用户名: 密码: 验证码:
混凝—高级氧化耦合处理印染废水和微污染原水的效果及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文首先对新合成的无机高分子复合混凝剂(PPFS)进行了制备和表征,分析了PPFS的形貌结构和混凝机理。之后以直接深棕印染废水和微污染原水为研究对象,在单因素试验设计、正交试验设计、Box-Behnken设计和中心组合设计等试验设计的基础上,并结合响应面分析,研究了超声波促进类Fenton氧化工艺对直接深棕印染废水的降解效果、试验条件优化及降解机理;同时研究了PPFS/H_2O_2混凝-氧化耦合工艺对直接深棕印染废水和微污染原水的降解效果、试验条件优化及降解机理。旨在探索废水降解的新途径,拓宽高级氧化组合工艺在水处理领域的应用范围,从而为丰富、深化氧化组合工艺的理论研究提供一定的数据和基础。
     论文的主要研究结论如下:
     (1)采用红外(FTIR)、X-衍射(XRD),确定了聚磷硫酸铁(PPFS)的结构组成,PPFS是一种高电荷的多羟基多核络合物,电镜扫描(SEM)表征分析,PPFS具有簇状类珊瑚礁立体网状的形貌结构;混凝烧杯试验说明,PPFS在混凝时不是以电中和机理为主,吸附、架桥和混凝沉淀等作用才是它具有优异混凝效果的主要原因,Zeta电位值证实了该推测;逐时络合比色法显示PPFS混凝剂中Fe(c)形态较多,Fe(a)和Fe(b)含量相对较少,表明PPFS主要以铁磷高聚物形式存在;紫外可见光谱显示,不同pH条件下PPFS混凝剂的光谱曲线变化与其混凝形态有一定的对应关系。PPFS的混凝机理可能是:电中和作用能有效地降低水中胶体的ζ电位致使胶体脱稳,之后PPFS发挥吸附、架桥、混凝沉淀等作用最终有效地去除污水中的各种物质,所以PPFS是电中和、吸附、架桥和混凝沉淀等几种作用的综合体现。
     (2)超声波促进类Fenton氧化工艺:以模拟直接深棕印染废水为对象,采用低频超声技术,探讨初始pH、H_2O_2投加量及催化剂用量对直接深棕印染废水降解率的影响。应用Box-Behnken中心组合试验和响应面分析法,建立了类Fenton试剂对处理直接深棕印染废水的二次多项式数学模型,确定了超声降解直接深棕印染废水的优化条件:取初始浓度为100.0 mg/L直接深棕印染废水250.0 mL,超声功率为250 W,频率28 kHz,降解150 min,初始pH、H_2O_2投加量及催化剂用量分别为3.79、1.74 mM、1.65 g/L。经试验验证,实际值与模型预测值拟合性良好,偏差仅为1.35%。通过分析降解前后的紫外-可见光谱图,初步推断在超声-Fenton反应下,直接深棕并没有完全降解为CO_2和H_2O,而仅仅是生色基团受到自由基攻击而被破坏。
     (3)直接深棕印染废水的PPFS/H_2O_2混凝-氧化耦合工艺:从单因素试验分析可知,选择合适的投加量和合适的nPO_4~(3-)/nFe~(3+),可以提高PPFS对直接深棕色度去除率,在此基础上投加适量H_2O_2,使其与混凝后水体中残余的Fe~(3+)构成高级氧化体系(类Fenton试剂),进一步降低混凝反应后残余的有机物,达到更好的处理效果,pH的应用范围很宽。正交试验分析得出:对于直接深棕印染废水的去除率影响效能较大是H_2O_2的投加量和混凝剂的投加量。分析该工艺机理:在酸性环境中,类Fenton反应机理占主导地位;在碱性环境中,PPFS的混凝作用占主导地位。由此推之,无机高分子混凝剂与H_2O_2的联合使用,可以大大拓宽它们的pH值的应用范围。
     (4)微污染原水中的UV_(254)、COD和TOC的PPFS/H_2O_2混凝-氧化耦合工艺:从单因素试验对微污染原水中的UV_(254)去除效果分析中可知,选择合适的nPO_4~(3-)/nFe~(3+)和nOH-/nFe~(3+),可以提高PPFS对UV_(254)的去除效果,在此基础上投加适量H_2O_2可进一步降低混凝反应后残余的有机物,达到更好的处理效果。微污染原水宏观指标的正交试验分析得出:对于原水中UV_(254)、COD和TOC的去除率影响效能较大的是混凝剂和H_2O_2的投加量。
     (5)微污染原水中的邻苯二甲酸酯类(PAEs)和多环芳烃(PAHs)检测结果分析:PPFS与H_2O_2耦合使用,邻苯二甲酸二丁酯(DBP)和邻苯二甲酸二(2-乙基己基)酯(DEHP)的去除率均达到90.0%以上,而邻苯二甲酸二甲酯(DMP)和邻苯二甲酸二乙酯(DEP)的去除率相对较低,去除率一般在70.0%-80.0%;菲和芘的去除率基本达到90.0%以上,而萘和荧蒽的去除率分别在60.0%和40.0%左右。
Characterization of polymeric phosphate ferric sulfate (PPFS) and its topography structure in this research were measured. In order to investigate the performance of this coagulate, Direct Dark Brown MM dye wastewater and micro-polluted raw water were considerably thought as the object of water treatment. In this experiment, many methods such as single parameter design, orthogonal design, Box-Behnken design and central composite design and response surface analysis were used in the investigation of the degradation efficiency, conditions optimization. In addition, the degradation mechanism of Direct Dark Brown MM by the ultrasonic-promoted heterogeneous Fenton-like process and PPFS/H_2O_2 coupled flocculation and oxidation process and micro-polluted raw water by PPFS/H_2O_2 coupled flocculation and oxidation process were detail analysised in various conditions. The purpose of this study was to expand the application range of combined AOPs in the field of wastewater treatment. At the same time, it would provide a new method to degrade the dye wastewater and micro-polluted raw water and the experimental results would provide a theoretical guidance in the treatment of the dye wastewater and micro-polluted raw water and the study of the mechanism of combined AOPs. The main conclusions in this research were summarized as follows:
     (1) Characteristics of PPFS were investigated using FTIR (fourier transform infrared spectrometer), XRD (x-ray diffraction) and SEM (scanning electron microscope) in this paper. The formed PPFS structure and morphology were stereo meshwork, which was clustered and closely to coral reef, synthesis of high charge density, bioactive polyhydroxy and mixed polynuclear complex PPFS. The results showed that charge neutralization of PPFS had not played a decisive role on the coagulation beaker test and the Zeta potential proved that PPFS was largely affected by bridging and coagulation and sedimentation. Fe-ferron complexation timed spectrophotometry showed that the amount of Fe(c) in Polymeric Phosphate Ferric Sulfate (PPFS) flocculants was the most in the three species, while the amount of Fe(a) and Fe(b) was small, that was PPFS mainly exists in the form of phosphate ferric polymer. Ultraviolet-visible spectrum showed that the change in the spectral curve of the different pH polymer ferric sulfate flocculants was corresponding to the flocculation morphology. Therefore, the coagulation mechanisms of PPFS were mainly composed of charge neutralization, adsorption bridging, coagulation and sedimentation mechanisms.
     (2) Ultrasonic-promoted heterogeneous Fenton-like process of Direct Dark Brown MM: the effects of initial pH of Direct Dark Brown MM dye solution, H_2O_2 concentration and dosage of Fe-Ni-Mn/Al2O3 on the degradation ratio of Direct Dark Brown MM were studied by using low frequency ultrasound. By the Box-Behnken centre-united experiment design and response surface methodology, a predictive polynomial quadratic model was set up and the optimum extraction conditions were developed, which were pH of dye wastewater 3.79, dosage of H_2O_2 1.74 mM, dosage of Fe-Ni-Mn/Al2O3 1.65 g/L on the initial dye concentration 100.0 mg/L. 91.09 % of Direct Dark Brown MM was degraded under the optimal conditions. The experimental values agreed with the predicted values of the model equation with 1.35 % deviation. The UV-Vis spectra of Direct Dark Brown MM before and after degradation were analyzed and the following conclusions cound be drawn: Direct Dark Brown MM was not completely mineralized to CO2 and H2O by ultrasonic irradiation and Fenton reaction, instead, the chromophore in Direct Dark Brown MM molecular structure was just destroyed under the attack of radicals.
     (3) PPFS/H_2O_2 coupled flocculation and oxidation process of Direct Dark Brown MM: based on single factor experiments, the degradation degree of Direct Dark Brown MM were enhanced significantly under the optimum nPO_4~(3-)/nFe~(3+) and nOH-/nFe~(3+) molar ratio. Also, the results showed that the addition of H_2O_2 facilitated the degradation of Direct Dark Brown MM, which was caused by the generated Fenton-like process with H_2O_2 and Fe~(3+) after flocculation. The orthogonal experiment showed that the removal efficiency was largely affected by the PPFS dosage and H_2O_2 dosage. The results showed that in an acidic environment, Fenton-like mechanism played a key role. On the contrary, the flocculation mechanism would do in the alkaline environment. Therefore, the pH range would be greatly extended using PPFS/H_2O_2 coupled flocculation and oxidation process
     (4) PPFS/H_2O_2 coupled flocculation and oxidation process of micro-polluted raw water of UV_(254), COD and TOC: based on the single factor experiments, the effect of UV_(254) of micro-polluted raw water was investigated. The optimum conditions were as follows: the treatment efficiency would be improved in terms of the suitable nPO_4~(3-)/nFe~(3+) and nOH-/nFe~(3+). At the above determined optimum conditions, the removal efficiency would be enhanced in presence of H_2O_2. At the same time, the orthogonal experiment to treat UV_(254) of micro-polluted raw water was carried out and the results showed that PPFS dosage, H_2O_2 dosage had a better effect on the removal of UV_(254), COD and TOC.
