用户名: 密码: 验证码:
木棉及木棉基复合吸油材料的吸油性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
浮油污染是目前水污染中最主要的类型,而溢油为石油进入水体的主要方式,这些石油化合物对环境和人类健康危害极大。因此,开发优质的吸油材料来解决油污染问题势在必行。本文首先对水上溢油的清除方法、吸油材料的发展以及各类吸油材料的优缺点进行了简要概述,文章的重点是对木棉以及开发的两款木棉基复合吸油材料(木棉-轮胎粉复合吸油材料和木棉-猪毛复合吸油材料)的吸油性能展开实验测试,并根据测试数据对吸油材料的吸油机理及吸油性能与各影响因素之间的关系进行了分析,具体如下。
     (1)对木棉的吸油速度、饱和吸油能力和重复使用性等吸油性能表征参数进行了测试;对木棉填充密度、环境温度和油品种类对木棉的吸油性能的影响进行了测试分析。结果显示,木棉具有较高的饱和吸油能力,但其重复使用性差。
     (2)对木棉-轮胎粉复合吸油材料的吸油性能进行了测试;分析了木棉-轮胎粉复合吸油材料的吸油性能与其木棉组分填充密度和轮胎粉与木棉的质量比之间的关系;最后对木棉-轮胎粉复合吸油材料的测试值与其各组分单独使用时的测试值进行了比较。结果显示,木棉-轮胎粉复合吸油材料的重复使用性能相对于木棉有所提高,但其饱和吸油量与其各组分单独使用之饱和吸油量的叠加值相比反而降低。
     (3)对木棉-猪毛复合吸油材料的吸油性能进行了测试;对木棉-猪毛复合吸油材料的吸油性能与木棉填充密度、猪毛填充密度以及猪毛与木棉的质量比等影响因素之间的关系进行了分析;最后将木棉-猪毛复合吸油材料的测试值与其各组分单独使用时的测试值进行了比较。结果显示,木棉-猪毛复合吸油材料中的猪毛不仅可以提高木棉的重复使用性,而且木棉-猪毛复合吸油材料的饱和吸油量也比其各组分之饱和吸油量的叠加值要高。
     总之,与其它吸油材料相比,木棉显示出较高的饱和吸油能力,而且木棉-猪毛复合吸油材料在饱和吸油能力和重复使用性两方面都取得了一定提升,可应用于海洋及三峡库区浮油污染的清除。
Currently oil pollution is the main type of water pollution and oil spill is the main way for oil dumping into the water body. Petroleum compounds can endanger the ecological environment and human health. Therefore, developing high-performance oil-absorbing materials is an important way to solve oil pollution problem. In this paper, oil spill cleanuped methods, the development of oil-absorbing materials and advantages and disadvantages of kinds of oil-absorbing materials are briefly introduced. The key point of this aticle is intended to testing the oil absorption performance of kapok and oil-absorbing composite materials based kapok (kapok-tires powder oil-absorbing composite materials and kapok-pig hair oil-absorbing composite materials). According to experimental data tested to oil-absorbing materials, oil-absorbing mechanism and relationship between influence factors and oil absorption performance are explained and analyzed.
     (1) The oil absorption speed, saturated oil absorption capacity and reusability of kapok are tested. Influence on the oil absorption properties by packing density of kapok, environment temperature and oil type are tested and analyzed. The results show that kapok has high saturated oil absorption capacity, but low reusability.
     (2) The oil absorption properties of kapok-tires powder oil-absorbing composite materials are tested. Influence on the oil-absorbing properties by packing density of kapok and mass ratio between tires powder and kapok are analyzed. Finally the experiment compares oil absorption capacity of kapok-tires powder oil-absorbing composite materials with superposition value by oil absorption capacity of individual components. The results show that tires powder can improve reusability of kapok-tires powder oil-absorbing composite materials somewhat in comparison with kapok, but oil absorption capacity of kapok-tires powder compared with superposition value by oil absorption capacity of individual components used alone is declined.
