中国公路学报.2004(4):92-95.
    [50]杨河清,陈红,边文霞.首都区域人才竞争力评价指标体系的构建[J].首都经济贸易大学学报.2006(5):19-28.
    [51]胡永举,吉淑娥.道路运输业综合能力评价指标体系的建立[J].森林工程.2006(3):69-72.
    [52]蒋耀.基于综合方法的区域可持续发展指标体系选择[J].系统工程理论方法应用.2006(5):441-444.
    [53]许李洁.高等院校绩效评价指标体系构建的思路[J].时代经贸.2006(4):48-49.
    [54]Robert L. The Delphi method:a powerful tool for strategic management[J]. Police Strategies & Management.2002,25(4):762-769.
    [55]Padcliffe L L, Schniederjans M J. trust evaluation:an AHP and multi-objective programming approach[J]. Management Decision.2003,41(6):587-595.
    [56]Okoli C, Pawlowski S D. the dephi method as research tool:an example,design considerarions and applications[J]. Information & Management.2004,42(1):15-29.
    [57]Metin D, Ihsna Y. developing a fuzzy analytic hierarchy process (AHP) model for behavior-based safety managment[J]. Information Sciences.2008,178(6):1717-1733.
    [58]Zhang C, Wu W, Chen X H, et al. Convergence of BP algorithm for product unit neural networks with exponential weights[J]. Neurocomputing.2008,72(1-3):513-520.
    [59]Tong Qiu Hong, Wang Yu Min, Yao Wan Qiang. Optimization of the weight factors of the BP neural network in the intelligent analysis system for lubricating materials[J]. Xi'an Shiyou Daxue Xuebao (Ziran Kexue Ban)/Journal of Xi'an Shiyou University, Natural Sciences Edition. 2006,21(2):73-75.
    [60]Jiang Shao Jie, Jiang Chong Guo. Urban water demand forecasting by combining improved BP neural network and grey model with optimum weight[J]. Chongqing Jianzhu Daxue Xuebao/Journal of Chongqing Jianzhu University.2008,30(2):113-115.
    [61]Zou Z H, Yun Y, Sun J. entropy method for determination of weight of evaluating indicators in fuzzy synthetic evaluation for water quality assessment[J]. Journal of Environmental Sciences. 2006,18(5):1021-1023.
    [62]Xu Z H. a note on the subjective and objective integrated approach to determine attribute weights[J]. European Journal Of Operational Research.2004,156(2):530-532.
    [63]Dong H J. a method for optimal material selection aided with decision making theory[J]. International Journal of Power And Energy Systems.2000,21:199-206.
    [64]袁红平王家远.基于因子分析法的建筑业综合评价[J].深圳大学学报(理工版).2007(24(4)):373-378.
    [65]Rajesh P D W. Evaluation of entropy-based dispatching in flexible manufacturing systems[J]. European Journal Of Operational Research.2007,176((1)):317-331.
    [66]K. M A. Selecting the appropriate project delivery method using AHP[J]. International journal For Project Management.2002((20)):469-484.
    [67]Ibrahim M M K A. Decision support system for selecting the proper project delivery method using analytical hierarchy process (AHP)[J]. International journal For Project Management. 2005((23)):564-572.
    [68]王庆松.山东城市化发展战略对大气环境影响研究[D].山东大学,2010.
    [69]栾忠权.基于产品环境生态指数的绿色设计方法研究[J].机械工程学报.2004(5):96-100.
    [70]张艳.绿色建材的“绿色度”评价研究[J].建材世界.2010(3):21-23.
    [71]楚海林.基于熵的工业生产环境影响问题研究[D].西南交通大学,2005.
    [72]李纪峰.热电联产集中供热系统节能技术分析与环保效益评价[D].大连理工大学2003.
    [73]吴星,张智慧,肖厚忠.北京市多层住宅建筑的物化环境影响研究[J].清华大学学报(自然科学版).2005(6):721-725.
    [74]刘江龙,丁培道,钱小蓉,等.金属材料的环境影响因子及其评价[J].环境科学进展.1996(6):46-51.
    [75]付超,张香平,闫瑞一,等.绿色度方法中环境影响因子权值的确定[J].计算机与应用化学.2008(9):1068-1074.
