用户名: 密码: 验证码:
氧化物掺杂磷酸盐封接玻璃的制备及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磷酸盐玻璃作为环境友好型低熔点封接玻璃中最有发展前途的候选材料而引起人们的极大关注,由于具有较低的玻璃转变温度、适宜的热膨胀系数和较低的粘度,因而可广泛应用于电阻或导电浆料、电子元器件的封接、涂层,以及玻璃、金属和陶瓷间的粘结相。但是磷酸盐玻璃的化学稳定性差和吸湿性的不足,是制约其应用的主要因素。近年来,通过在磷酸盐玻璃中掺杂玻璃形成体和修饰体如Fe2O3、MoO3、CuO、Cr2O3、SrO等来改善其性能,吸引了研究者极大的关注。
     本文采用熔融淬冷法制备了ZnO-B2O3-P2O5-RnOm系统玻璃,研究了热膨胀系数、失重百分比、密度、体积电阻率、介电常数和流散性等物理特性的变化。通过红外-拉曼光谱、核磁共振、X射线衍射、扫描电镜、能谱分析和差热分析研究了玻璃的结构变化。在磷酸盐玻璃中逐渐掺杂一定量的MnO2和Fe2O3,结合光谱分析和化学稳定性研究了掺杂对玻璃结构的影响,为改善磷酸盐玻璃的耐水性提出了新的思路。
     首先,确定了ZnO-B2O3-P2O5-RnOm四元系统玻璃的形成范围,研究表明在30 mol%≤P2O5≤50 mol%的范围内,玻璃的形成区贯穿于整个四元系统,随着B2O3的增多,红外光谱中在1440 cm-1处归属于B-O-B键的不对称伸缩振动增强,但是在760 cm-1处归属于P-O-P键的对称伸缩振动消失,表明磷酸盐玻璃中的部分P-O键被硼离子打断,形成了新的P-O-B键。XRD研究了玻璃的主晶相随B203的变化,在B2O3为0~20 mol%时主晶相为Zn2P2O7,B2O3为30~40 mol%时主晶相为BPO4,众所周知,晶相BP04和AlPO4的晶体结构由PO4、BO4和PO4、AlO4四面体相互连接而成,形成了类似于SiO2的网络结构,这也间接证明了在磷酸盐玻璃的网络结构中形成了P-O-B和P-O-Al键。玻璃的转变温度随B203的增多而持续增大,也随P2O5的增多而增大,在40~45 mol%P2O5时达到最大,继而减小,转变温度随B2O3的增多而持续增大,表明了B2O3的增多增大了玻璃中各种结构基团的空间交叉密度,减小了玻璃的网络结构间隙。热膨胀系数随B2O3的增多而持续增大,而热膨胀系数却随P205的增多先增大继而减小,最大值在43mol%P2O5附近。玻璃耐水性的好坏主要取决于玻璃配方的组成,实验结果表明当P2O5≤35 mol%和B2O3≤10 mol%时玻璃具有较好的耐水性(较少的失重百分比),同时发现耐水性随着P2O5和B2O3量的增多而减弱,研究A系列玻璃的失重百分比发现,WL的值从30 mol%P2O5处开始增大,到P2O5的量为40 mol%时达到最大值。与此同时,本文还对磷酸盐玻璃在水中的溶解机理进行了深入的研究,结果表明,磷酸盐表面受到水的侵蚀时出现了侵蚀坑的形成阶段以及侵蚀坑的稳定阶段,这两个阶段的变化与玻璃失重的变化具有一定的对应关系。玻璃的密度随着P2O5的增多几乎是线性减少,但随着B2O3的增多而非线性减小,明显的,这种变化主要是由于P2O5和B2O3的摩尔质量大于ZnO的摩尔质量。
     其次,通过了光谱分析结合化学稳定性的研究,讨论了在ZnO-B2O3-P2O5-RnOm系统玻璃中逐渐掺杂一定量的MnO2时,MnO2对玻璃结构的影响以及如何参与到玻璃的网络结构中。研究结果表明,当掺杂MnO2的量小于3 mol%时,锰离子大多数以正二价态存在,作为玻璃的网络形成体存在,形成MnO4的结构单元,增加了玻璃网络结构的刚度;当掺杂MnO2的量大于3 mol%时,锰离子大多以网络结构的修饰体存在,增强了玻璃网络结构的稳定性。玻璃转变温度先减小继而增加,由440℃减小为408℃,掺杂MnO2后在差热曲线中出现了一个新的结晶峰Tc2,并随MnO2的增多向低温方向移动。XRD研究表明主晶相Zn2P2O7的强度随MnO2的增多而减弱,在保温的过程中,玻璃中有晶相Zn2P2O7和BPO4的生成,随着保温温度的升高,晶相BPO4的量减少,晶相Zn2P2O7的量增加。当生成的晶相Zn2P2O7与外界大气中的水分发生反应时,反应生成物Mn2P2O7较多的裸露在烧结后封接玻璃的表面,形成一层具有强耐水性的“保护膜层”,从而极大的增强磷酸盐玻璃的耐水性。SEM和EDS研究表明,随着MnO2的增多玻璃内部析出的晶体由层状结构转变为致密化,一部分晶相呈现出棒状的形貌。热膨胀系数在0~3 mol%MnO2时减小,在3 mol%MnO2时最小,继而增大;密度的变化在0~3mol%MnO2时增大,在3 mol%MnO2时最大,继而减小,这些变化是由于锰离子以不同的结构基团参与了玻璃的网络结构。随着MnO2替换ZnO量的增多,耐水性表现的更加优异,失重的变化趋势类似于热膨胀系数的变化,三价锰离子的存在使磷氧四面体之间的键强增大,部分结合力较弱且易溶的P-O键被三价锰离子取代,形成了具有强耐侵蚀的P-O-Mn键,从而大大的改善了磷酸盐玻璃的化学稳定性,因此含有一定量MnO2的磷酸盐玻璃具有较好的耐水性。随着温度的升高,玻璃的体积电阻率减小,流散性增大,然而介电常数在0~3 mol%MnO2时减小,在3 mol%MnO2时最小,继而增大。