     (3) The oil-absorbing properties of kapok-pig hair oil-absorbing composite materials are measured. Inpact on the oil-absorbing properties by packing density of kapok, packing density of pig hair and mass ratio between pig hair and kapok are analyzed. In addition, oil absorption capacity of kapok-pig hair oil-absorbing composite materials is compared with superposition value by oil absorption capacity of individual components of composite materials. The results show that pig hair can not only enhance reusability of kapok-pig hair oil-absorbing composite materials in comparison with kapok, but also increase oil absorption capacity of kapok-pig hair oil-absorbing composite materials compared with superposition value by oil absorption capacity of individual components used alone.
     In a word, compared with other oil absorption material, kapok shows greater saturated oil absorption capacity. In addition, the saturated oil absorption capacity and reusability of kapok-pig hair oil-absorbing composite materials obtained in this experiment are both improved. So they can be applied to cleanup of oil spill in three gorges reservoir area or the sea.
引文
[1] Carmody O, Frost1 R, Xi Y, et al. Selected adsorbent materials for oil-spill cleanup– a thermoanalytical study [J]. Journal of Thermal Analysis and Calorimetry, 2008, 91(3):809–816.
    [2] Sayed S A, Zayed A M. Investigation of the effectiveness of some adsorbent materials in oil spill clean-ups [J]. Desalination, 2006, 194:90–100.
    [3]崔源,郑国栋,栗天标等.海上石油设施溢油风险管理与防控研究[J].油气田环境保护,2010,20(1):29-32.
    [4]曹晓燕,魏淑伟,杨桂朋等.膨胀石墨吸附重油的热力学研究[J].中国海洋大学学报,2008,38(1):103-106.
    [5]夏文香,林海涛,张英等.海上溢油的污染控制技术[J].青岛建筑工程学院学报,2004,25(1):54-57.
    [6]张晏清,孙庆荣.磁性膨胀石墨的制备及影响因素研究[J].无机材料学报,2008,23(4):794-798.
    [7]任京成,董风之,沈万慈.膨胀石墨用于溢油污染治理[J].矿产综合利用,2001,(2):35-38.
    [8]陈跃军.炭素吸附材料吸油特性的研究[D].西南交通大学,2003:1-3.。
    [9]方曦,杨文.海洋石油污染研究现状及防治[J].环境科学与管理,2007,32(9):78-80.
    [10]海忻.墨西哥湾漏油事故的启示[J].中国石油企业,2010,(7):26-27.
    [11] 50年间最严重原油泄漏事故[J].中国科技奖励,2010,(6):9.
    [12]姜周熙.原油泄漏,警钟长鸣[J].海洋世界,2010,(7):38-41.
    [13]朱童晖.大连新港海域原油污染处置的反思与启示[J].海洋开发与管理,2010,(8):34-38.
    [14]杜亮.“灾星”为何偏爱中石油[J].中国企业家,2010,(16):21.
    [15]王辉. WZ聚丙烯酸酷类系列高吸油树脂的制备、性能研究及海洋溢油污染处理方法的优化配置[D].浙江大学,2007:3-4.
    [16]周舟.黑色海湾引发的忧思[J].中国报道,2010,(6):62-63.
    [17]潮伦.钻井平台爆炸美国遭遇石油“切尔诺贝利”[J].生态经济,2010,(7):10-17.
    [18]薛聚彦.海面溢油处理技术的分析与选择[J].石油化工环境保护,2006,29 (4):56-59.
    [19] Alonso-Alvarez C, Perez C, Velando A. Effects of acute exposure to heavy fuel oil from the Prestige spill on a seabird [J]. Aquatic Toxicology Amsterdam Netherlands, 2007, 84 (1):103–110.
    [20] Adebajo M O, Frost, R L, Kloprog·ge J T, et al. 2003. Porous materials for oil spill cleanup: a review of synthesis and absorbing properties [J]. Porous Materials, 2003, 10:159–170.
    [21]蒋玉荣,唐玉萍.船舶油污染现状及其防治对策[J].广东化工,2009,36(3):96-99.
