用户名: 密码: 验证码:
免耕配合稻草还田的氮素行为及土壤质量效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了探讨免耕对稻田氮素利用、转化、迁移与平衡及土壤质量的影响,本文通过田间试验比较了普通免耕(CNT)、稻草还田免耕(SNT)、普通常耕(CCT)和稻草还田常耕(SCT)4种耕作方式对稻田土壤有效态氮转化、施肥后田面水氮素转化、施肥后稻田氨挥发、氮素淋溶、水稻生长、水稻地上部全氮、水稻氮素利用率、土壤剖面形态性质、土壤理化性质、土壤酶活性以及土壤微生物数量的影响。结果表明:
     1、免耕稻田土壤氮素转化
     免耕降低了0-5cm土层硝态氮和5-20cm土层碱解氮含量、提高了施肥后第1天至6天田面水的铵态氮、硝态氮和总氮含量。有无稻草还田对稻田氮素转化影响明显,CNT处理提高了5-20cm土层硝态氮和0-5cm土层灌浆期以前碱解氮含量;降低了0-20cm土层土壤铵态氮含量。SNT处理提高了0-5cm土层土壤铵态氮和碱解氮含量、比CNT处理降低了施肥后田面水的铵态氮、硝态氮和总氮含量。
     2、免耕稻田氮素迁移
     免耕增加了施肥后第1天至第6天氨挥发量和水稻各生长期氨挥发量、增加了氮素淋溶量。有无稻草还田对稻田氮素迁移影响明显,CNT处理减少了水稻吸氮量和土壤氮素残留量。SNT处理增加了土壤氮素残留量、比CNT处理减少了施肥后第1天至第6天氨挥发量和水稻各生长期氨挥发量以及氮素淋溶量、比CCT处理增加了水稻氮素吸收量。
     3、免耕稻田氮素平衡
     耕作方式与稻草还田对稻田氮素平衡影响明显。CNT稻田土壤氮素输入量大体上与CCT稻田相当,但输出量增加,土壤全氮增幅减少;SNT稻田土壤氮素输入量大体上与SCT稻田相当,但输出量减少,土壤全氮增幅增加;SNT比CNT显著增加土壤全氮含量。稻草还田对维持免耕稻田氮素平衡起到重要作用。
     4、免耕水稻生长与氮素利用
     稻草还田促进了水稻生长和增加了水稻氮素吸收量,提高了水稻氮素回收效率。稻田免耕后,CNT处理水稻株高、分蘖数、有效穗数、叶面积、叶片的硝酸还原酶活性、RuBP羧化酶蛋白含量、干物质累积量、叶片和茎的全氮含量、氮素累积量、氮素回收效率和产量均为处理中最低,但穗全氮含量、氮素稻谷生产效率、氮素运转效率和氮素收获指数为处理中最高。SNT处理水稻株高、分蘖数、有效穗数、叶面积、叶片的硝酸还原酶活性、RuBP羧化酶蛋白含量、干物质累积量、叶片和茎的全氮含量、氮素累积量、氮素农艺效率、氮素回收效率和产量高于CCT处理,但氮素稻谷生产效率、氮素运转效率和氮素收获指数低于CCT处理。
     5、免耕对土壤剖面形态的影响
     免耕对土壤剖面形态产生了深刻的影响,有无稻草还田免耕形成的土壤剖面形态也存在差异。免耕对Ap层(犁底层)、W层(潴育层)和C层(母质层)的形态影响不明显,但Aa(耕作层)的形态产生了较大的变化。CNT处理形成了Aa1-Aa2-Aa3的耕作层亚层构型;SNT处理形成了O-Aa1-Aa2-Aa3的耕作层亚层构型,O层是有机质覆盖层,由不同分解程度稻草组成,是SNT独特的剖面发生层。免耕处理Aal层比常耕处理的薄,但免耕处理的Aal层色调深、容重小、结构好、pH低、根系密集、孔隙多、疏松。与SNT处理相比较,CNT的Aa2和Aa3层则色调浅、容重大、根系和孔隙少、鳝血斑数量少、裂隙出现部位高、紧实。SNT的Aa2和Aa3层剖面形态性质和特征与常耕的相应土层相当。
     6、免耕对稻田土壤物理性质的影响
     免耕提高了0-5cm土层持水性能,增加了>1mm水稳性大团聚体数量。SNT处理5-20cm土层持水性、有效水含量范围、水稳性大团聚体数量与常耕土壤相当,但CNT处理5-20cm土层持水性能降低、有效水含量范围和水稳性大团聚体数量减小。
     7、免耕对稻田土壤化学性质的影响
     免耕使土壤有机碳、腐殖质、氮素、磷素和钾素在表层土壤富集,提高了表层有效锌、有效硼含量,降低了表层土壤pH值、交换性钙、交换性镁和有效铜含量。免耕处理耕作层的5-20cm层土壤有机碳、腐殖质、全氮、全磷、全钾、碱解氮、速效磷、速效钾、阳离子交换量、交换性钙、交换性镁、有效锌和有效硼含量小于常耕土壤,其中CNT减少的幅度大于SNT。免耕处理Ap层、W层和C层的pH值、有机碳、全氮、全磷、全钾与常耕处理差异不明显,Ap层、W层和C层的交换性钙、交换性镁、有效铜及W层和C层的碱解氮、速效钾、有效锌和有效硼均有增加的趋势。
     8、免耕对稻田田田土壤酶活性的影响
     免耕提高了0-5cm层土壤的蔗糖酶、脲酶、蛋白酶、过氧化氢酶和多酚氧化酶等酶的活性,其中以SNT处理增幅最大,但降低了耕作层5-20cm层土壤的蔗糖酶、脲酶、蛋白酶、过氧化氢酶和多酚氧化酶等酶的活性,其中以CNT处理降幅最大。
     9、免耕对稻田土壤微生物数量的影响
     免耕增加了0-5cm层土壤真菌、放线菌数量,其中以SNT处理增幅最大,减少了耕作层亚硝化细菌和5-20cm层土壤细菌、真菌、放线菌、氨化细菌、嫌气性固氮菌、好气性纤维素分解菌、嫌气性纤维素分解菌数量,其中以CNT减幅最大。SNT处理增加了表层0-5cm土壤细菌、氨化细菌、好气性纤维素分解菌的数量,其中SNT处理0-20cm土层的氨化细菌、0-12cm土层的真菌和放线菌数量显著大于其它处理。
     因此,稻草还田免耕对水稻的生长、产量和氮素利用及土壤肥力性状的效应优于普通常耕。
In order to evaluate the influence of no-tillage on change of soil available nitrogen, transformation of nitrogen content of paddy field after fertilization, ammonia volatilization, nitrogen leaching, rice uptake nitrogen, soil residue nitrogen, nitrogen balance, rice growth, rice nitrogen content, rice nitrogen efficiency, soil profile properties, soil physical and chemical properties, soil enzyme activities and soil microorganism quantity of paddy field, Field experiments with four treatments, common no-tillage (CNT), no-tillage with rice straw returning (SNT), common conventional tillage (CCT), conventional tillage with rice straw returning (SCT) were carried out.The main results are as follows.