     (5) PPFS/H_2O_2 coupled flocculation and oxidation process of micro-polluted raw water of PAEs and PAHs: a comparison was made between the testing of PAEs and PAHs. The results showed that PPFS/H_2O_2 had the same effect on the removal of DBP and DEHP with the PPFS alone and the removal efficiency were all over 90.0%. However, the removal rate of DMP and DEP compared with above materials had a lower efficiency of 70.0%-80.0%; Furthermore, the removal of phenanthrene and pyrene were almost 90.0%, that of the naphthalene and fluoranthene were 60.0% and 40.0%, respectively.
引文
[1] Y. Adachi. Dynamic aspects of coagulation and flocculation [J]. Advances in Colloid and Interface Science, 1995, 56(29): 1-31.
    [2] L. E. Katz, K. F. Hyaes. Surface Complexation Modeling: I. Strategy for Modeling Monomer Complex Formation at Moderate Surface Coverage [J]. Colloid Interface Sci., 1995: 170(2): 477-490.
    [3]常青.水处理混凝学[M].北京:化学工业出版社, 2003: 31-40.
    [4]魏巧莲.中药提取液混凝流体动力学的研究[D].天津:天津大学, 2005.
    [5]马青山,贾瑟,孙丽珉.混凝化学和混凝剂[M].北京:中国环境科学出版社, 1988.
    [6] R. D. Letterman, D. R. Lyer. Modeling the effects of hydrolyzed aluminum and solution chemistry on flocculation kinetics [J]. Environment science & technology, 1985, 19(8): 673-681.
    [7]王艳.聚铁类无机高分子复合混凝剂的制备及在高浓度淀粉废水处理中的应用[D].重庆:西南师范大学, 2009.
    [8] F. AlMubaddal, K. AlRumaihi, A. Ajbar. Performance optimization of coagulation/flocculation in the treatment of wastewater from a polyvinyl choride plant [J]. Journal of Hazardous Materials, 2009, 161(1): 431-438.
    [9] F. Harrelkas, A. Azizi, A. Yaacoubi, et al. Treatment of textile dye effluents using coagulation-flocculation coupled with membrane processes or adsorption on powdered activated carbon[J]. Desalination, 2009, 235(1-3): 330-339.
    [10]刘宇程,万里平,陈明燕.水处理混凝剂研究进展[J].化工时刊, 2005, 19(6): 63-66.
    [11] W. P. Cheng, F. H. Chi. A study of coagulation mechanisms of polyferric sulfate reacting with humic acid using a fluorescence-quenching method [J]. Water Res, 2002, 36(18): 4583-4591.
    [12] B. Y. Gao, H. H. Hahn, Hoffmann E, Evalution of aluminum-silicate polymer composite as a coagulant for water treatment [J]. Water Res, 2002, 36(14): 3573-3581.
    [13] W. Lan, H. Q. Qiu, J. Zhang, et al. Characteristic of a novel composite inorganic polymer coagulant-PFAC prepared by hydrochloric pickle liquor [J]. Journal of Hazardous Materials, 2009, 162(1), 174-179.
    [14] Y. B. Zeng, J. B. Park. Characterization and coagulation performance of a novel inorganic polymer coagulant-poly-zinc-silicate-sulfate [J]. Colloid Surface A: Physicochem. Eng. Aspects, 2009, 334(1-3), 147-154.
    [15]王万林.我国复合型无机高分子混凝剂的研究及应用进展[J].工业水处理,2008, 28(4):1-5, 9.
    [16] B. Y. Gao, Y. Wang, Q. Y. Yue, et al. Color removal from simulated dye water and actual textile wastewater using a composite coagulant prepared by ployferric chloride and lydimethyldially lammonium chloride. separation and purification technology, 2007, 54(2): 157-163.
    [17]白强.无机高分子混凝剂聚合氯化铁的制备与应用[J].技术与工程应用, 2009, 38(4): 38-40.