    [22]吴刚,魏一鸣.我国石油进口的海洋运输风险分析[J].中国能源,2009,31(5):9-12.
    [23]侯仔明,刘明慧等.析我国石油进出口贸易[J].特区经济,2010,(9):277-278.
    [24]李清爱.论中国实现石油安全的贸易战略[J].科学之友,2010:113-115.
    [25]丁春香,张宾宾.对我国石油海运安全的思考[J].中国石油企业,2008,(11):56-57.
    [26]黄乃哲.中国船舶油污损害赔偿机制研究[J].金卡工程·经济与法,2009,(3):109-110.
    [27]魏淑伟.模拟海水中分散油在固-液界面上的吸附研究[D].中国海洋大学,2007:1-2.
    [28]张帆,黄立文,邓健等.重庆主城区江段溢油模型及数值试验研究[J].武汉理工大学学报,2011,35(1):87-90.
    [29]徐旭忠,黄豁,陈敏.船舶污染—三峡库区水污染防治的“软肋”[J].记者观察(上半月),2004,(5):28-30.
    [30]谭靖,汪渝.建立三峡库区船舶污染防治长效机制的探讨[J].中国水运,2009,9(6):14-15.
    [31]秦绍文,叶红玲.三峡库区船舶污染防治对策[J].中国水运,2006,(11):20-21.
    [32]彭秀芳,杨渡军,王福敏.长江三峡库区船桥碰撞问题的研究与对策[J].水路运输文摘,2005,(6):52-53.
    [33]王祥.三峡库区溢油模拟及应急对策研究[D].武汉理工大学,2010:5-6.
    [34]许川,舒为群,罗财红.三峡库区水环境多环芳烃和邻苯二甲酸酯类有机污染物健康风险评价[J].环境科学研究,2007,20(5):57-60.
    [35]陈永洪.三峡库区船舶污染事故应急反应对策研究[J].航海技术,2007,(1):79-80.
    [36] Daling P S, Strom T. Weathering of oils at sea: model/field data comparisons [J].Spill Science & Technology Bulletin, 1999, 5(1):63–74.
    [37]薛聚彦.海面溢油处理技术的分析与选择[J].石油化工环境保护,2006,29(4):56-59.
    [38]吴雯.海上溢油的处置[J].黄渤海海洋,1997,15(3):57-62.
    [39]陆宝成,赵志强.海洋油污染的防治与处理[J].中国水运,2009,9(10):4-5.
    [40]李言涛.海上溢油的处理与回收[J].海洋湖沼通报,1996,(1):73-83.
    [41]李龙刚.船舶油污染处理方法综述[J].天津航海,2010,(2):52-55.
    [42]蔡军,黄荣富,王威.船舶溢油防治措施探讨[J].船海工程,2010,39(2):108-110.
    [43]潘红磊,王祖纲.国外海上溢油应急反应与治理技术分析[J].中国安全生产科学技术,2010,(S1):65-67.
    [44]刘广强,耿红,史光宝.水上溢油清除方法研究[J].中国水运,2010,(2):32-33.
    [45] Lim T T, Huang X F. Evaluation of kapok (Ceiba pentandra (L.) Gaertn.) as a natural hollow hydrophobic-oleophilic fibrous sorbent for oil spill cleanup[J]. Chemosphere,2007, 65(5): 955–963
    [46] Ahmad A L, Sumathi S, Hameed B H. Residual oil and suspended solid removal using naturaladsorbents chitosan, bentonite and activated carbon: A comparative study[J]. Chemical Engineering Journal,2005, 108(1-2):179-185.
    [47] Tekin N, Dincer A, Demirbas O, et al. Adsorption of cationic polyacrylamide onto sepiolite[J].Journal of Hazardous Materials,2006,134(1-3):211-219.
    [48]胡涛,陈静等.吸油材料的应用与研究[J].科技与经济,2006,(20):97-98.
    [49] Suni S, Kosunen A L, Hautala M, et al. Use of a by-product of peat excavation,cotton grass fibre, as a sorbent for oil-spills[J]. Marine Pollution Bulletin, 2004, 49(11-12):916-931.