     1. Transformation of soil nitrogen in no-tillage paddy field
     Nitrogen transformation of paddy soil were obviously affected by no-tillage for the change of tillage and fertilization as compared with conventional tillage. Contents of nitrate nitrogen in0-5cm soil layer and alkaline-hydrolyzable nitrogen in5-20cm soil layers were reduced, but contents of ammonium nitrogen, nitrate nitrogen and total nitrogen of soil surface water were increased in1-6days after fertilization under no-tillage condition. Rice straw returning made an obvious influence on nitrogen transformation. Treatment of CNT increased contents of nitrate nitrogen in0-20cm soil layer, contents of alkaline-hydrolyzable nitrogen in0-5cm soil layer before filling stage, but reduced content of ammonium nitrogen in0-5cm soil layer. Treatment of SNT increased contents of nitrate nitrogen and alkaline-hydrolyzable nitrogen in0-5cm soil layer, but declined contents of ammonium nitrogen, nitrate nitrogen and total nitrogen of soil surface water after fertilization as compared with CNT.
     2. Migration of nitrogen in no-tillage paddy field
     Great change took place in migration of soil nitrogen in no-tillage paddy field for soil with no ploughing and surface application as compared with conventional tillage. Treatments of no-tillage increased quantity of ammonia volatilization in1-6days after fertilization and each rice growth stage, quantity of leaching nitrogen. Rice straw returning made an obvious influence on nitrogen migration. CNT reduced nitrogen quantity of rice uptake and soil residue, while SNT increased nitrogen quantity of soil residue as compared with treatments of conventional tillage. Treatment of SNT reduced nitrogen amount of ammonia volatilization in1-6days after fertilization and each rice growing stage, amount of leaching nitrogen, amount of rice uptake nitrogen as compared with treatment of CNT.
     3. Balance of nitrogen in no-tillage paddy field
     Nitrogen balance of paddy field was obviously affected by tillage ways and rice straw returning. Nitrogen import amount of CNT was roughly equal to treatment of CCT, but nitrogen import was more, so residual nitrogen of soil was less than CCT. Nitrogen import amount of SNT was roughly equal to treatment of SCT, but nitrogen import was less, so residual nitrogen of soil was more than SCT. The treatment of SNT increased more nitrogen than that of CNT in soil. Rice straw returning plays an important role in maintaining nitrogen balance of paddy field.
     4. Growth and nitrogen utilization of rice under no-tillage
     Growth and nitrogen utilization of rice under no-tillage was obviously affected by tillage ways and rice straw returning. Rice straw returning promoted rice to grow and absorb more nitrogen, so nitrogen recovery efficiency (NRE) of rice was increased. The rice height, amount of rice tillers, amount of rice valid tillers, rice leaf area index, rice leaves nitrate reductase activity, content of rice leaves RuBPcase, rice dry matter accumulation, nitrogen content of rice leaves and stem, total nitrogen accumulation (TNA), NRE and yield of CNT were least, but the nitrogen content of rice spike, nitrogen grain production efficiency (NGPE), nitrogen transportation efficiency (NTE), nitrogen harvest index (NHI) were most among the treatments. The rice height, amount of rice tillers, amount of rice valid tillers, rice leaf area index, rice leaves nitrate reductase activity, content of rice leaves RuBPcase, TNA, nitrogen content of rice leaves and stem, rice nitrogen accumulation, nitrogen agronomy efficiency (NAE), NRE and yield of SNT were more than CCT.
     5. Influence of no-tillage on profile morphological characteristics of paddy soil
     No-tillage of paddy field made an deep influence on profile morphological characteristics of paddy soil.There were obvious difference between soil profile morphological characteristics formed with rice straw returning and that formed without rice straw returning. The morphological characteristics of Ap layer (plow sole), W layer (waterloggogenic horizon) and C layer (parent material horizon) were not obviously affected by no-tillage of paddy field, but great changes took place in that of Aa layer (arable horizon). The Aa sub-constitution formed by CNT is Aal-Aa2-Aa3, while by SNT is O-Aal-Aa2-Aa3. O layer, litter layer consisted of rice straw in differently decomposed level is unique profile horizon of SNT. Aal layer of no-tillage treatments is thinner, but blacker in color, less in soil bulk density, granular in structure, lower in pH value, more root, more pore, looser than that of conventional tillage. Aa2and Aa3layer of CNT is lighter in color, bigger in soil bulk density, less root, and pore, less iron-humus mottling, with higher position of fissure and solider than that of CCT. The Aa2and Aa3layer properties of SNT are equal to that of conventional tillage.6. Influence of no-tillage on physical properties of paddy soil No-tillage increased soil water retention properties in0-5cm layer, and added amount of> lmm water stable macro-aggregate in0-5cm layer. The soil water retention properties, available moisture, amount of water stable macro-aggregate of SNT in5-20cm layer were equal to those of conventional tillage, but CNT reduced the soil water retention properties, available moisture, quantity of water stable macro-aggregate in5-20cm layer as compared with conventional tillage.
     7. Influence of no-tillage on chemical properties of paddy soil
     Content of organic carbon, nitrogen, phosphorus, potassium in upper soil layer are higher than that in lower soil layer under no-tillage. No-tillage increased content of humus, cation exchange capacity, available zinc, available boron in0-5cm soil layer, and reduced content of exchangeable calcium, exchangeable magnesium and available copper in0-5cm soil layer, lowered pH value in upper soil layer. As compared with conventional tillage, content of organic carbon, humus, total nitrogen, total phosphorus, total potassium, alkaline-hydrolyzable nitrogen, rapidly available phosphorus, rapidly available potassium, cation exchange capacity, exchangeable calcium, exchangeable magnesium, available zinc, available boron in5-20cm soil layer of no-tillage were lowerer than that of conventional tillage, and between SNT and CNT, the least reduced range was CNT. Content of alkaline-hydrolyzable nitrogen, rapidly available potassium, exchangeable calcium, exchangeable magnesium and available copper in Ap layer, W layer and C layer, content of available zinc, available boron in W layer and C layer of no-tillage tended to become higher than that of conventional tillage.
     8. Influence of no-tillage on soil enzyme activities of paddy soil
     As compared with conventional tillage, treatments of no-tillage increased activities of sucrase, urease, protease, catalase, polyphenol oxidase in0-5cm soil layer, and between SNT and CNT, the most increased range was SNT, but reduced activities of sucrase, urease, protease, catalase, polyphenol oxidase in0-5cm soil layer, and between SNT and CNT, the least reduced range was CNT.
     9. Influence of no-tillage on soil microorganism quantity of paddy soil
     As compared with conventional tillage, treatments of no-tillage increased quantity of fungus, actinomyces in0-5cm soil layer, and between SNT and CNT, the most increased range is SNT. Treatments of no-tillage reduced quantity of bacteria, fungus, actinomyces, anaerobic nitrogen-fixing bacteria, aerobic cellulose decomposing bacteria, anaerobic cellulose decomposing bacteria in5-20cm soil layer, and between SNT and CNT, the least reduced range is CNT. The quantity of ammonifying bacteria in0-20cm soil layer, quantity of fungus and actinomyces in5-12cm soil layer of SNT were more than other treatments.