    [18]田宝珍,张云.铝铁共聚复合混凝剂的研制及应用[J].工业水处理, 1998, 18(1): 17- 19.
    [19]潘碌亭,吴锦峰.聚合硫酸铁制备技术的研究与进展[J].工业水处理, 2009, 29(9): 1-5.
    [20]贾汝林.聚合氯化硫酸铁制备方法[J].无机盐工业, 2009, 41(8): 48-49.
    [21]刘峙嵘,方裕勋,艾卫青,等.聚合硫酸铝铁的制备及其活性成分分析[J].湿法冶金, 2002, 21(4) : 191- 194.
    [22]胡翔,周定.高效无机混凝剂聚硅酸铁铝的研究[J].中国环境科学, 1999, 19(3): 266- 269.
    [23]朱开金,薛笑丽,刘芳萍.聚硅酸铝铁与聚硅酸铝对废水混凝效果的比较[J].工业水处理, 2003, 23(6): 26- 27.
    [24]孙剑辉,夏四清,孙瑞霞.混凝剂PFCS的制备及其性能研究[J].环境科学, 1996, 17(4) : 59- 61.
    [25]矫彩山,王正平.用氯碱厂含氯废硫酸生产阴离子复合型无机高分子混凝剂[J].化学工程师, 2001, 15(2): 32- 33.
    [26]孙剑辉,徐毅.聚硅酸盐类混凝剂的研究进展[J].工业水处理, 2000, 20(3): 4-7.
    [27]苏国亮,刘宏魏,张莉红.聚硅酸聚合氯化铁复合型混凝剂的研究[J].皮革化学, 2006, 23(3): 13-15.
    [28]张昱,杨敏.一种新型饮水除砷混凝剂的研制及效果初评[J].中国地方病学杂志, 2000, 19(6) : 406- 408.
    [29]王光辉,魏晓金,雷国元.聚磷硫酸铁混凝去除微污染水中藻类生物研究[J].华中科技大学学报(城市科学版), 2005, 22(3): 57-60.
    [30]朱虹,王仲秋.聚磷硫酸铁对多组分活性印染废水混凝效果研究[J].工业水处理, 2001, 21(8): 24- 25.
    [31] L. P. Roger, L. A. Roger, C. S. Roger. The mechanism of phosphate fixation by iron oxides [J]. Soil Science Society of America Journal, 1975, 39(5): 837-841.
    [32] N. U. Yamaguchi , M. Okazaki, T. Hashitani . Volume changes due to SO42-, SeO42-, and H2PO4- adsorption on amorphous iron (III) hydroxide in an aqueous suspension. Journal of Colloid and Interface Science, 1999, 209(2): 386-391.
    [33]郑雅杰,龚竹青,张钦发,等.用新型混凝剂聚磷硫酸铁处理城市生活废水[J].中南工业大学学报, 2002, 33(2): 141-144.
    [34]朱虹.聚合磷硫酸铁在低温型分散印染废水处理中的应用[J].水处理技术, 2001, 27(4): 233-235.
    [35] M. H. Fan, R. Brown, S. W. Sung. Photoacoustic measurement of iron in composite coagulant [J]. Chem. Eng. Process., 2003, 42(7): 553-559.
    [36] Y. Wang, B. Y. Gao, Q. Y. Yue, et al. The characterization and flocculation efficiency of composite flocculant iron salts-polydimethyldiallylammonium chloride [J]. J. Chem. Eng., 2008, 142(2): 175-181.
    [37]许士洪,彭长琪,上官文峰.聚氯硫酸铝铁的制备及混凝性能研究[J].环境化学, 2005, 24(2) : 158- 161.
    [38]魏在山,徐晓军,宁平.新型复合聚硅硫酸铁铝(PFASSi)的形态分布研究[J].中山大学学报(自然科学版) , 2003, 42(增) : 147-149.
    [39]段瑛博,衣守志.聚合硅酸硫酸铝铁的制备与应用[J].化工环保, 2005, 25(3): 239- 242.
    [40]高秀美,衣守志,刘丹凤,等.聚合硅酸氯化铝铁的制备及在脱墨废水处理中的应用[J].中国造纸, 2006, 25(2): 70-71.
    [41]黄孟,杜国勇.聚合磷硫酸铝铁的合成及应用[J].石油与天然气化工, 2005, 34(6): 528- 530.
    [42]吴敦虎,王毅力,郑有君.硼泥复合混凝剂处理印染废水的研究[J].环境污染与防治, 1997, 19(5): 11- 13.
    [43]周立祥,宋兴伟.一种微生物催化合成聚合硫酸铁的方法.申请号: 200810242583.3,公开号: CN 101503710A.