    [50] Tanobe V O A, Sydenstricker T H D, Amico S C, et al. Evaluation of flexible post consumed polyurethane foams modified by polystyrene grafting as sorbent material for oil spills [J]. Journal of Applied Polymer Science, 2009, 111(4): 1842-1849.
    [51] Okieimen F E, Ebhoaye J E. Thermal dehydrochlorination of PVC in the presence of metal soaps derived from rubber seed oil [J]. European Polymer Journal, 1992, 28(11): 1423-1425.
    [52] Watry M R, Richmond G L. Orientation and conformation of amino acids in monolayers adsorbed at an oil/water interface as determined by vibrational sum-frequency spectroscopy [J]. Journal of Physical Chemistry B, 2002, 106(48): 12517-12523.
    [53]蔺海兰,廖双泉,张桂梅.高吸油性树脂的研究进展[J].热带农业科学,2005,25(2):78-83.
    [54]肖伟洪,王丽华,丁海新等.天然多孔灯心草对柴油和机油的吸附实验研究[J].江西化工,2005 , (2):68-70.
    [55]李政一.白酒糟稻壳吸附剂去除水面油污的研究[J ].安全与环境学报,2004,4 (3):64-66.
    [56]黄彪,高尚愚.功能性木质炭素新材料的研究与开发[J].新型炭材料,2004,19 (2):151-157.
    [57] Gardner W W. Tilting pad thrust bearing tests-influence of oil flow rate on power loss and temperatures [J]. Tribology Series, 1998, 34: 211-217.
    [58] Fritcher E, Byrd A, Stegent N. Optimized frac pad and gel improve well productivity [J]. Oil and Gas Journal, 1995, 93(12): 90–94.
    [59]曹宏,覃柳昕.膨胀石墨对柴油吸附性的实验研究[J].武汉化工学院学报,2004,26(1):38-41.
    [60]叶新才,王占岐,赵宇宁.改性膨润土处理石化含油废水试验研究[J].非金属矿,2004, 27(2):41-43.
    [61]白景峰,黄窈蕙,周斌等. DX新型高效天然吸油材对海上溢油治理的研究[J].交通环保,2002, 23(3):8-11.
    [62]孙晓然,张秀玲.丙烯酸酯-苯乙烯共聚物高吸油树脂的合成与性能[J].塑料工业,2003,31(7): 7-9.
    [63]周美华,陆晶晶,王巍.新型天然橡胶吸油树脂的研制及其性能研究[J].东华大学学报, 2003,29 (5):90-95.
    [64]曹亚峰,刘兆丽,韩雪等.丙烯酸酯改性棉短绒高吸油性材料的研究与性能[J].精细石油化工,2004 ,3 ,20-22.
    [65] Teas C, Kalligeros S, Zanikos F, et al. Investigation of the effectiveness of absorbent materials in oil spills clean up[J].Desalination,2001,140(3),259–264.
    [66]温和瑞,朱建飞.吸油材料及其应用[J].江苏化工,1998,26(3):43-44.
    [67] Wei Q, Mather R, Fotheringham A, et al. Evaluation of nonwoven polypropylene oil sorbents in marine oil-spill recovery [J]. Marine Pollution Bulletin, 2003, 46(6): 780–783
    [68]凌昊,沈本贤,陈新忠.熔喷聚丙烯非织造布对不同原油的吸油效果[J].油气储运,2005,24 (5) :24~26.
    [69]费晓峰,张季爽.高吸油树脂的研究进展[J].现代化工,1998,(1):13-15.
    [70]韩立宏,马涛.高吸油树脂的研究现状[J].农产品加工·学刊,2006,(1):22-25.
    [71]肖红.木棉纤维结构和性能及其集合体的浸润与浮力特征研究[D].东华大学,2005:9-10.
    [72]吴双全,张佩华.木棉纤维及其在纺织上的应用[J].纤维与纱线,2009,(1):11-16.