     Therefore, the effects of SNT on growth, yield, nitrogen utilization of rice and soil fertility properties are superior to those of CNT.
引文
[1]鲍士旦.土壤农化分析.北京:中国农业出版社,2005.53-54
    [2]蔡贵信,朱兆良,朱宗武,等.水稻田中碳铵和尿素的氮素损失的研究.土壤,1985,17(5):225-229
    [3]蔡贵信,朱兆良.稻田中化肥氮的气态损失.土壤学报,1995,32(增刊):128-134
    [4]蔡红,沈仁芳.改良茚三酮比色法测定-土壤蛋白酶活性的研究.土壤学报,2005,42(2):306-313
    [5]曹凑贵,李成芳,寇志奎,等.不同类型氮肥和耕作方式对稻田土壤氨挥发的影响.江西农业大学学报,2010,32(5):881-886
    [6]曹金留,田光明,任立涛,等.江苏南部地区稻麦两熟土壤中尿素的氨挥发损失.南京农业大学学报,2000,23(4):51-54
    [7]常旭虹.保护性耕作技术的效益及应用前景分析.耕作与栽培,2004,(1):1-3
    [8]陈炳焕,翁伯琦,唐建阳,等.红萍在水稻氮素平衡中的作用.核农学报,1994,8(2):97-102
    [9]陈德威,秦华东,徐世宏,等.稻田耕作方式和施氮水平对抛栽水稻群体质量及产量的影响.杂交水稻,2006,21(S1):70-73
    [10]陈福耀,廖恒登,陈年春,等.稻草还田免耕抛秧技术研究.杂交水稻,2006,21(S1):90-92
    [11]陈继康,李素娟,张宁,等.不同耕作方式麦田土壤温度及其对气温的响应特征-土壤温度日变化及其对气温的响应.中国农业科学,2009,42(7):2592-2600
    [12]陈年春,蒋伟梅.水稻免耕抛秧的生长发育特点及栽培技术初探.广西农学报.2003,(3):9-12
    [13]陈绍兰.土壤免耕技术的发展与应用.农业科技情报,1994,(4):4-8
    [14]陈贤友,吴良欢,李金先,等.新型包膜控释尿素对水稻产量与氮肥利用率的影响.浙江农业学报,2010,22(6):829-833
    [15]陈贤友,吴良欢,李金先,等.新型控释肥对水稻产量与氮肥利用率的影响探讨.土壤通报,2010,41(1): 133-137
    [16]陈新红,叶玉秀,周青,等.实地氮肥管理对水稻产量和氮肥利用率的影响.西北农业学报,2011,20(2):77-80
    [17]陈旭林,黄辉祥,黄永生,等.不同栽培措施对免耕抛秧稻产量的影响.广东农业科学,2002,(6):2-4
    [18]陈应炤.水稻免耕抛秧栽培技术在清新县的应用效果.广东农业科学,2000,(6):10-11
    [19]陈友荣,侯任昭,范仕容,等.水稻免耕法及其生理生态效应的研究.华南农业大学学报,1993,10(2): 10-17
    [20]成敬生,庄恒阳.麦茬中稻少耕栽培技术.耕作与栽培,1985,(6):2-3
    [21]程式华,胡培松.中国水稻科技发展战略.中国水稻科学,2008,22(3):224-226
    [22]程文,李勇,朱亮,等.太湖地区直播稻田氮素的渗漏损失研究.安徽农业科学,2009,37(6):2620-2621,2717
    [23]程永盛,黄庆,刘怀珍,等.不同施氮处理对免耕抛秧稻产量及其构成因素影响.广东农业科学,2001,(5):28-30
    [24]崔思远,尹小刚,陈阜,等.耕作措施和秸秆还田对双季稻田土壤氮渗漏的影响.农业工程学报,2011,27(10):174-179
    [25]戴志一,杨益众,王春安,等.不同耕作技术对二化螟、三化螟越冬存活率影响.植物保护,1993,(4):48-49
    [26]邓美华,尹斌,张绍林,等.不同施氮量和施氮方式对稻田氨挥发损失的影响.土壤,2006,38(3):263-269
    [27]杜金泉,方树安,蒋泽芳,等.水稻少免耕技术研究1.稻作少免耕类型、生产效应及前景的探讨.西南农业学报,1990,3(4):26-32
    [28]杜金泉,帅志希,胡开树,等.水稻少免耕技术研究Ⅱ.高产的系列配套技术.西南农业学报,1992,5(3):18-22
    [29]菲利普SH.免耕农作制.陈坪译.北京: 农业出版社,1983.2-6
    [30]冯跃华,邹应斌,敖和军,等.不同施氮量对免耕、翻耕移栽稻生长及产量形成的影响.作物研究,2004,18(3):145-150
    [31]高明,张磊,魏朝富,等.稻田长期垄作免耕对水稻产量及土壤肥力的影响研究.植物营养与肥料肥料学报,2004,(4):343-348
    [32]高明,周保同,魏朝富,等.不同耕作方式对稻田土壤动物、微生物及酶活性的影响研究.应用生态学报,2004,15(7):1775-1181
    [33]龚靖英.不同施氮量对免耕抛秧栽培水稻生长及产量的影响.广西农学报,2007,22(6):5-8
    [34]高旺盛.论保护性耕作技术的基本原理与发展趋势.中国农业科学,2007,40(12):2702-2708
    [35]高亚军,黄东迈,朱培立,等.水旱轮作地区免耕的肥力效应.耕作与栽培,2005,(5):2-3,7
    [36]高亚军,朱培立,黄东迈,等.稻麦轮作条件下长期不同土壤管理对有机质和全氮的影响.土壤与环境,2000,9(1):27-30
    [37]高云超,朱文珊,陈文新.秸秆覆盖免耕土壤微生物生物量与养分转化的研究.中国农业科学.1994,27(6):41-49
    [38]高云超,朱文珊,陈文新.秸秆覆盖免耕对土壤细菌群落区系的影响.生态科学,2000,19(3):27-32
    [39]龚子同,张甘霖,陈志诚,等.土壤发生与系统分类.北京:科学出版社,2007
    [40]关松荫.土壤酶学及其研究法.北京:农业出版社,1986:275-325
    [41]广西壮族自治区农业厅粮油处,广西壮族自治区农业技术推广总站.广西三大粮食作物免耕栽培技术推广研讨会资料集.2006.158-163
    [42]何礼健,夏瑜,徐世宏,等.免耕对稻田物理、化学和生物学特性的影响.杂交水稻,2006,21(S1):140-142
    [43]侯光炯.水田自然免耕技术可获高产.侯光炯土壤学论文集.成都:四川科学技术出版社,1990
    [44]侯任昭,关日强,陈友荣,等.水稻少耕及其生理生态特性研究进展.华南农业大学学报,1994,15(1):109-114
    [45]侯玉璧.少耕、免耕法在我国南方的试验与应用.湖北农业科学,1984,(11):10-12
    [46]胡立峰,胡春胜,安忠民,等.不同土壤耕作法对作物产量及土壤硝态氮淋失的影响.水土保持学报,2005,]9(6):186-189
    [47]胡小凤,王正银,孙倩倩,等.缓释复合肥料在不同pH值紫色土中氨挥发特性.农业工程学报,2009,25(6):100-103
    [48]黄高宝,李玲玲,张仁陟,等.免耕秸秆覆盖对旱作麦田土壤温度的影响.干旱地区农业研究,2006,24(5):1-4
    [49]黄洪明,吴美娟,陈森民,等.单季杂交晚稻免耕栽培技术应用效果研究.上海农业科技,2006,(1):45-48
    [50]黄见良,邹应斌,彭少兵,等.水稻对氮素的吸收、分配及其在组织中的挥发损失.植物营养与肥料学报,2004,10(6):579-583
    [51]黄锦法,俞建明,陆建贤,等.稻田免耕直播对土壤肥力性状与水稻生长的影响.浙江农业科学,1997,(5):226-228
    [52]黄明蔚,刘敏,陆敏,等.稻麦轮作农田系统中氮素渗漏流失的研究.环境科学学报,2007,27(4):629-636
    [53]黄庆,李康活,刘怀珍,等.广东水稻免耕抛秧高产栽培技术规程.广东农业科学,2000,(6):12-14
    [54]黄庆,李康活,刘怀珍,等.免耕抛秧稻田处理方法与大田免耕抛秧试验初报.,广东农业科学,1997,(3):6-7
    [55]黄丽芬,庄恒扬,刘世平,等.长期少免耕对稻麦产量与土壤肥力的影响.扬州大学学报(自然科学版),1999,2(1):48-52
    [56]黄沈发,沈根祥,唐浩,等.上海郊区稻田氮素流失研究.环境污染与防治,2005,27(9):651-653
    [57]黄小洋,黄国勤,余冬晖,等.免耕栽培对晚稻群体质量及产量的影响.江西农业学报,2004,16(3): 1-4
    [58]黄小洋,漆映雪,黄国勤,等.稻田保护性耕作研究Ⅰ:免耕对水稻产量、生长动态及病虫害的影响.江西农业大学学报,2005,27(4):530-534
    [59]江泽普,黄绍民,韦广泼,等.不同连作免耕稻田土壤肥力变化与综合评价.西南农业学报,2007,20(6):1250-1254
    [60]金洁,杨京平.高肥力稻田分次施氮对氮素淋失的影响.水土保持学报,2004,18(3):98-101
    [61]荆国芳,韦珍棣,陈恒喜,等.绿磺隆残留对水稻生长的影响.农村生态环境,1996,12(3):24-26