     再次,在磷酸盐玻璃中含有铁离子能显著的增强其耐水性获得了证明,因而在磷酸盐玻璃中引入少量的铁离子引起了研究者的极大关注,因此,本部分通过光谱分析结合化学稳定性的研究,讨论了在ZnO-B2O3-P2O5-RnOm系统玻璃中逐渐掺杂一定量的Fe2O3时,铁离子对玻璃结构的影响以及如何参与到玻璃的网络结构中。结合物理性能、红外光谱以及XRD分析的结果表明,当0~2 mol%Fe2O3时,铁离子大多数以三价位存在,形成四面体和八面体的结构单元,从而增大了玻璃的网络结构的刚度;当2~5 mol%Fe2O3时,铁离子大多数以二价位存在,主要是以八面体的结构单元作为玻璃网络结构的修饰体存在。XRD研究表明,当掺杂较少量的Fe2O3(1 mol%)时促进了晶相BPO4的形成,当掺杂较多的Fe2O3(3~5 mol%)时抑制了晶相BPO4和Zn2P2O7的形成。SEM图片表明随着Fe2O3掺杂量的增多,玻璃中的晶相生成能力增强,玻璃内部析出的晶体由层状结构转变为分布较均匀的均一相,一部分晶相呈现棒状的形貌,可以看到在样品F0的内部存在着大量的缺陷,这些内部缺陷随着Fe2O3掺杂量的增多而减少,当Fe2O3的掺杂量在3~5mol%时,样品的内部缺陷降到较低的水平,基本上致密化。EDS研究表明在标注为c的深灰色区域铁的含量较高,说明在c区域内形成了较多的P-O-Fe键,在标注为a的浅灰色区域铁的含量较低,说明在a区域内形成了较少的P-O-Fe键。随着Fe2O3掺杂量的增多,玻璃转变温度先减小继而增加,掺杂Fe2O3后在差热曲线中出现了一个新的结晶峰Tc2,并随Fe2O3的增多向低温方向移动。热膨胀系数和密度的变化趋势恰恰相反,失重的变化趋势与热膨胀系数的变化类似,热膨胀系数在0~2 mol%Fe2O3时减小,在2 mol%Fe2O3时最小,继而增大;密度的变化在0~2 mol%Fe2O3时增大,在2 mol%Fe2O3时最大,继而减小,这些变化是由于铁离子以不同的结构基团参与了玻璃的网络结构。随着温度的升高,玻璃的体积电阻率减小,流散性增大,然而介电常数在0~2 mol%Fe2O3时减小,在2 mol%Fe2O3时最小,继而增大。
     最后,通过光谱分析系统的研究了采用纳米Al2O3替换化学纯级A1(OH)3后对所研究系统玻璃产生的影响,SEM研究发现纳米Al2O3与P2O5发生反应,生成物AlPO4晶体能显著的提高玻璃的机械性能。铝离子未能参与玻璃的网络结构从而形成P-O-Al结构基团,因此,红外光谱中在1640 cm-1处有一个归于Al-H-Al键的不对称伸缩振动消失,XRD研究表明采用纳米Al2O3替换化学纯级Al(OH)3后主晶相Zn2P2O7的衍射峰强度减弱,但晶相BPO4的衍射峰强度显著增强,说明在玻璃的网络结构中形成了更多的P-O-B结构单元。在N1样品中玻璃转变温度和结晶峰温度Tc1都有明显的降低,同时出现了一个新的结晶峰Tc2,热膨胀系数、密度、介电常数、失重和流散性都有所增加,唯有体积电阻率减少,且体积电阻率的值随着温度的增加而减小。
     本文基于ZnO-B2O3-P2O5-RnOm系统玻璃,研究了P2O5、B2O3和外加氧化物(MnO2、Fe2O3、纳米氧化铝)对玻璃的封接性能、结构以及晶相的影响,获得了具有良好化学稳定性的无铅低熔点封接玻璃配方,研究结果表明,在磷酸盐玻璃中掺杂MnO2、Fe2O3和纳米氧化铝能有效的改善磷酸盐玻璃的封接性能,少量的锰和铁离子参与到玻璃的网络结构中,形成网络结构四面体,大大的增强了玻璃的化学稳定性,减少其在水中的溶解速度。最后,采用纳米氧化铝替代化学纯级的氢氧化铝制备玻璃样品,分析了纳米氧化铝对磷酸盐系统玻璃的结构和性能产生的影响,讨论了晶相的生成过程和机制,这些研究对促进封接玻璃的应用和玻璃、陶瓷和金属之间的封接具有一定的理论参考价值。
Phosphate glasses have drawn much attentions as promising candidates for low melting sealing glasses and found wide applications as resistive or conductive pastes, sealing or coating frits for electronic components, adhesives for metal materials and ceramic, due to their low glass transition temperature, appropriate thermal expansion coefficient and low viscosity. However, the low chemical resistance and moisture degradation of these glasses limited their commercial exploitation in engineering applications. In recent years, much interests have focused on improving the chemical durability of phosphate glasses through introducing glass former and modifier such as Fe2O3, MoO3, CuO, Cr2O3, SrO, etc., in to P2O5 glass network.