    [76]王克孟,马玉军.生态指数法在土壤评价中的应用[J].土壤.1992(6):289-292.
    [77]郭微.基于生态因子的辽宁省人居环境居住适宜性分析[D].辽宁师范大学,2010.
    [78]苏敬华.用生命周期评价法评估生态系统服务功能[J].中国环境科学.2011(1):55.
    [79]乔永锋.基于生命周期评价法(LCA)的传统民居的能耗分析与评价[D].西安建筑科技大学,2006.
    [80]白璐.基于LCA的技术环境影响评价研究[D].中国环境科学研究院,2010.
    [81]中国标准研究中心.环境管理生命周期评价生命周期影响评价[S].2002.
    [82]ISO/TC 207.环境管理生命周期评价生命周期影响评价[S].2000.
    [83]Yuste S B. Weighted average finite difference methods for fractional diffusion equations[J]. Journal of Computational Physics.2006,216(1):264-274.
    [84]Cai A H, Sun G X, Pan Y. Evaluation of the parameters related to glass-forming ability of bulk metallic glasses[J]. Materials and Design.2006,27(6):479-488.
    [85]Shanian A, Sacadogo O. TOSIS multiple-criteria decision support analysis for material selection of metalllic bipolar plates for polymer electrolyte fuel cell[J]. Materials and Design. 2006,159(2):1095-1104.
    [86]Opricovic S, Tzeng G H. Compromise solution by MCDM method:A comparative analysis of VIKOR and TOSIS [J]. European of Operational Research.2004(156):445-455.
    [87]Olson D L. Comparison of weights in TOSIS models[J]. Mathematical And Computer Modelling.2004,40(7-8):721-727.
    [88]Deng H, Yeh C. Inter-company comparison using modified TOSIS with objective weights[J]. Computers and Operations Research.2000,27(10):963-973.
    [89]Chen C T. Extensions of the TOSIS for group decision making under environment[J]. Fuzzy Set Systems.2000(114):1-9.
    [90]王立久.建筑材料学[M].北京:中国电力出版社,2008:515.
    [91]周嘉慧.基于PSR框架的耕地集约利用评价指标体系研究[D].云南大学,2010.
    [92]节能[Z].
    [93]狄向华.资源与材料生命周期分析中若干基础问题的研究[D].北京:北京工业大学,2005.
    [94]中国矿业年鉴编辑委员会.中国矿业年鉴2009[M].北京:中国地震出版社,2009.
    [95]中国国土资源年鉴编辑委员会.中国国土资源年鉴2010[M].北京:中国国土资源年鉴编辑部,2010.
    [96]赵平,同继锋,马眷荣.建筑材料环境负荷指标及评价体系的研究[J].中国建材科技.2004(06).
    [97]段胜辉.绿色建筑评价体系方法[D].重庆大学,2007.
    [98]卓蓉晖.建筑装饰材料放射性污染的危害与监测[J].新型建筑材料.2003(03).
    [99]中国建筑材料科学研究院.建筑材料放射性核素限量[S].2001.
    [100]刘书田,王春红,赵志强,等.室内微环境污染与人体健康[J].中国辐射卫生.2010(03).
    [101]贾如升.我国室内苯及苯系污染物危害与防制现状[J].环境与职业医学.2010(01).
    [102]李艳宾.室内氡对人体健康的影响[J].中国辐射卫生.2007(3):371-373.
    [103]Jaskowski P, Biruk S, Bucon R. Assessing contractor selection criteria weights with fuzzy AHP method application in group decision environment[J]. Automation in Construction.2010, 19(2):120-126.
    [104]Hwang H G, Guynes J. Effect of group size on group performance in computer-supported decision making[J]. Information & Management.1994,26(4):189.
    [105]陈珽.决策分析[M].北京:科学出版社,1998:337.
    [106]徐玖平.群决策理论与方法及实现[M].北京:清华大学出版社,2009:48414.
    [107]吕跃进,张维.指数标度在AHP标度系统中的重要作用[J].系统工程学报.2003(05).
    [108]吴士芬,张颖超,刘雨华.AHP标度改进研究及其在IDS评估中的应用[J].微计算机信息.2007(9):70-71.