    [62]庄恒扬,刘世平,沈新平,等.长期少免耕对稻麦产量及土壤有机质与容重的影响.中国农业科学,1999,32(4):39-44
    [63]江立庚,李如平,韦善清,等.金优253免耕抛栽秧苗的根系生长与立苗特性.广西农业生物科学,2005,(24):31-34
    [64]江立庚,徐世宏,李如平,等.稻田耕作方式对抛秧稻分蘖特性的影响.杂交水稻,2006,21(S1):23-25
    [65]兰全美,张锡洲,李廷轩.水旱轮作条件下免耕土壤主要理化特性研究.水土保持学报,2009,23(1):145-149
    [66]梁天锋,徐世宏,刘开强,等.栽培方式对水稻氮素吸收利用与分配特性影响的研究.植物营养与肥料学报,2010,16(1):20-26
    [67]郎宁,徐世宏,梁人君,等.不同施氮量对免耕抛秧稻产量的影响.杂交水稻,2003,18(2):51-52
    [68]李德成,Velde, J F, Deleure,等.免耕制度下耕作土壤结构演化的数字图像分析.土壤学报,2002,39(2):214-220
    [69]李方敏,艾大成,周升波,等.缓释氮肥对水稻的增产效果及其氮素利用率..土壤通报,2004,35(3):311-315
    [70]李华兴,卢维盛,刘远金等.不同耕作方法对水稻生长和土壤生态的影响.应用生态学报,2001,12(4):553-556
    [71]李菊梅,徐明岗,秦道珠,等.有机肥无机肥配施对稻田氨挥发和水稻产量的影响.植物营养与肥料学报,2005,11(1):51-56
    [72]李康活,黄庆.双季稻免耕抛秧栽培技术试验获得成功.广东农业科学,1997,(2):36
    [73]李明灌,张富宁,陈明才,等.氮肥施用方法对免耕抛栽水稻产量的影响.杂交水稻,2003,21(S1): 76-77
    [74]李庆逵,姚贤良,龚子同,等.中国水稻土.北京:科学出版社,1992
    [75]李如平.广西水稻免耕抛秧技术研究与创新应用.杂交水稻,2006,21(S1):9-15
    [76]李生秀,周世斌,李世清,等.中国旱地土壤植物氮素.北京:科学出版社,2008,835
    [77]李象榕,林培,李承绪,等.中国土壤普查技术.北京:农业出版社,1992
    [78]李晓欣,马洪斌,胡春胜,等.华北山前平原农田土壤硝态氮淋失与调控研究.中国生态农业学报,2011,19(5):1109-1114
    [79]李新举,张志国,邓基先,等.免耕对土壤生态环境的影响.山东农业大学学报,1998,29(4):520-526
    [80]李新举,张志国,赵美兰,等.免耕对土壤养分的影响.土壤通报,2000,31(6):267-269
    [81]李鑫,巨晓棠,张丽娟,等.不同施肥方式对土壤氨挥发和氧化亚氮排放的影响.应用生态学报,2008,19(1):99-104
    [82]李勇,杨林章,殷广德,等.太湖地区直播稻田氮素渗漏损失试验研究.植物营养与肥料学报,2010,16(1):99-104
    [83]李友军,付国占,张灿军,等.保护性耕作理论与技术.北京:中国农业出版社,2008
    [84]李竹松,彭晚柱,汤海涛,等.稻草覆盖免耕栽培晚稻的生态效应研究.湖南农业科学,2002,(5): 30-33
    [85]连纲,王德建,林静慧,等.太湖地区稻田土壤养分淋洗特征.应用生态学报,2003,14(11):.1879-1883
    [86]廖先苓,周卫军,何电源.15N标记羊粪和稻草还田氮素的转化和效应研究.土壤学报,1995,32(3): 292-299
    [87]廖兆熊,汀羞德,林金元.水稻免耕栽培氮肥用量与施肥技术.上海农业学报,1993,9(3):48-52
    [88]刘金南,汪大根,邬学洪,等.双晚免耕移栽与翻耕移栽对比试验.安徽农学通报,2006,12(6):122-124
    [89]刘敬宗,李云康.杂交水稻免耕抛秧栽培技术研究初报.1999,14(3):33-34
    [90]刘怀珍,黄庆,李康活,等.水稻免耕抛秧栽培时间对中壤土理化性状的影响.广东农业科学, 2002,(6):28-31
    [91]刘怀珍,黄庆,刘军,等.畦式免耕抛秧栽培的产量效应和产量构成分析.广东农业科学,2002,(4): 10-12
    [92]刘军,黄庆,付华,等.水稻免耕抛秧高产稳产的生理基础研究.中国农业科学,2002,35(2):152-156
    [93]刘立军,杨立年,孙小淋,等.水稻实地氮肥管理的氮肥利用效率及其生理原因.作物学报,2009,35(9):1672-1680
    [94]刘勤,张斌,谢育平,等.施J用用j鸡粪稻田_土壤氮磷养分淋洗特征研究.中国生态农业学报,2008,16(1): 91-95
    [95]刘世平,沈新平,黄细喜,等.长期少免耕土壤供肥特征与水稻吸肥规律的研究.土壤通报,1996,27(3): 133-135
    [96]刘世平,庄恒扬,陆建飞,等.免耕法对土壤结构影响的研究.土壤学报,1998,35(1):28-32
    [97]刘巽浩,牟止国.中国耕作制度.北京:农业出版社,1993
    [98]刘巽浩.耕作学.北京:农业出版社,1994
    [99]刘有彬,潘绍东.水稻连续免耕抛秧对产量的影响.广西农学报,2007,22(6):5-8
    [100]刘中柱.从国际红萍研究动态看稻田养萍前景.世界农业,1982,(2):26-29
    [101]卢维盛,李华兴,刘远金,等.不同耕作方法对抛秧水稻生长和氮素利用的影响.华南农业大学学报,2001,22(4):8-10
    [102]鲁如坤.土壤农业化学分析方法.北京:中国农业科技出版社,2000.125-133
    [103]鲁艳红,纪雄辉,郑圣先,等.施用控释氮肥对减少稻田氮素径流损失和提高水稻氮素利用率的影响.植物营养与肥料学报,2008,14(3):490-495
    [104]陆敏,刘敏,黄明蔚,等.大田条件下稻麦轮作土壤氮素流失研究.农业环境科学学报,2006,25(5):1234-1239
    [105]吕耀.苏南太湖流域农业非点源污染及农业持续发展战略.环境科学动态,1998,(2):1-4
    [106]罗珠珠,黄高宝,张国盛.保护性耕作对黄土高原旱地表土容重和水分入渗的影响.干旱地区农业研究,2005,23(4):7-11
    [107]孟祥海,魏丹,王玉峰,等.氮素水平与施氮方式对稻田氨挥发影响.黑龙江农业科学,2011,(12):38-41
    [108]潘圣刚,曹凑贵,蔡明历,等.氮肥运筹对水稻氮素吸收和稻田渗漏液氮素浓度影响.农业环境科学学报,2009,28(10):2145-2150
    [109]彭少兵,黄见良,钟旭华,等.提高中国稻田氮肥利用率的研究策略.中国农业科学,2002,35(9):1095-1103
    [110]彭世彰,杨士红,徐俊增,等.节水灌溉稻田氨挥发损失及影响因素.农业工程学报,2009,25(8):35-39
    [111]彭志红,李明德,蔡立湘,等.不同耕作栽培方式下稻草还田对水稻产量及土壤理化性状的影响.安徽农业科学,2009,37(11):4925--4926
    [112]秦华东,张玉,徐世宏,等.稻草还田对免耕水稻根系生长及产量的影响.杂交水稻,2011,26(4):65-67
    [113]邱卫国,庸浩,王超,等.稻作期氮素渗漏流失特性及控制对策研究.农业环境科学学报,2005,24(增刊):99-103
    [114]任泽明.湖南水稻免耕直播、免耕抛秧技术的发展前景.作物研究,2003,17(4):174-175
    [115]任万军,刘代银,吴锦秀,等.免耕高留茬抛秧对稻田土壤肥力和微生物群落的影响,应用生态学报,2009,20(4):817-822
    [116]沈宏,曹志洪,胡正义.十壤活性碳的表征及其生态意义.生态学杂志,1999,18(3):32-38
    [117]沈新平,黄丽芬,庄恒扬,等.免耕水稻早发及产量形成特性研究.扬州大学学报,1998,1(4):41-44
    [118]施彩仙.免耕与翻耕直播对土壤特性及水稻生长的影响.土壤肥料.1999,(5):8-10
    [119]时秀焕,张晓平,梁爱珍,等.短期免耕对东北黑土硝态氮淋失的影响.农业系统科学与综合研究,2010,26(3):344-348
    [120]宋勇生,范晓晖,林德喜,等.太湖地区稻田氨挥发及影响因素的研究.十壤学报,2004,41(2):265-269
    [121]苏成国,尹斌,朱兆良,等.稻田氮肥的氨挥发损失与稻季大气氮的湿沉降.应用生态学报,2003,14(11):1884-1888
    [122]苏芳,黄彬香,丁新泉,等.不同氮肥形态的氨挥发损失比较.土壤,2006,38(6):682-686
    [123]苏祖芳,周纪平,丁海红.稻作诊断.上海:上海科学技术出版社,2007
    [124]孙耀邦.土壤耕作技术与应用.北京:中国际法农业出版社,1996