     In this paper, ZnO-B2O3-P2O5-RnOm (RnOm=Li2O, Al2O3, Na20) quaternary system glasses were prepared through the melting quenching method. Various factors which effect on physical properties were investigated, including thermal expansion coefficient (a), weight loss percentage (WL), glass density (p), volume resistivity (Rv), dielectric constant (ε) and fluxion property. The ZnO-B2O3-P2O5-RnOm glass was characterized by infrared spectra (IR), Raman spectra, nuclear magnetic resonance (NMR), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive spectroscopic (EDS) and differential thermal analysis (DTA). In addition, the structural influence of manganese and iron ions on the ZnO-B2O3-P2O5-RnOm glass network with a gradual increase in the concentration of MnO2 and Fe2O3 was investigated through the spectroscopic and chemical durability studies. Such studies will pave the way for assessing the water resistance character of the phosphate glasses.
     Firstly, the glass forming region in the ZnO-B2O3-P2O5-RnOm quaternary system has been determined. It was observed that the glass forming region crosses the entire quaternary system with 30 to 50 mol% P2O5. The IR band around 1440 cm-1, which dues to the Vas(B-O-B) vibrations of bridging oxygen atoms, increased in intensity with increasing B2O3 content, while the vs(P-O-P) vibration around 760 cm-1 disappears, indicating the formation of P-O-B linkages. The resulting XRD patterns indicated that the major crystalline phase changes from Zn2P2O7 to BPO4 as the B2O3 substitution increases from 0-20 mol% to 30-40 mol%. It is well known that the crystalline BPO4 and AIPO4 are interconnected with PO4-BO4 tetrahedra and PO4-AlO4 tetrahedra networks which are similar to SiO2. Therefore, it can be supposed that the glasses contain P-O-B and P-O-Al linkages within their structural networks. The values of Tg shifted monotonously to higher temperature with increasing B2O3 content, whereas the value of Tg rose abruptly at small additions of P2O5 and reached a maximum at about 40~45 mol% P2O5 in the glasses. The observed increasing Tg values indicates the enlarged cross-link density of various structural groups and low closeness of packing in the network of the glasses. The variations of a shifted monotonously to lower values with increasing B2O3 contents, whereas the value of a abruptly increased at 30 mol% additions of P2O5 and reached a maximum at about 43 mol% additions of P2O5 in the series A glass. The water durability of these glasses was found to be sensitive to the glass composition. It can be seen clearly that the glasses whose P2O5 content is less than 35 mol% and B2O3 content is less than 10 mol% exibited much better water durability (less weight loss percentage), which decreased with the increasing amount of P2O5 and B2O3. It was found that the WL abruptly increased at about 30 mol% additions of P2O5 and reached a maximum at about 40 mol% additions of P2O5. The controlled release mechanism of the phosphate glass was studied in detail. The results showed that the etch pits forming stage and etch pits stable stage appear in the dissolution process of the phosphate glasses.These two stages were in good consistence with that of the weight loss of the phosphate glasses. The p of the glasses decreased linearly with the increasing P2O5 contents, whereas it nonlinearly decreased with increasing B2O3 contents from 0 to 40 mol%. Obviously, the decrease was mainly due to the much higher mass molar weight of P2O5 and B2O3 than that of ZnO.