    [44]徐晓军.化学混凝剂作用原理[M].北京:科学出版社, 2006.12
    [45]曾玉彬,黄保军,王益军等.无机高分子复合混凝剂的研究进展及应用[J].江苏化工, 2008, 36(1): 5-8.
    [46] Y. F. Wang, B. Y. Gao, Q. Y. Yue, et al. Flocculation performance of epichlorohydrin-dimethyla -mine polyamine in treating dyeing wastewater[J]. J. Environ. Manage., 2009, 91 (2): 423-431.
    [47] Z. H. Yang, J. Huang, G. M. Zeng, et al. Optimization of flocculation conditions for kaolin suspension using the composite flocculant of MBFGA1 and PAC by response surface methodology [J]. Bioresour. Technol., 2009, 100(18): 4233-4239.
    [48] J. C. Wei, B. Y. Gao, Q. Y. Yue, et al. Performance and mechanism of polyferric-quaternary ammonium salt composite flocculants in treating high organic matter and high alkalinity surface water[J]. Journal of Hazardous Materials, 2009, 165(1-3):789-795.
    [49]张文平,苗柯.聚合硫酸铁一助凝剂处理印染废水[J],上海环境科学,1991, 10(5): 9-13.
    [50]陈传好,谢波. Fenton试剂处理废水中各影响因子的作用机制[J],环境科学, 2000, 21(3): 93-96.
    [51] M. L. Kremer. Complex visas“Free Radical”mechanism for the catalytic decomposition of H2O2 by ferric ions [J]. International Journal of Chemical Kinetics, 1985, 17(12): 1299-1314.
    [52] D. A. Wink, R. W. Nimbus, M. F. Deserters, et al. A kinetic investigation of intermediates formed during the Fenton reagent mediated degradation of N-nitrosodimethy amine: evidence for an oxidative Pathway not involving hydroxyl radical [J]. Chemical Research in Toxicology, 1991, 4(1): 510-512.
    [53] G. Ruppert, R. Bauer, G. Heisler. The photo-Fenton reaction an effective photochemical wastewater treatment process [J]. Journal of Photochemistry and Photobiology A: Chemistry, 1993, 73(1): 75-78.
    [54]杜瑛珣,年跃刚,周明华,雷乐成.类Fenton降解对氯苯酚中Fe3+的还原——两种途径及其作用[J].浙江大学学报(工学版), 2005, 39(10): 1618-1622.
    [55]张文兵.均相和非均相高级氧化技术处理水中有机污染物的研究[D].广州:中国科学院广州地化所, 2003.
    [56]张晖,刘芳,张建华,向罗京.超声强化高级氧化技术降解水中有机污染物的研究进展[J].化工环保, 2007, 27(6): 491-496.
    [57]张占梅.基于超声辐射的高级氧化技术处理偶氮染料酸性绿B的试验研究[D].重庆:重庆大学,2009.
    [58] G. G. Tezcanli, N. H. Ince. Degradation and toxicity reduction of textile dyestuff by ultrasound [J]. Ultrasonics Sonochemistry, 2003, 10(4-5): 235-240.
    [59] G. S. Silvia, N. R. Jean, S. S. Danillo. Decolourization effects of Vat Green 01 textile dye and textile wastewater using H2O2/UV process [J].Journal of Photochemistry and Photobiology A: Chemistry, 2007, 18 (6): 125-129.
    [60] K. C. Namkung, A. E. Burgess, D. H. Bremner, H. Staines. Advanced Fenton processing of aqueous phenol solutions: A continuous system study including sonication effects [J]. Ultrasonics Sonochemistry, 2008, 15 (3): 171-176.
    [61] X. K. Wang, Y. Y. Zhong, J. G. Wang, et al. Degradation of reactive brilliant red in aqueous solution by ultrasonic cavitation [J]. Ultrasonics Sonochemistry, 2008, 15 (1): 43-48.
    [62] N. H. Ince, G. G. Tezcanli. Impacts of pH and molecular structure on ultrasonic degradation of azo dyes [J]. Ultrasonics Sonochemistry, 2004, 42(1-9): 591-596.
    [63] J. Ge, J. Qu. Ultrasonic irradiation enhanced degradation of azo dye on MnO2 [J]. Applied Catalysis B: Environmental, 2004, 47(2): 133-140.
    [64] Y. L. Song, J. T. Li. Degradation of C.I. Direct Black 168 from aqueous solution by flyash/H2O2 combining ultrasound [J]. Ultrasonics Sonochemistry, 2009, 16(4): 440-444.
    [65] M. Li, J. T. Li, H. W. Sun. Sonochemical decolorization of acid black 210 in the presence of exfoliated graphite [J]. Ultrasonics Sonochemistry, 2008, 15(1): 37- 42.