    [125]董爱玲,冯跃华,赵田径,等.免耕对移栽杂交水稻生长特性及产量的影响.山地农业生物学报,2008,27(6):471-475
    [126]唐晓红,魏朝福,吕家恪,等.保护性耕作对丘陵区水稻土团聚体稳定性的影响.农业工程学报,2009,25(11):49-54
    [127]田光明,蔡祖聪,曹金留,等.镇江丘陵区稻田化肥氮的氨挥发及其影响因素.土壤学报,2001,38(3):324-332
    [128]田玉华,贺发云,尹斌,等.太湖地区氮磷肥施用对稻田氨挥发的影响.土壤学报,2007,44(5):893-900
    [129]田祖庆,张运胜,宋光平,等.一季晚稻起垄免耕直播技术应用初探.作物研究,2006,(1):46-47
    [130]通乐嘎,李成芳,杨金花,等.免耕稻田田面水磷素动态及其淋溶损失.农业环境科学学报,2010,29(3):527-533
    [131]唐茂艳,何礼健,秦华东,等.免耕和稻草还田对金优253立苗速度与根系生长及产量的影响.中国农学通报,2005,21(9):154-157
    [132]汪华,杨京平,金洁,等.不同氮素用量对高肥力稻田水稻-土壤-水体氮素变化及环境影响分析.水土保持学报,2006,20(1):50-54
    [133]汪金平,何园球,柯建国,等.南方双季稻田秸秆厢沟腐熟还田免耕土壤生态效应研究.南京农业大学学报,2004,27(2):21-24
    [134]汪军,王德建,张刚,等.秸秆还田下氮肥用量对稻田养分淋洗的影响.中国生态农业学报,2010,18(2):316-321
    [135]汪明.水稻免耕法的探索.新疆农垦,1978,(3):27-32
    [136]汪明.新疆稻田免耕现状与展望.盐碱地利用,1984,(5):50-55
    [137]王昌全,魏成明,李廷强,等.不同免耕方式对作物产量和土壤理化性状的影响.四川农业大学学报,2001,19(2):152-154
    [138]王昌全,魏成明,李廷强,等.不同免耕方式对作物产量和土壤理化性状的影响.四川农业大学学报,2001,19(2):152-154
    [139]王朝辉,刘学军,巨晓棠,等.田间土壤氨挥发的原位测定—通气法.植物营养与肥料学报,2002,8(2):205-209
    [140]王德建,林静慧,孙瑞娟,等.太湖地区稻麦高产的氮肥适宜用量及其对地下水的影响.土壤学报,2003,40:426-432
    [141]王激清,韩宝文,刘社平,等.施氮量和耕作方式对春玉米产量和十体硝态氮累积的影响.干旱地区农业研究,2011,29(2):129-135
    [142]王家玉,王胜佳,陈义,等.稻田土壤中氮素淋失的研究.土壤学报,1996,33(1):28-35
    [143]王璐,吴建富,潘晓华,等.紫云英和稻草还田免耕抛栽对水稻产量和土壤肥力的影响.中国 农学通报,2010,26(20):299-303
    [144]王永锐,李小林.免少耕水稻的根系活力和叶片衰老研究.耕作与栽培,1992,(4):31-34
    [145]魏朝富,高明,车福才,等.垄作免耕下稻田土壤团聚体和水热状况变化的研究.土壤学报,1990,27(2):172-178
    [146]魏朝富,高明.浸润垄作稻田土壤生态系统的研究.生态学杂志,1993,(3):26-30
    [147]魏朝富,车福才,高明,等.垄作耕田和垄作养鱼稻田土壤结构与肥力特征研究.生态学杂志,1989,8(1):22-26
    [148]魏优亮,黎国富.免耕抛秧等三种栽培方式对水稻生长发育和产量的影响.作物研究,2007,(1):11-13
    [149]吴建富,潘晓华,王璐,等.双季抛栽条件下连续免耕对水稻产量和土壤肥力的影响.中国农业科学,2010,43(15):3159-3167
    [150]吴建富,潘晓华,石庆华,等.免耕抛秧稻的立苗特性与立苗技术研究.作物学报.2009,35(5):930-939
    [151]吴建富,潘晓华,石庆华,等.不同耕作方式对水稻产量和土壤肥力的影响.植物营养与肥料学报,2008,14(3):496-502
    [152]吴建富,潘晓华,王璐,等.免耕抛栽水稻的根系特性初步研究.杂交水稻,2009,24(3):68-71
    [153]吴建富,潘晓华,石庆华,等.免耕抛栽对水稻产量及其源库特性的影响.作物学报,2009,35(1): 162-172
    [154]吴建富,张美良,刘经荣,等.不同肥料结构对红壤稻田氮素迁移的影响.植物营养与肥料学报,2001,7(4):368-373
    [155]吴敬民,许学前,潘遵谱,等.稻麦轮作中免耕效果的研究.Ⅳ.免耕早稻田的土壤供氮特点和施肥技术.江苏农业科学,1984,(4):33-37
    [156]夏敬源.中国水稻免耕抛秧技术的发展与展望.中国农技推广,2005,(9):9-12
    [157]夏敬源.水稻栽培技术的重大革命-论优质稻免耕抛秧技术的发展与对策.中国农技推广,2003,(6):9-11
    [158]伍菊仙,任万军,杨文钰,等.氮肥运筹对水稻免耕高桩抛秧生长发育和产量的影响.杂交水稻,2006,(4):74-77
    [159]夏文建,周卫,梁国庆,等.优化施氮下稻麦轮作体系氮肥氨挥发损失研究.植物营养与肥料学,2010,16(1):6-13
    [160]肖剑英,张磊,谢德体,等.长期免耕稻田的土壤微生物与肥力关系研究.西南农业大学学报,2002,24(1):82-85
    [161]谢德体,陈绍兰.水田免耕的理论与技术.重庆:重庆出版社,2002
    [162]谢德体,魏朝富,陈绍兰,等.水田自然免耕对稻麦生长和产量的影响.西南农业学报,1993,6(1):47-53
    [163]谢德体,魏朝富,杨剑红,等.水田自然免耕土壤代谢特征研究.西南农业大学学报,1994,16(3):202-207
    [164]谢德体,魏朝富,杨剑虹,等.自然免耕下的稻田生态系统.应用生态学报,1994,5(4):415-421
    [165]谢德体,曾觉廷.水田自然免耕水分特征研究.西南农业大学学报,1989,11(1):7-12
    [166]谢德体,曾觉廷.水田自然免耕土壤孔隙状况的研究.西南农业大学学报,1990,12(4):394-397
    [167]谢德体.水田自然免耕热特性研究.西南农业大学学报,1989,11(3):229-232
    [168]徐菁,姜玲若.太湖地区稻田耕作方法研究Ⅴ.免耕稻田供钾能力.江苏农业科学,1984,(12):28-29
    [169]徐明岗,邹长明,秦道珠,等.有机无机肥配合施用下的稻田氮素转化与利用.土壤学报,2002,39(增刊):147-156
    [170]徐世宏,郎宁,李如平,等.连续免耕抛秧对稻田土壤理化性状的影响.杂交水稻,2006,21(S1):134-136
    [171]徐世宏,李如平,郎宁,等.免耕抛秧除草剂残留检测分析.广西农学报,2004,(6):30-33
    [172]徐世宏,梁天锋,曾华忠,等.不同耕作方式下水分管理对水稻氮素吸收利用的影响.核农学报,2009,23(6):1065-1069
    [173]徐阳春,沈其荣,储国良,等.水旱轮作下长期免耕和施用有机肥对土壤某些肥力性状的影响.应用生态学报,2000,11(4):549-552
    [174]许光辉,郑洪元.土壤微生物分析方法手册.北京:农业出版社,1986
    [175]闫德智,王德建,林静慧,等.太湖地区氮肥用量对土壤供氮、水稻吸氮和地下水的影响.土壤学报,2005,42(3):440-446
    [176]严洁,邓良基,黄剑,等.保护性耕作对土壤理化性质和作物产量的影响.中国农机化,2005,(2): 31-34
    [177]严少华,黄东迈.免耕对水稻土持水特征的影响.土壤通报,1995,26(5):198-199
    [178]杨国正.论作物高效生产.中国农业科技导报,2004,6(2):12-15
    [179]杨为芳,韦柏林,杜丽华,等.稻草还田免耕抛秧水稻的生长发育特点及经济效益分析.杂交 水稻,2006,21(S):36-37
    [180]杨为芳.广西水稻免耕抛秧技术推广的现状、存在问题和发展对策.广西农学报,2004,4:33-36
    [181]杨谢,赵燮京,王昌全,等.保护性耕作下麦稻轮作水稻田土壤的氮素动态变化.中国水土保持科学,2008,6(增刊):59-62
    [182]叶文华.华北平原农田土体构型与作物生长关系的研究.地理学报,1985,40(1):37-49
    [183]余晓鹤,朱培立,黄东迈.土壤表层管理对稻田土壤氮矿化势、固氮强度及铵态氮的影响.中国农业科学,1991,24(1):73-79
    [184]岳文元.秧田茬免耕种植水稻的产量效应及生理基础研究.四川农业大学学报,1994,12(3):396-401
    [185]张彬,何红波,赵晓霞,等.秸秆还田量对免耕黑土速效养分和玉米产量的影响.玉米科学,2010,(2):81-84