     Secondly, we have investigated the structural influence of MnO2 on the ZnO-B2O3-P2O5-RnOm glass network with the gradual increase in the concentration of MnO2.The analysis indicated that when the concentration of MnO2 is up to 3 mol%, manganese ions mostly exist in Mn2+ state, occupy networks forming positions with MnO4 structural units and increase the rigidity of the glass network. When the MnO2 content is beyond 3 mol%, these ions mostly act as network modifiers positions and strengthen the glass network. The values of Tg decreased firstly and then increased with the increasing MnO2 content from 440℃to 408℃. A new crystallization peak was presented in the DTA curves and shifted to a lower temperature for the glass sample containing≥1 mol% MnO2. The resulting XRD patterns indicated the major crystalline phase of Zn2P2O7 changes weakly with the substitution of different amount MnO2. Zn2P2O7 and BPO4 were precipitated in the glasses when heated at low temperature. However, the increased heating temperature initialed the reduction of BPO4 phase and the enhancement of MnPO4 phase. XRD results revealed that the MnPO4 phase could reacted to moisture in the atmosphere, and the reaction products of Mn2P2O7 distributed on the surface of the heated glasses and formed a water resistance layer, which could greatly inhance the water durability. SEM and EDS analysis showed that some particles with irregular layer shape had grown to a uniform phase, whereas other particles formed rod-like crystals. Values of a decreased between 0 and 3 mol% additions of MnO2, a minimum at about 3 mol% additions of MnO2 and then increased with further additions. The p of the glasses increased between 0 and 3 mol% additions of MnO2, a maximum at about 3 mol% additions of MnO2 and then decreased with further addition. These changes due to manganese ions participated in the glass network with different structural units. The weight loss was related to MnO2 concentration and lower ZnO concentration leaded to better water durability. The WL (0≤t≤10) was similar to that of the relative thermal expansion coefficient. Mn3+ provided a stronger crosslink between the phosphate tetrahedra. The interlinkage of highly dissolvable P-O nonbridging oxygens by Mn3+ and the replacement of easily hydrated phosphate chains by corrosion resistant P-O-Mn bonds improved the durability of the glass samples undoubtedly. Thus the glass containing MnO2 had better water durability. The Rv of the glasses decreased and the fluxion property of the glasses increased with the increased temperature, whereas the s of the glasses decreased between 0 and 3mol% addtions of MnO2 and reached a minimum at about 3 mol% additions of MnO2 and then increased with further additions.
     Thirdly, we investigated the structural influence of iron ions on B2O3-P2O5-RnOm glass network with a gradual increase in the concentration of through spectroscopic and chemical durability studies. The physical properties coupled with infrared spectroscopic and XRD indicated that the iron ions (when present in the concentration range,0~2 mol%) exist mostly in trivalent state and occupy both tetrahedral and octahedral substitutional positions and were found to inhance the rigidity of the glass network. However, in the concentration range of 2-5 mol%, the iron ions in the glass networks were in Fe2+ state, occupying predominantly octahedral positions and were acting as modifiers. The XRD results revealed that the small amount of Fe2O3 (1 mol%) was effective to promote the appearance of BPO4 crystal, while more amount of Fe2O3 (3-5 mol%) was effective to suppress the formation of BPO4 and Zn2P2O7 crystal. The SEM pictures showed an increasing crystalline with the increasing concentration of Fe2O3 up to 5 mol%, and some particles with irregular layer shape had grown to quite big uniform phase, whereas other particles formed rod-like crystals. A much more internal defect was observed in the sample F0, whereas these defect decreased with the increasing Fe2O3 content. The crystalline phase changed in compact zone at about 3-5 mol% additions of Fe2O3 in the glasses. EDS analysis showed that the dark gray regions labeled as "c" have higher Fe content and might reveal to contain more P-O-Fe bonds, whereas the light gray regions labeled as "a" have lower Fe content and might reveal to contain less P-O-Fe bonds. The values of Tg decreased firstly and then increased with the increasing Fe2O3 content. A new crystallization peak was presented in the DTA curves and shifted to a lower temperature for the glass sample containing≥1 mol% Fe2O3. The a and p vary in opposite way for the glass. The WL was similar to that of the relative a. The values of a decreased between 0 and 2 mol% additions of Fe2O3, reached a minimum at about 2 mol% additions of Fe2O3 and then increased with further additions. The p increased between 0 and 2 mol% additions of Fe2O3, reached a maximum at about 2 mol% additions of Fe2O3 and then decreased with further additions. These changes might be attributed to iron ions participated in the glass network with different structural units. The Rv of the glasses decreased and the fluxion property of the glasses increased with increasing of the temperature, whereas theεof the glasses decreased between 0 and 2 mol% additions of Fe2O3, reached a minimum at about 2mol% additions of Fe2O3 and then increased with further additions.
     Finally, the spectroscopic properties of nano-aluminum oxide instead of aluminum hydroxide in the glass system were systematically investigated. SEM analysis showed that aluminum ions could react to P2O5, and the reaction products of AIPO4 could improve the machinable property obviously. Aluminum ions failed to participate into the glass network with P-O-Al structural units. Therefore, the absorption peak at 1640 cm-1 which was assigned to the Vas(Al-H-Al) vibrations of bridging hydrogen atoms disappears. XRD results revealed that the major crystalline phase of Zn2P2O7 changes weakly, but the structure of boronphosphate became distinctly which might reveal to contain more P-O-B bonds with the substitution of A1(OH)3 for nano-aluminum. The values of Tg and Tcl decreased obviously and a new crystallization peak was presented in the DTA curves in the sample N1. The a, p, s, WL values and the fluxion property increased, whereas the Rv value of the sample N1 glasses decreased with the increasing of the temperature.
     Based on the structure and crystallization analysis of ZnO-B2O3-P2O5-RnOm glass, effects of P2O5, B2O3 and additive oxides (including MnO2, Fe2O3, nano-aluminum oxide) on sealing properties, especially chemical stability of lead free sealing glass were investigated. The results indicated that doped MnO2, Fe2O3 and nano-aluminum oxide in the phosphate glasses had protection functions for sealing properties. The results of chemical durability measurements together with spectroscopic properties might also throw some light on the coordination of the polyhedral of manganese and iron ions, which dissolved in phosphate glass matrix even in very small quantities and could greatly increase the chemical durability and reduce the corrosion rate in aqueous environments. Furthermore, the effects of nano-aluminum oxide on the structure and properties of the glass were discussed in the glass systems. The crystallization course and mechanism were discussed, which could provide certain theory reference value for practice producing and glass seals to glass, ceramic and metal.