    [109]吴士芬.基于改进的AHP标度的江苏省和谐社会综合评价研究[D].南京信息工程大学,2007.
    [110]吕跃进,张维.指数标度在AHP标度系统中的重要作用[J].系统工程学报.2003(5):452-456.
    [111]林锦国,魏世孝.AHP标度适应性问题的随机隐序率[J].南京化工大学学报(自然科学版).2000(4):7-9.
    [112]林锦国,魏世孝.一个判别AHP标度适应性的新指标——随机隐序率[Z].1995113-115.
    [113]吴云燕,华中生,查勇.AHP中群决策权重的确定与判断矩阵的合并[J].运筹与管理.2003(04).
    [114]Rao G R, Turoff M. A hypermedia-based group decision support system to support collaborative medical decision-making[J]. DECISION SUPPORT SYSTEMS.2000,30(2): 187-216.
    [115]Qiao K, Yang H C, Zhi H B, et al. Group decision support system in distributed collaborative project management environment[J]. ISTM/2007:7TH INTERNATIONAL SYMPOSIUM ON TEST AND MEASUREMENT, VOLS 1-7, CONFERENCE PROCEEDINGS. 2007:6133-6136.
    [116]Herrera F, Herrera-Viedma E, Verdegay J L. Linguistic measures based on fuzzy coincidence for reaching consensus in group decision making[J]. INTERNATIONAL JOURNAL OF APPROXIMATE REASONING.1997,16(3-4):309-334.
    [117]Daher S F D, de Almeida A T. Recent patents using group decision support systems:A short review[J]. Recent Patents on Computer Science.2010,3(2):81-90.
    [118]Vongvichien J. The development of GDSS to support group decision making through the improvement of the participation of thai graduate students[Z]. Phuket, Thailand:20101172-1175.
    [119]Colson G. The OR's prize winner and the software ARGOS:How a multijudge and multicriteria ranking GDSS helps a jury to attribute a scientific award[J]. Computers and Operations Research.2000,27(7-8):741-755.
    [120]陈侠,樊治平,刘香芹,等.基于互反判断矩阵的专家群体判断一致性分析[J].系统工程与电子技术.2007(7):1078-1081.
    [121]元继学,吴祈宗.多属性群决策算法及一致性分析研究[J].数学的实践与认识.2004(8):51-57.
    [122]华中生,梁梁.专家群体决策不一致性判定与调整方法[J].系统工程学报.1994(1):118-123.
    [123]刘思峰.灰色系统理论及其应用[M].北京:科学出版社,1992:57-58.
    [124]群决策理论与方法及实现[M].2009:414.
    [125]杨善林,刘心报.GDSS中判断矩阵的两种集结方法[J].计算机学报.2001(01).
    [126]中国建筑材料科学研究总院.通用硅酸盐水泥[S].2007.
    [127]武继业,金黎,冯建超,等.综合利用粉煤灰生产32.5复合硅酸盐水泥[J].吉林建材.2003(2):36-40.
    [128]华飚,华琨,赵洪义.水泥生料配料计算原料方程法及Excel工作表[J].水泥.2002(3):19-22.
    [129]张志斌.确定水泥原料配比的规划法[J].国外建材科技.2001(3):17-19.
    [130]高同.水泥生料配合比计算方法[J].武汉建材学院学报.1985(4):439-445.
    [131]邹伟斌,张菊花,胡新明,等.复合硅酸盐水泥的研制[J].水泥技术.1998(6):41-42.
    [132]邹伟斌,张菊花.钢渣、矿渣、粉煤灰复合硅酸盐水泥[J].山东建材.2001(1):19-23.
    [133]徐德安付兴华张虹杨春霞毛世检.425号高掺量矿渣硅酸盐水泥的研究[J].水泥技术.1996(3):12-16.
    [134]武继业,金黎,冯建超,等.综合利用粉煤灰生产32.5复合硅酸盐水泥[J].吉林建材.2003(2):36-40.
    [135]宋文章.生产粉煤灰硅酸盐水泥的实践[J].江苏建材.1994(2):41-43.
    [136]任和平,十玉江.高掺量粉煤灰硅酸盐水泥的研制[J].水泥技术.2000(3):46-48.