    [186]张福珠,熊先哲,戴同顺,等.应用15N研究土壤-植物系统中氮素淋失动态.环境科学,1984,5(1): 21-24
    [187]张国梁,章申.农田氮素的研究进展.土壤,1998,(6):291-296
    [188]张海林,秦耀东,朱文珊,等.耕作措施对土壤物理性状的影响.土壤,2003,(2):140-143
    [189]张惠,杨正礼,罗良国,等.黄河上游灌区稻田氨挥发损失研究.植物营养与肥料学报,2011,17(5): 1131-1139
    [190]张静,王德建.太湖地区乌栅土稻田氨挥发损失的研究.中国生态农业学报,2007,11(15):84-87
    [191]张磊,肖剑英,谢德体,等.长期免耕水稻田土壤的生物特征研究.水土保持学报,2002,(2):111-114
    [192]张美良,吴建富,郭成志,等.应用15N对稻田生态系统中氮素淋失和去向的研究.江西农业大学学报,1998,20(2):153-157
    [193]张明沛.水稻免耕抛秧技术创新与推广应用.中国农学通报,2007,23(4):164-168
    [194]张乃生,薛宗让,烙希图,等.旱地玉米免耕覆盖土壤温度效应.山西农业科学,1994,22(3):13-16
    [195]张晴雯,张惠,易军,等.青铜峡灌区水稻田化肥氮去向研究.环境科学学报,2010,30(8):1707-1714
    [196]张庆利,张民,田维彬,等.包膜控释和常用氮肥氮素淋失特征及其对土水质量的影响.土壤与环境,2001,10(2):98-103
    [197]张锡洲,李廷轩,余海英,等.水旱轮作条件下长期自然免耕对土壤理化性质的影响.水土保 持学报,2006,20(6):145-147
    [198]张瑜芳,张蔚榛,沈荣开,等.排水农田氮素运移、转化及流失规律的研究.水动力学研究及进展,1996,11(3):251-260
    [199]张玉铭,胡春胜,董文旭,等.华北太行山前平原农田氨挥发损失.植物营养与肥料学报,2005,11(3):417-419
    [200]张勇勇,顾克章,张顺泉,等.水稻免耕早播耕作法的效益及其对理化性状的影响.浙江农业科学,1997,(5):118-120
    [201]张志尧.少耕法在我国早区的应用及机具选型.干旱地区农业研究,1985,(1):67-75
    [202]赵斌,董树亭,王空军,等.控释肥对夏玉米产量及田间氨挥发和氮素利用率的影响.应用生态学报,2009,20(11):2678-2684
    [203]赵民军.杂交晚稻免耕抛栽立苗困难的原因及对策.杂交水稻,2004,19(6):96-99
    [204]赵田径,冯跃华,韩钢钢,等.施氮量和耕作方式对超级杂交水稻黔南优2058群体质量与产量的影响.杂交水稻,2009,24(2):57-61
    [205]周虎,吕贻忠,杨志臣,等.保护性耕作对华北平原土壤团聚体特征的影响.中国农业科学,2007,40(9):1973-1979
    [206]周凌云,周刘宗,徐梦雄,等.农田秸秆覆盖节水效应研究.生态农业研究,1996,4(3):49-52
    [207]朱炳耀,黄建华,黄永耀,等.连续免耕对中稻产量及土壤理化性质的影响.福建农业学报,1999,14(增刊):159-163
    [208]朱兆良,文启孝.中国土壤氮素.南京:江苏科学技术出版社,1990
    [209]朱兆良.农田中氮肥的损失与对策.十壤与环境,2000,9(1):1-6
    [210]朱兆良.我国土壤供氮和化肥氮去向研究的进展.土壤,1985,(1):2-9
    [211]朱宗武.稻麦田灭茬免耕试验示范初报.土壤肥料,1981,(5):9-11
    [212]邹应斌,李克勤,任泽民,等.水稻的直播与免耕直播栽培研究进展.作物研究,2003,(1):52-59
    [213]邹应斌.国外作物免耕栽培的研究与应用.作物研究,2004,(3):127-132
    [214]Angle J S, Gross C M, Hill R L, et al. Soil nitrate concentrations under corn as affected by tillage, manure, and fertilizer applications. Journal of Environment Quality,1993,22(1):141-147
    [215]Balesdert J, Mariotti A, Boisgontier D. Effect of tillage on soil organic carbon mineralization estimated fom C abundance in maize fields. Soil Science,1990, (41):587-596
    [216]Beare M H. Aggregate protected and unprotected orgnaic matter pools in conventional and no-tillage. Soil Science Society of America Journal,1994,58(4):787-795
    [217]Beare M H. Water stable aggregate and ogranic matterr fraction in conventional and no-tillage soil. Soil Science Society of America Journal,1994,58(3):777-786
    [218]Cai G X, Chen D L, Ding H, et al. Nitrogen lossed from fertilizers applied to maize, wheat and rice in the North China plain. Nutrient Cycling in Agroecosystems,2002, (63):187-195
    [219]Carter M R, Rennie D A. Changes in soil quality under zero-tillage farming system: istribution of microbial biomass and mineralizable C and N potentials. Cannadian Journal of Soil Science,1982, (62):587-597
    [220]Chan K Y, Heenan D P, Oates A. Soil carbon fractions and relationship to soil quality under different tillage and stubble management. Soil and Tillage Research.2002, (63):133-139
    [221]Chang C, Lindwall C W. Effect of long-term minimum tillage practices on some physical properties of a Chernozeroic clay loam. Soil Science,1989, (69):443-449
    [222]Dalal R L. Long-tern of effects of no-tillage, residue and nitrogen application properties of a vertisol. Soil Science Society of America Journal,1989,53(3):1511-1515
    [223]David K M, Mahdi A K. Tillage and nitrogen source and rate effects on corn response in corn-soybean rotation. Agronomy Journal,2006,98(3):507-513
    [224]Datta S K. Improving nitrogen fertilizer efficiency in lowland rice in tropical Asia. Fertilizer Research,1986, (9):171-186
    [225]Fernandez Ugalde O, Virto I, Bescansa P. No-tillage improvement of soil physical quality in calcareous, degradation-prone, semiarid soils. Soil and Tillage Research,2009, (106):29-35
    [226]Fillery R P, Datta S K. Ammonia volatilization from nitrogen volatilization as a N loss mechanism in flooded rice fields. Fertilizer Research,1986, (9):78-98