引文
[1]马英仁,封接玻璃(一):对玻璃的要求及适于封接的金属,玻璃与搪瓷,1992,20,4,58-60.
    [2]白进伟,低熔封接玻璃组成及其发展,材料导报,2002,16,12,43-46.
    [3]Dai C, Xie Q, Handbook of electronic industry productive technology,1990,4, National Denfense Industry Press, Beijing,534.
    [4]马英仁,封接玻璃(三):影响玻璃封接的因素,玻璃与搪瓷,1992,20,6,52-57.
    [5]游翔,严增濯,封接玻璃的应用,光电技术,1993,34,3,52-53.
    [6]Hasegawa S, Kanai M, Torii H, Kamimoto T, Glass composition, sealing glass for magnetic head and magnetic head using the same, US Patent:6778355,2004.
    [7]Ide A, Low melting glass, sealing composition and sealing paste, US Patent: 7291573,2007.
    [8]Ivascu C, Gabor A.T, Cozar O, Daraban L, Ardelean I, FT-IR, Raman and thermoluminescence investigation of P205-BaO-Li2O glass system, Journal of Molecular Structure,2011,993,1-3,249-253.
    [9]Pietrzak TK, Garbarczyk JE, Gorzkowska I, Wasiucionek M, Nwinski JL, Gierlotka S, Jozwiak P, Correlation between electrical properties and microstructure of nanocrystallized V2O5-P2O5 glass, Journal of Power Sources, 2009,194,1,73-80.
    [10]The restriction of hazardous substances in electrical and electronic equipment (ROHS) directive (2002/95/EC).
    [11]张兵,陈奇,宋鹏,陆剑英,含铅玻璃及其无铅化的研究,玻璃与搪瓷,2006,34,1,50-53.
    [12]郭宏伟,刘新年,赵彦钊,高档妮,低熔封接玻璃的研究进展,材料导报,2005,19,283-286.
    [13]西北轻工学院主编,玻璃工艺学,2005,1,中国轻工业出版社,北京.
    [84]李启甲,沈健,殷海荣,白勇祥,无铅磷酸盐封接玻璃的最新进展,玻璃与搪瓷,2003,31,3,55-58.
    [15]Yu X, Day DE, Long GJ, Brow RK, Properties and structure of sodium-iron phosphate glasses, Journal of Non-crystalline Solids,1997,215,1,21-31.
    [16]Lockyer MWG, Holland D, Dupree R, Structure of (5x)P2O5(1-x)K2O4(1-x)SiO2 glasses, Physics and Chemistry of Glasses,1995,36,1,22-30.
    [17]Inoue H, Makishima A, Kanazawa T, Nanba T, Yasui I, The structure of 50Na2O·xAl2O3·(50-x/2)P205 and (50-x/2)Na2O·xAl2O3·(50-x/2)P205 glasses, Physics and Chemistry of Glasses,1995,36,1,37-43.
    [18]Byun JO, Kim BH, Hong KS, Jung HJ, Lee SW, Izyneev A.A, Properties and structure of RO-Na2O-Al2O3-P2O5 (R=Mg, Ca, Sr, Ba) glasses, Journal of Non-crystallin-e Solids,1995,190,3,288-295.
    [19]Hoppe U, Walter G, Kranold R, Stachel D, Bara A, The dependence of structural peculiarities in binary phosphate glasses on their network modifier content, Journal of Non-crystalline Solids,1995,192-193,28-31.
    [20]Mogus-Milankovic A, Pivac B, Furic K, Day D.E, Structural study of iron phosphate glasses, Physics and Chemistry of Glasses,1997,38,2,74-78.
    [21]干福熹,蒋亚丝,姜复松,Al(PO3)3系统氟磷玻璃的生成和结构,硅酸盐学报,1981,9,4,365-370.
    [22]Richter T, Frischat GH, Borchardt G, Scherrer S, Initial stages of glass corrosion in water, Glastechnische Berichte,1990,63,10,300-308.
    [23]Veinot DE, Langille KB, Nguyen DT, Bernt JO, Efflorescence of soluble silicate coatings, Journal of Non-crystalline Solids,1991,127,2,221-226.
    [24]Mea GD, Gasparotto A, Bettinelli M, Montenero A, Scaglioni R, Chemical durability of zinc-containing glasses, Journal of Non-crystalline Solids,1986,84, 1-3,443-451.
    [25]Sales BC, Boatner LA, Optical, structural, and chemical characteristics of lead-indium phosphate and lead-scandium phosphate glasses, Journal of the American Ceramic Society,1987,70,9,615-621.
    [26]Doremus RH, Infrared spectroscopy of surfaces of glasses containing alkali ions, Journal of Non-crystalline Solids,1980,41,1,145-149.
    [27]刘秋霞,陈晓明,万旺斌,热历史对Na2O-CaO-P2O5玻璃水解性的影响,玻璃与搪瓷,1996,24,5,8-11.