    [66] P. N. Beiarano, H. M. Suarez. Sonophotocatalytic degradation of congo red and methyl orange in the presence of TiO2 as a catalyst [J]. Ultrasonics Sonochemistry, 2007, 14(5): 589-595.
    [67] T. C. An, H. F. Gu, Y. Xiong, et al. Decolourization and COD removal from reactive dye-containing wastewater using sonophotocatalytic technology [J]. J. Chem.Technol. Bio-technol., 2003, 78 (11): 1142-1148.
    [68] A. Aleboyeh, H. Aleboyeh. Effects of gap size and UV dosage on decolorization of C.I. Acid Orange 7 by UV/H2O2 process [J]. Journal of Hazardous Materials, 2006, 133(1-3): 167-171.
    [69] H. Y. Shu, M. C. Chang. Decolorization and mineralization of a Phthalocyanine dye C.I. Direct Blue 199 using UV/H2O2 process [J]. Journal of Hazardous Materials, 2005, 125(1-3): 96-101.
    [70]彭晓云,冯流,刘路.超声/Fenton试剂氧化耦合处理印染废水[J].北京化工大学学报, 2007, 34(2): 122-125.
    [71] H. Zhang, Y. Zhang, D. B. Zhang. Decolorization and mineralization of C.I. Reactive Black 8 by Fenton and ultrasound/Fenton method [J]. Coloration Technology, 2007, 123(2): 101-105.
    [72]郑怀礼,张占梅.低频超声协同Fe-Ni-Mn /Al2O3催化降解酸性绿B的研究[J].环境工程学报, 2009, 3(2): 193-198.
    [73]于霞,李薇,郭耀文,等.混凝-活性炭-过氧化氢组合工艺处理垃圾渗滤液研究[J].水处理技术, 2010, 36(3): 108-111.
    [74]叶挺进,张丽,刘超斌,等.高锰酸钾-水合二氧化锰联用强化混凝微污染原水[J].供水技术, 2010, 4(1): 1-4.
    [75]余薇.氧化-混凝耦合工艺处理印染废水的研究[D].武汉:武汉科技大学, 2008.
    [76] J. Sarasa. Treatment of a waste water resulting from dyes manufacturing with ozone and chemical coagulation [J]. Water Res., 1998, (32): 2721-2727.
    [77] R. Nagarathnamma, P. Bajpal. Ecolorization and detoxification of extraction-stage effluent from chlorine bleaching of kraft pulp by rhizopus oryzae [J]. Appl. Envlon. Microbiol, 1999, (65): 1078-1082.
    [78] J. P. Brown. A review of the genetic defects of naturally occurring flavonoids anthraqulinones and related compounds [J]. Mutation Research,1980, 75(2): 243-277.
    [79] F. Herera, J. Kiwi, A. Lopez, et al. Photochemical decoloration of remazol brillant blue and uniblue in the presence of Fe3+ and H2O2 [J]. Environ. Sci. Technol.,1999, 33(18): 3145-3151.
    [80]李家珍.染料染色工业废水处理[M],北京,化学工业出版社, 1997.
    [81]朱虹,孙杰,李剑超.印染废水处理技术[M],北京,中国纺织出版社, 2004.
    [82]李家元,吴彦瑜,周少奇.响应曲面法优化混凝处理木薯淀粉废水[J].环境工程学报,2010, 4(7): 1555-1560.
    [83]孙超,刘鹏飞,曹建云,等.电解混凝/水解酸化/MBR工艺处理印染废水[J].中国给水排水, 2010, 26(8): 71-74, 77.
    [84] E. G. Solozhenko, N. M. Soboleva, V. V. Goncharuk. Decolorization of azodye solutions by fenton’s oxidation [J]. Water Research, 1995, 29(9): 2206-2210.
    [85]吴永强,刘跃辉,何延青,等.接触混凝-氧化法处理活性印染废水[J].环境科学进展, 2005, 23(6): 10-12.
    [86]张显球.混凝-氧化-微电解-吸附处理活性印染废水[J].环境工程, 2003, 21(1): 29-30.
    [87] C. Allegre, M. Maisseu, F. Charbit, et al. Coagulation-flocculation-decantation of dye house effluents: concentrated effluents [J]. Journal of Hazardous Materials, 2004, 116(1-2): 57-64.
    [88] A. L. Ahmad, S. W. Puasa. Reactive dyes decolourization from an aqueous solution by combined coagulation/micellar-enhanced ultrafiltration process [J]. Chemical Engineering Journal, 2007, 132(1-3): 257-265.
    [89] J. W. Lee, S. P. Choi, R. Thiruvenkatachari, et al. Submerged microfiltration membrane coupled with alum coagulation/powdered activated carbon adsorption for complete decolorization of reactive dyes [J]. Water Research, 2006, 69(3): 435-444.