    [227]Granovsky A V, Mccoy E L, Dick W A, et al. Water and chemical transport through long-term no-till and plowed soils. Soil Science Society of America Journal,1993, (57):1560-1567
    [228]Griggs B R, Norman R J, Wilson J C, et al. Ammonia volatilization and nitrogen uptake for conventional and conservation tilled dry-seeded,delayed-flood rice. Soil Science Society of America Journal,2007, (57):745-751
    [229]Guerif, Richard D, Durr C, et al. A review of tillage effect on crop residue management, seedbed condictions and seedling establishment. Soil and tillage research,2001, (61):13-32
    [230]Halvorson A D, Wienhold B J, Black AL. Tillage and nitrogen fertilization influence grain and soil nitrogen in an annual cropping system. Agronomy Journal,2001, (93):836-841
    [231]Halvorson A D, Nielsen D C, Reule C A. Nitrogen fertilization and rotation effects on no-till dryland wheat production. Agronomy Journal,2004, (96):1196-1201
    [232]Hammel J E. Long-term tillage and crop rotation effects on bulk density and soil impedance in northern Idaho. Soil Science Society of America Journal,989, (53):1515-1519
    [233]Hansen E M, Munkholm L J, Melander B, et al. Can non-inversion tillage and straw retainment reduce N leaching in cereal-based crop rotations. Soil and Tillage Research,2010,109(1):1-8
    [234]Harada H, Kobayashi H, Shindo H. Reduction in greenhouse gas emissions by no-tilling rice cultivation in Hachirogata polder, northern Japan:lifecycle inventory analysis. Soil Science and Plant Nutrition,2007, (53):668-677
    [235]Jones O R,Hanser V L, No-tillage effects on infiltration,runoff and water conservation on dryland. American Society of Agriculture engineers,1994,37(2):473-479
    [236]Juo A S R, Lal R. Nutrient profile in a tropical alfisol under conventional and no-till systems. Soil Science,1979, (127):168-173
    [237]Lal R. No-tillage Effects on soil properties under different crops in Western Nigeria. Soil Science Society of America Journal,1976, (40):762-768
    [238]Li C F, Yang J, Zhang C,et al. Effects of short-term tillage and fertilization on grain yields and soil properties of rice production systems in central China. Food Agronomic Environment,2010,8(2): 577-584
    [239]Liu G D, Li Y C, Alva A K. Moisture Quotients for Ammonia Volatilization from Four Soils in Potato Production Regions. Water Air Soil Pollution,2007, (183):115-127
    [240]Maddex L S, Raczikowski C W, Kissel D E, et al. Broadcast and subsurface-banded urea nitrogen and urea ammonium nitrate applied to corn. Soil Science Society of America Journal,1991, (55): 264-267
    [241]Madejon E, Moreno F, Murillo J M, et al. Soil biochemical response to long-term conservation tillage under semi-arid Mediterranean conditions. Soil and Tillage Research,2007, (94):346-352
    [242]Mary B, Recous S, Darwis D, et al. Interactions between decomposition of plant residues and nitrogen cycling in soil. Plant and Soil,1996, (181):71-82
    [243]Matthews A M, Armstrong A C, Leeds-Harrison P B. Development and testing of a model for predicting tillage effects on nitrate leachingfrom cracked clay soils. Soil and Tillage Research,2000, (53):245-254
    [244]Meek B D. Nitrate leaching under furrow irrigation as affected by crop sequence and tillage. Soil Science Society of America Journal,1995, (59):204-210
    [245]Meisinger J J, Bandel V A, Stanford G, et al. Nitrogen utilization of maize under minimal tillage and mold board plow tillage:1. Four-year results using labeled N fertilizer on an Atlantic coastal plain soil.Agronomy Journal,1985, (77):602-611
    [246]Mikhailova E A, Bryant R B, Vassenev I I, et al. Cultivation Effects on Soil Carbon and Nitrogen Contents at Depth in the Russian Chernozem. Soil Science Society of America Journal,2000, (64): 738-745