    [28]刘秋霞,汪连山,Na2O-CaO-2P2O5玻璃的分相与析晶,武汉工业大学学报,1996,18,1,22-25.
    [29]Wallace KE, Hill RG, Pembroke JT, Brown CJ, Hatton PV, Influence of sodium oxide content on bioactive glass properties, Journal of Materials Science: Materials in Medicine,1999,10,12,697-701.
    [30]Smets BMJ, Tholen MGW, Lommen TPA, The effect of divalent cations on the leaching kinetics of glass, Journal of Non-Crystalline Solids,1984,65,2-3, 319-332.
    [31]Avon, Sodium phosphate glass with reduced rates of solution in water, Research Disclosure,1995,378,672-674.
    [32]李立华,陈跃进,SiO2对磷酸盐玻璃净化性能的影响,武汉工业大学学报,1994,16,3,58-62.
    [33]Brow RK, An XPS study of oxygen bonding in zinc phosphate and zinc borophosphate glasses, Journal of Non-crystalline Solids,1996,194,3,267-273.
    [34]Jin Y, Chen X, Huang X, Raman studies of lithium borophosphate glasses, Journal of Non-crystalline Solids,1989,112,1-3,147-150.
    [35]He Y, Day DE, Development of a law temperature phosphate sealing glass, Glass Technology,1992,33,6,214-219.
    [36]Rajaram M, Day DE, Preparation and properties of oxynitride glasses made from 27R2O-20BaO-3Al2O3-50P2O5 glass, Journal of Non-crystalline Solids,1988, 102,1-3,173-180.
    [37]Walter G, Hoppe U, Baade T, Kranold R, Stachel D, Intermediate range order in MeO-P2O5 glasses, Journal of Non-crystalline Solids,1997,217,2-3,299-307.
    [38]Walter G, Hoppe U, Kranold R, Stachel D, Structural characterization of magnesium phosphate glasses by x-ray diffraction, Physics and Chemistry of Glasses,1994,35,6,245-252.
    [39]Losso P, Schnabel B, Jager C, Sternberg U, Stachel D, Smith D.O,31P NMR investigations of binary alkaline earth phosphate glasses of ultra phosphate composition, Journal of Non-crystalline Solids,1992,143,265-273.
    [40]Kasuga T, Abe Y, Calcium phosphate invert glasses with soda and titania, Journal of Non-crystalline Solids,1999,243,1,70-74.
    [41]Guo G, Chen Y, Thermal analysis and infrared measurements of a lead-barium-aluminum phosphate glass, Journal of Non-crystalline Solids,1996, 201,3,262-266.
    [42]Husson E, Beny JM, Proust C, Benoit R, Erre R, Vaills Y, Belkhader K, Raman and Brillouin scattering and XPS spectroscopy in NaPb0.5Bi0.33PO4 glass: evolution as a function of temperature, Journal of Non-crystalline Solids,1998, 238,1-2,66-74.
    [43]Koudelka L, Mosner P, Borophosphate glasses of the ZnO-B2O3-P2O5 system, Materials Letters,2007,42,3,194-199.
    [44]Zhang B, Chen Q, Song L, Li H, Hou F, Zhang J, Fabrication and properties of novel low-melting glasses in the ternary system ZnO-Sb2O3-P2O5, Journal of Non-Crystalline Solids,2008,354,18,1948-1954.
    [45]沈健,李启甲,殷海荣,于宝刚,SnO-ZnO-P2O5三元系统封接玻璃的研究,陕西科技大学学报,2003,21,6,30-33.
    [46]Morinaga K, Fujino S, Preparation and properties of SnO-SnCl2-P2O5 glass, Journal of Non-Crystalline Solids,2001,282,1,118-124.
    [47]Abbas L, Bih L, Nadiri A, Amraoui Y.E, Mezzane D, Elouadi B, Properties of mixed Li2O and Na2O molybdenum phosphate glasses, Journal of Molecular Structure,2008,876,1-3,194-198.
    [48]Niida H, Takahashi M, Uchino T, Yoko T, Preparation and structure of organic-inorganic hybrid low-melting phosphite glasses from phosphonic acid H3PO3, Journal of Materials Research,2003,18,5,1081-1086.
    [49]Sudarsan V, Kulshreshtha SK, Study of structural aspects of V2O5-P2O5-B2O3 glasses, Journal of Non-Crystalline Solids,1999,258,1-3,20-28.
    [50]马占锋,李启甲,赵彦钊,刘新年,SnO-ZnO-P2O5玻璃部分热学性能的研究,玻璃与搪瓷,2005,33,5,5-9.
    [51]Al-Assiri MS, Characterization and electrical properties of V2O5-CUO-P2O5 glasses, Physica B:Condensed Matter,2008,403,17,2684-2689.
    [52]Buckermann WA, Muller-Warmuth W, Mundus C, Multinuclear MAS-NMR studies of Al2O3-B2O3-P2O5 glasses, Journal of Non-Crystalline Solids,1996, 208,3,217-227.
    [53]Ide A, Lead-free sealing glass and sealing compositions containing same for display panels, JP Patent:2004035316,2004.
    [54]Hussain NS, V Aruna, Buddhudu S, Absorption and photoluminescence spectra of Sm3+:TeO2-B2O3-P2O5-Li2O glass, Materials Research Bulletin,2000,35,5, 703-709.