    [73]刘杰,王府梅.木棉纤维及其应用研究[J].现代纺织技术,2009,(4):55-57.
    [74] Kobayashi Y, Matsuo R, Nishiyama M. Method for adsorption of oils. Japanese Patent, 52138081, November, 17, 1977.
    [75] Choi H M, Moreau J P. Oil sorption behavior of various sorbents studied by sorption capacity measurement and environmental scanning electron microscopy[J]. Microscopy Research and Technique, 1993,25: 447–455.
    [76] Hori K, Flavier M E, Kuga S, et al. Excellent oil absorbent kapok [Ceiba pentandra (L.) Gaertn.] fiber: fiber structure, chemical characteristics, and application[J]. Wood Science, 2000, 46:401-404.
    [77] Khan E, Virojnagud W, Ratpukdi T. Use of biomass sorbents for oil removal from gas station runoff[J]. Chemosphere, 2004, 57(7), 681–689.
    [78] Huang X F, Lim T T. The performance and mechanism of hydrophobic–oleophilic kapok filter for oil/water separation [J]. Desalination, 2006, 190:295–307.
    [79] Lim T T, Huang X F. Evaluation of hydrophobicity/oleophilicity of kapok and its performance in oily water filtration: Comparison of raw and solvent-treated fibers [J]. Industrial Crops And Products, 2007, 26(2): 125–134.
    [80] Douglah S, Everett J W. Scrap tire disposal. I. Survey of state programs [J]. SolidWaste Technology Management, 1998, 25:40–50.
    [81] Everett J W, Douglah S. Scrap tire disposal. II. Case study and recommendations [J]. SolidWaste Technology Management, 1998, 25:51–60.
    [82]钱伯章.废旧轮胎综合利用概况(一)[J].橡胶科技市场,2009,(16):1-5.
    [83]钱伯章.废旧轮胎综合利用概况(二)[J].橡胶科技市场.2009,(17):6-10.
    [84]侯瑞芳.论我国废旧轮胎的循环利用[J].现代商贸工业,2010,(6):297-298.
    [85] Aisien F A, Hymore F K, Ebewele R O. Potential application of recycled rubber in oil pollution control [J]. Environmental Monitoring and Assessment, 2003,85: 175–190.
    [86] Wu B, Zhou M H. Recycling of waste tyre rubber into oil absorbent [J]. Waste Management, 2009,29(1):355-359.
    [87] Snoeyink V L, Walter J, Weber W J. The surface chemistry of active carbon [J]. Environment Science Technology, 1967, 1:228–234.
    [88] Gunasekara A S, Donovan J A, Xing B. Ground discarded tires remove naphthalene, toluene, and mercury from water [J]. Chemosphere, 2000, 41:1155–1160.
    [89] Lin C, Huang C, Sherna C. Recycling waste tire powder for the recovery of oil spills [J]. Resources, Conservation and Recycling, 2008, (52): 1162–1166.
    [90]朱江涛,黄正宏,康飞宇等.活性竹炭对苯酚的吸附动力学[J].新型炭料,2008, 23(4):326-330.
    [91] Annunciado T, Sydenstricker T, Amico S. Experimental investigation of various vegetable fibers as sorbent materials for oil spills [J]. Marine Pollution Bulletin, 2005,(50): 1340–1346
    [92] E Manchon-Vizuete, A Mac?as-Garc?a, A Nadal Gisbert, et al. Adsorption of mercury by carbonaceous adsorbents prepared from rubber of tyre wastes [J]. Journal of Hazardous Materials, 2005, 119: 231–238.
    [93]林建,朱跃姿.废塑料吸油材料的初步研究[J].塑料, 2002, 31(4): 33-35.
    [94] Moriwaki H, Kitajima S, Kurashima M, et al. Utilization of silkworm cocoon waste as a sorbent for the removal of oil from water[J]. Journal of Hazardous Materials, 2009, 165: 266–270.
    [95]吴兵,李发生,何绪文. PHBV泡沫吸油材料的制备及吸油性能研究[J].交通环保, 2002,23(1):17-20.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700