    [247]Mkhabela M S, Madani A, Gordon R, et al. Gaseous and leaching nitrogen losses from no-tillage and conventional tillage systems following surface application of cattle manure. Soil and Tillage Research,2008,53(1):29-39
    [248]Moal J F, Martinez J, Guiziou F, et al. Ammonia volatilization following surface applied pig and cattle slurry in France. Journal of Agricultural Science,1995, (125):245-252
    [249]Ogunremi L T. Effects of tillage and seeding methods on soil physical properties and yield of upland rice for an ultisol in southern Nigeria. Soil and Tillage Research,1986, (6):305-324
    [250]Owens L B, Edwards W M. Tillage studies with a corn-soybean rotation:surface runoff chemistry. Soil Science Society of America Journal,1993,57(4):1055-1060
    [251]Palma R M, Saubidet M I, Rimolo M, et al. Nitrogen losses by volatilization in a corn crop with two tillage systems in the Argentina pampa. Commum Soil Science and Plant Analytica 1998, (29): 2865-2879
    [252]Peng S B, Cassman K G. Upper thresholds of nitrogen uptake rates and associated nitrogen fertilizer efficiencies in irrigated rice. Agronomy Journal,1998, (90):178-185
    [253]Rochette P, Angers D A, Chantigny M H, et al. Ammonia volatilization following surface application of urea to tilled and no-till soils:A laboratory comparison. Soil and Tillage Research,2009, (103): 310-315
    [254]Ronakl E P, Grant W T, Robert L B, et al. No-tillage Agriculture Sience,1980, (208):1108-1113
    [255]Ronald.E, Phillips. No-tillage agriculture principles and practice. New York:1984,3-10
    [256]Roscoe R, Buurman P. Tillage effects on soil organic matter in density fractions of a Cerrado Oxisol. Soil and Tillage Research,2003, (70):107-119
    [257]Scowcroft P G, Haraguchi J E, Hue N V. Reforestion and topography affect mountain soil properties, nitrogen pools, and nitrogen transformations in Hawaii. Soil Science Society of America Journal, 2004,68 (3):959-968
    [258]Shad R A. Reduced tillage techniques for wetland rice as affected by herbicides. Soil and Tillage Research,1986,(6):291-303
    [259]Sims A L, Schepers J S, Olson R A, et al. Irrigated corn yield and nitrogen accumulation response in a comparison of no-till and conventional till:Tillage and surface-residue variables. Agronomy Journal,1998, (90):630-637
    [260]Stenberg M, Aronsson H, Linden B, et al. Soil mineral nitrogen and nitrate leaching losses in soil tillage systems combined with a catchcropet. Soil and Tillage Research,1999, (50):115-125
    [261]Tan C S, Drury C F, Soultani M, et al. Effect of controlled drainage and tillage on soil structure and tile drainage nitrate loss at the fieldscale. Water Science and Technology,1998,35(4):103-110
    [262]Thompson R B, Meisinger J J. Gaseous nitrogen losses and ammonia volatilization measurement following land application of cattle slurry in the mid-Atlantic region of the USA. Plant and Soil,2004, (266):231-246
    [263]Tracy P W. Carbon, niortgen, phosphorus and sulfur mineralization in plow and no-till cultivation. Soil Science Society of American Journal,1990,54(2):457-461
    [264]Wang J Y, Wang S L, Chen Y. Study on leaching loss of nitrogen in rice fields by using large undisturbed momdith lysimeters. Pedosphere,1994, (4):87-92
    [265]West L T. Croppnig system and consolidation effects on rill erosion in the georgin piedmont. Soil Soil Science Society of American Journal,1992,56(4):1238-1243
    [266]Xing G X, Zhu Z L. An assessment of N loss from agricultural fields to the environment in China. Nutrient Cycle Agroecosyst,2000, (57):67-73
    [267]Zhang Jian she, Zhang Fu Ping, Yang Jin Hua, et al. Emissions of N2O and NH3, and nitrogen leaching from direct seeded rice under different tillage practices in central China. Agriculture-Ecosystem and Environment,2011,140(1):164-173
    [268]Zhu Y, Fox R H, Toth J D. Tillage effects on nitrate leaching measured by pan and wick lysimeters. Soil Science Society of American Journal,2003,67(5):1517-1523

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700