    [55]Mosner P, Kalendova A, Koudelka L, Anticorrosion properties of SrO-ZnO-B2O3-P2O5 pigments, Dyes and Pigments,2000,45,1,29-34.
    [56]Baskaran GS, Reddy MVR, Rao DK, Veeraiah N, Dielectric properties of PbO-P2O5-As2O3 glass system with Ga2CO3 as additive, Solid State Communications,2008,145,7-8,401-406.
    [57]Mogus-Milankovic A, Gajovic A, Santic A, Day DE, Structure of sodium phosphate glasses containing Al2O3 and/or Fe22O3. Part I, Journal of Non-Crystalline Solids,2001,289,1-3,204-213.
    [58]Takebe H, Baba Y, Kuwabara M, Dissolution behavior of ZnO-P2O5 glasses in water, Journal of Non-Crystalline Solids,2006,352,28-29,3088-3094.
    [59]Padma Rao MVN, Ravikumar V, Srinivasa Rao L, Venkateswara RP, Reddy MS, Veeraiah N, Copper ion as a structural probe in PbO-CaF2-P2O5 glass system by means of spectroscopic and dielectric studies, Journal of Alloys and Compounds, 2009,472,1-2,489-496.
    [60]Bergo P, Pontuschka WM, Prison JM., Dielectric properties of P2O5-Na2O-Li2O glasses containing WO3, CoO or Fe2O3, Solid State Communications,2007,141, 10,545-547.
    [61]Milankovic AM, Santic A, Karabulut M, Day DE, Electrical conductivity and relaxation in MoO3-Fe2O3-P2O5 glasses, Journal of Non-Crystalline Solids,2004, 345-346,494-499.
    [62]Mohan NK, Rao KS, Gandhi Y, Veeraiah N, Environment of Fe3+ ion and its influence on dielectric and spectroscopic properties of PbO-Nb2O5 glasses, Physica B:Condensed Matter,2007,389,2,213-226.
    [63]Mohan NK, Reddy MR, Jayasankar CK, Veeraiah N, Spectroscopic and dielectric studies on MnO doped PbO-Nb2O5-P2O5 glass system, Journal of Alloys and Compounds,2008,458,1-2,66-76.
    [64]Moustafa YM, El-Egili K, Doweidar H, Abbas I, Structure and electric conduction of Fe2O3-P2O5 glasses, Physica B:Condensed Matter,2004,353,1-2, 82-91.
    [65]Chahine A, Et-tabirou M, Elbenaissi M, Haddad M, Pascal JL, Effect of CuO on the structure and properties of (50-x/2)Na2O-xCuO-(50-x/2)P2O5 glasses, Materials Chemistry and Physics,2004,84,2-3,341-347.
    [66]Chahine A, Et-tabirou M, Pascal JL, FTIR and Raman spectra of the Na2O-CuO-Bi2O3-P2O5 glasses, Materials Letters,2004,58,22-23,2776-2780.
    [67]Shih PY, Chin TS, Effect of redox state of copper on the properties of P2O5-Na2O-CuO glasses, Materials Chemistry and Physics,1999,60,1,50-57.
    [68]Dutta B, Fahmy NA, Pegg IL, Effect of mixed transition-metal ions in glasses. I. The P2O5-V2O5-Fe2O3 system, Journal of Non-Crystalline Solids,2005,351, 24-26,1958-1966.
    [69]Parsons AJ, Rudd CD, Glass forming region and physical properties in the system P2O5-Na2O-Fe2O3, Journal of Non-Crystalline Solids,2008,354,40-41, 4661-4667.
    [70]Maczka M, Macalik B, Hanuza J, Bukowska E, Synthesis and characterization of M2O-MgO-WO3-P2O5 (M=K, Rb,Cs) glass system, Journal of Non-Crystalline Solids,2006,352,52-54,5586-5593.
    [71]Santic A, Mogus-Milankovic A, Furic K, Bermanec V, Kim CW, Day DE, Structural properties of Cr2O3-Fe2O3-P2O5 glasses, Part Ⅰ, Journal of Non-Crystalline Solids,2007,353,11-12,1070-1077.
    [72]张兵,陈奇,王德强,陆剑英,MnO/MnO2对磷酸盐低熔玻璃性能的影响,硅酸盐学报,2008,36,4,535-539.
    [73]Sahar MR, Hussein A, Hussin R, Structural characteristic of Na2O-P2O5-GeO2 glass systems, Journal of Non-Crystalline Solids,2007,353,11-12,1134-1140.
    [74]Ehrt D, Effect of OH-content on thermal and chemical properties of SnO-P2O5 glasses, Journal of Non-Crystalline Solids,2008,354,2-9,546-552.
    [75]Marzouk SY, Ultrasonic and infrared measurements of copper-doped sodium phosphate glasses, Materials Chemistry and Physics,2009,114,1,188-193.
    [76]Rao KS, Reddy MS, Kumar VR, Veeraiah N, Dielectric, magnetic and spectroscopic properties of Li2O-WO3-P2O5 glass system with Ag2O as additive, Materials Chemistry and Physics,2008,111,2-3,283-292.