    [90]沈珍瑶,牛军峰,齐珺,等.长江中游典型段水体污染特征及生态风险[M].北京,中国环境科学出版社, 2008.
    [91]宁海丽,朱琨.微污染水处理技术研究进展[J].环境科学与管理, 2006, 31(2): 98-100.
    [92]吴晓诚,段晓军.微污染水源处理的研究进展[J].广东化工, 2009, 36(8): 177-178, 187.
    [93]聂小保,张鹏.强化混凝与活性炭联用处理赣江微污染水源水试验[J].环境工程, 2007, 25(3): 90-91.
    [94]张锦,李圭白,马军.高锰酸钾复剂对给水处理中混凝的强化效应[J].工业用水与废水, 2004, 24(11): 29-32.
    [95]张亮,张玉先,包卫彬,等.生物滤池处理微污染水源水试验研究[J].工业用水与废水, 2007, 38(5): 24-28.
    [96]左金龙. UV/H2O2/GAC与GAC处理微污染水的研究[J].环境科学与管理. 2008, 33(3): 83-85.
    [97]桑军强,王占生. BAF在微污染源水生物预处理中的应用[J].中国给水排水, 2003, 19(2): 21-23.
    [98] H. Nagadoml, Takahasi. Simultaneous removal of chemical oxygen demand nitrate in aerobic treatment of sewage wastewater using an immobilized photosynthetic bacterium of porousceramicplates[J]. World Journal of Micryobiology & Biotechnology. 2004. 16(1): 57-62.
    [99]蔡邦肖.食品工业废水的膜法处理与回用技术[J].食品与发酵工业, 2005, 31(10): 102-106.
    [100]蔡邦肖,唐名威,许阳.自来水深度处理超滤膜的选择[J].工业用水与废水, 2007, 38(6): 71-75.
    [101]钟燕敏,周建平,沈裘昌,等.微污染高藻湖泊水的深度处理工程设计[J].中国给水排水, 2007, 23(18): 39-42.
    [102]郑怀礼,吴幼权,高旭,等.环境激素邻苯二甲酸酯类净化技术研究进展[J],水处理技术, 2010, 36(1): 15-19.
    [103]曾北危,姜平.环境激素[M].北京:化学工业出版社, 2005.
    [104]姜盛君,李存雄,张明时.贵阳市水环境中6种酞酸酯类污染现状研究[J].贵州师范大学学报(自然科学版), 2010, 28(1): 45-48.
    [105] X. Li, M. Zhong, S. Xu, et al. Determination of phthalates in water samples using polyaniline-based solid-phase microextraction coupled with gas chromatography[J]. J. Chromatogr A, 2006, 1135(1): 101-108.
    [106]胡晓宇.中国环境邻苯二甲酸酯类化合物污染的研究[J].中国卫生检验杂志, 2003, 13(1): 9-15.
    [107]李改枝,李桂芝.邻苯二甲酸二甲酯在内蒙古粘土中的吸附特性[J].烟台师范学院学报(自然科学版), 2005, 21(2): 130-132.
    [108]芮旻,高乃云,徐斌等. UV、H2O2、O3及其联用工艺对水中DMP的去除效果和降解机理分析[J].环境科学学报, 2005, 25(11): 1457-1463.
    [109] G. Mailhot, M. Sarakha, B. Lavedrine, et al. Fe(III)-solar light induced degradation of diethyl phthalate(DEP) in aqueous solutions[J]. Chemosphere, 2002, 49(6): 525-532.
    [111] A. Muneer, J. Theurich, D. Bahnemann. Titanium dioxide mediated photocatalytic degradation of 1, 2-diethyl phthalate [J]. Journal of Photochemistry and Photobiologya-Chemistry, 2001, 143 (2-3): 213-219.
    [112]李魁晓,顾继东.环境激素邻苯二甲酸二丁基酯的好氧微生物降解[J].海洋环境科学, 2006, 25(1): 7-9.
    [113]李魁晓,顾继东.邻苯二甲酸二甲酯的好氧生物降解及生化途径[J].环境科学与技术, 2006, 29(2): 36-45.
    [114]曾锋,傅家漠,盛国英,等.不同菌源的微生物对邻苯二甲酸二乙酯生物降解性的比较[J].环境科学, 2000, 21(1): 62-65.
    [115]王晶晶,刘长礼,姜建梅.持久性有机污染物多环芳烃的研究综述[J],科技创新导报, 2010, (2): 136-136, 138.
    [116]何燕,冯琳.多环芳烃的样品前处理技术研究进展[J].重庆师范大学学报(自然科学版), 2007, 24(3): 64-68.