    [137]景国,史普天.利用固体废渣生产矿渣硅酸盐水泥的试验研究[J].水泥工程.2005(3):83-84.
    [138]荆春登.立窑烧制425R型矿渣硅酸盐水泥的研究[J].水泥.1990(1):33-37.
    [139]江继祥.粉煤灰复合硅酸盐水泥的试生产[J].粉煤灰综合利用.1997(4):43-44.
    [140]姬永生,袁迎曙,袁广林,等.粉煤灰复合水泥对改善混凝土性能的试验研究[J].中国矿业大学学报.2006(3):306-310.
    [141]霍冀川,卢忠远,吕淑珍,等.大掺量工业废渣普通硅酸盐水泥[J].环境工程.1999(4):56-59.
    [142]高培伟,杨达民.复合硅酸盐水泥研究[J].山东建材.1996(1):24-27.
    [143]天津水泥工业设计研究院有限公司.水泥单位产品能源消耗限额[S].2007.
    [144]龚志起.建筑材料生命周期中物化环境状况的定量评价研究[D].清华大学,2004.
    [145]龚平,彭家惠.墙体材料绿色度评价体系应用实例[J].新型建筑材料.2008(7):4-6.
    [146]水泥厂大气污染物排放标准[R].中国环境科学研究院.
    [147]中国建筑材料联合会.“十一五”时期水泥工业的变化特征[J].混凝土世界.2011(4):58-60.
    [148]姜睿,王洪涛.中国水泥工业的生命周期评价[J].化学工程与装备.2010(4):183-187.
    [149]北京市环境保护科学研究院.污水综合排放标准[S].1996.
    [150]刘顺妮,林宗寿,张小伟.硅酸盐水泥的生命周期评价方法初探[J].中国环境科学.1998(4):41-45.
    [151]河南省建筑科学研究院.民用建筑工程室内环境污染控制规范(2006年版)[S].2001.
    [152]中国建筑科学研究院,同济大学,中国中元国际工程公司,等.民用建筑隔声设计规范[S].2010.
    [153]南京玻璃纤维研究设计院.建筑材料及制品的湿热性能.吸湿性能的测定[S].2006.
    [154]东北林业大学.锯材干燥质量[S].1999.
    [155]中国建筑材料科学研究总院.通用硅酸盐水泥[S].2007.
    [156]中国建筑科学研究院,中设建工集团有限公司,中国铁道科学研究院,等.混凝土耐久性检验评定标准[S].2009.
    [157]周和敏.钢铁材料生产过程环境协调性评价研究[D].北京:北京工业大学,2001.
    [158]冶金工业信息标准研究院,首钢总公司,邯郸钢铁集团有限责任公司.碳素结构钢[S].2006.
    [159]黄宾.陶瓷行业的节能减排与绿色陶瓷的发展[J].佛山陶瓷.2008(8):1-4.
    [160]王立久.建筑材料工艺原理[M].建材工业出版社,2006:498.
    [161]吴清良,区卓琨,梁以流.建筑陶瓷行业节能减排的措施[J].广东科技.2011(4):3-5.
    [162]咸阳陶瓷研究设计院、广东蒙娜丽莎陶瓷有限公司、唐山惠达陶瓷(集团)股份有限公司。建筑卫生陶瓷单位产品能源消耗限额[S].2007.
    [163]围家环保局.大气污染物综合排放标准[S].1996.
    [164]汤亮.基于综合效益评价的陶瓷产品全生命周期理论研究及应用[D].武汉理工大学,2010.
    [165]北京新型材料建筑设计研究院有限公司,广东蒙娜丽莎陶瓷有限公司,上海泪滴建筑材料有限公司,等.建筑陶瓷薄板应用技术规程[S].2009.
    [166]肖新平.灰技术基础及其应用[M].科学出版社,2005:309.
    [167]李杰,张甫仁.改进的雷达图理论在汽车行业综合竞争力评价中的应用[J].汽车实用技术.2011(Z2):61-65.
    [168]曾鸣,史连军,刘清宇,等.基于需达图法的水电厂生产运营对标管理评价[J].水电能源科学.2011(4):127-130.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700