    [77]南京玻璃纤维研究院编著,玻璃测试技术,1985,1,中国建筑出版社,北京,208-209.
    [78]作花济夫,玻璃手册,1985,1,中国建筑工业出版社,北京,30-31.
    [79]杨南如,无机非金属材料测试方法,1993,1,武汉工业大学出版社,武汉,223-252.
    [80]Gan F, Huang G, Chen S, Vibrational spectra of multicomponent inorganic glasses, Journal of Non-Crystalline Solids,1982,52,1-3,203-210.
    [81]Moustafa YM, El-Egili K, Infrared spectra of sodium phosphate glasses, Journal of Non-Crystalline Solids,1998,240,1-3,144-153.
    [82]柯以侃,董慧茹,分析化学手册(第三分册),1998,2,化学工业出版社出版发行,背景,937.
    [83]Bunker BC, Arnold GW, Wilder JA, Phosphate glass dissolution in aqueous solutions, Journal of Non-Crystalline Solids,1984,64,3,291-316.
    [84]陈培,李胜春,贺亚飞,夏秀峰,磷酸盐电子玻璃结构与化学稳定性的研究,玻璃与搪瓷,2009,37,1,11-15.
    [85]陈培,李胜春,贺亚飞,夏秀峰,汽车后风挡除雾除霜导电膜用无铅玻璃、其制备及其应用,中国发明专利,授权号:ZL 200710172903.8,授权时间:2010.12.8.
    [86]Smith HL, Cohen AJ, Absorption spectra of cations in alkali-silicate glasses of high ultra-violet transmission, Physics and Chemistry of Glasses,1963,4,5, 173-177.
    [87]Hayashi A, Konishi T, Tadanaga K, Minami T, Tatsumisago M, Preparation and characterization of SnO-P2O5 glasses as anode materials for lithium secondary batteries, Journal of Non-Crystalline Solids,2004,345-346,478483.
    [88]孙晶,闫景辉,董相廷,洪广言,刘桂霞,透明纳米CeO2的合成与表征,中国稀土学报,2002,20,2,123-125.
    [89]Wang Y, Henon N, Nanometer-sized semiconductor clusters:materials synthesis, quantum size effects, and photophysical properties, The Journal of Physical Chemistry,1991,95,2,525-532.
    [90]Tsurui T, Kawamura J, Suzuki K, Ionic conductivity and nano-crystallization of CuI-Cu2MoO4 glasses, Solid State Ionics,2006,177,26-32,2605-2609.
    [91]Sigaev VN, Lotarev SV, Sarkisov PD, Stefanovich SY, Akimova OV, Champagnon B, Vouagner D, Califano V, Komandin GA, Volkov AA, Koltashev VV, Plotnichenko VQ Pernice P, Aronne A, Fanelli E, On relationship of atomic structure, nano-sized inhomogeneities and second-order optical non-linearity of K2O-TiO2-P2O5 glasses, Journal of Non-Crystalline Solids,2006,352,38-39, 4142-4148.
    [92]Chaliha RS, Annapurna K, Tarafder A, Tiwari VS, Gupta PK, Karmaka B, Luminescence and dielectric properties of nano-structured Eu3+: K2O-Nb2O5-SiO2 glass-ceramics, Solid State Sciences,2009,11,8,1325-1332.
    [93]Liu C, Heo J, Up-conversion and photon avalanche in oxy-fluoride nano-structured glasses doped with Ho3+, Journal of Non-Crystalline Solids, 2006,352,50-51,5325-5330.
    [94]Chen D, Wang Y, Yu Y, Ma E, Influence of Yb3+ content on microstructure and fluorescence of oxyfluoride glass ceramics containing LaF3 nano-crystals, Materials Chemistry and Physics,2007,101,2-3,464-469.
    [95]Feng J, Zhao X, Liu B, Zhou X, Microstructural characterization and optical polarization of glass with needle-like micro-nano silver oriented arrangement, Optics Communications,2008,281,19,5041-5044.
    [96]Dong X, Li M, Zhang W, Liu G, Hong G, Preparation and characterization of nanocrystalline CeO2 by precipitation method, Journal of Rare Earths,2002,20, 6,583-586.
    [97]Bakeine GJ, Bertolotti A, Zennaro C, Grenci G, Pozzato A, Zilio SD, Prasciolu M, Carraro M, Businaro L, Tormen M, Alessiani M, Nano R, Dionigi P, Design and fabrication of large area nano-structured substrates for use in pancreatic beta-cell engineering, Microelectronic Engineering,2009,86,4-6,1468-1472.
    [98]Gutierrez JM, Gonzalez C, Maestro A, SoleI, Pey CM, Nolla J, Nano-emulsions: New applications and optimization of their preparation, Current Opinion in Colloid & Interface Science,2008,13,4,245-251.
    [99]Dhoke SK, Khanna AS, Sinha TJM, Dhoke SK, Khanna AS, Sinha TJM, Effect of nano-ZnO particles on the corrosion behavior of alkyd-based waterborne coatings, Progress in Organic Coatings,2009,64,4,371-382.
    [100]Okada T, Suehiro J, Synthesis of nano-structured materials by laser-ablation and their application to sensors, Applied Surface Science,2007,253,19, 7840-7847.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700