    [117] J. Baume. Polycyclic Hydrocarbons and Cancer [M]. New York: Academic Press, 1978.
    [118] W. Stahl, G. Eisenbrand, R. Macrae. HPLC in Food Analysis [M]. London: Academic Press, 1988.
    [119] K. Cailleaud, L. J. Forget, S. Souissi, et al. Seasonal variations of hydrophobic organic contaminant concentrations in the water-column of the seine estuary and their transfer to a planktonic species eurytemora affinis (calano?da, copepoda). part1: PCBs and PAHs [J]. Chemosphere, 2007, 70(2): 270-280.
    [120]刘淑琴,王鹏.环境中的多环芳烃与致癌性[J].山东师大学报(自然科学版), 1995, 10(4): 435-440.
    [121]刘齐天,林肇信,刘逸农.环境保护概念[M].北京:高等教育出版社, 1982.
    [122]王学军,任丽然,戴永宁,等.天津市不同土地利用类型土壤中多环芳烃的含量特征[J].地理研究, 2003, 22(3): 360-365.
    [123]余莉莉,李军,刘国卿,等.珠江三角洲表层土壤中的多环芳烃[J].生态环境, 2007, 16(6): 1683-1687.
    [124]张枝焕,陶澍,沈伟然,等.天津地区主要河流沉积物中多环芳烃化合物的组成与分布特征[J].环境科学学报, 2005, 25(11): 1507-1516.
    [125] J. A. Jordan, A. M. Verhoff, J. E. Morgan, et al. Assessing the in vitro toxicity of the lunar dust environment using respiratory cells exposed to Al2O3 or SiO2 fine dust particles [J]. In Vitro Cellular & Developmental Biology-Animal, 2009, 45(10): 602-613.
    [126] Z. Liang, Y. X. Wang, Y. Zhou, et al. Hydrolysis and coagulation behavior of polyferric sulfate and ferric sulfate [J]. Water Science and Technology, 2009, 59 (6): 1129-1135.
    [127] A. Voegelin, R. Kaegi, J. Frommer, et al. Effect of phosphate, silicate, and Ca on Fe(III)-precipitates formed in aerated Fe(II)- and As(III)-containing water studied by X-ray absorption spectroscopy [J].Geochimicaet Cosmochimica Acta, 2010, 74(1):164-186.
    [128]代军,雷红英,孙剑奇,等.利用钛白副产物绿矾制备混凝剂聚磷硫酸铁的研究[J].矿冶工程, 2008, 28(6): 41-43, 47.
    [129]郑怀礼,黄小红,何强,等.以TEOS为硅源的聚硅硫酸铁中铁的形态分布研究[J].光谱学与光谱分析, 2008, 28(3): 543-546.
    [130] J. Gregory. Optical monitoring of particle aggregates [J]. Journal of Environmental Sciences-China, 2009, 21(1): 2-7.
    [131]徐玉萍.硫铁矿烧渣制取复合聚铁混凝剂的研究[D].武汉:武汉理工大学,2005, 19-20.
    [132]田宝珍,汤鸿霄.含磷酸盐的三氯化铁水解溶液的化学特性[J].环境化学. 1995, 14(4): 329-336.
    [133]张吉广,叶立群,林洁.复合型混凝剂聚磷氯化铁的混凝机理及应用[J].交通环保, 2001, 22(4): 21-24.
    [134] H. X. Tang, W. Sturnm. The coagulating behaviors of Fe(III) polymeric species,ⅠⅡ[J].Water Research, 1987, 21(1): 115-120.
    [135]徐灏龙,王长智,章一丹.磁性混凝剂的制备、表征及其混凝性能研究[J].给水排水, 2009, 35: 319-322.
    [136]郑怀礼,谢礼国,高朝勇,等.红外光谱法及单晶X衍射法研究Fe(Ⅲ)水解形态分布[J].光谱学与光谱分析, 2009, 29(2): 540-543.
    [137]郑怀礼,彭德军,黄小红,等.聚合硫酸铁混凝剂的混凝形态光谱研究[J].光谱学与光谱分析, 2007, 27(12): 2480-2484.
    [138]于荟,朱银华,刘畅,等.新型介孔SO42-/TiO2固体酸的制备及其催化酯化性能[J].催化学报, 2009, 30(3): 265-271.
    [139]石振荣,蔡克勤.陕西白河县月儿潭绿松石与次生磷钙铝矾研究[J].岩石矿物学杂志, 2008, 27(2): 164-170.
    [140]常青,汤鸿霄.聚合铁的形态特征和凝聚-混凝机理[J].环境科学学报, 1985, 5(2): 185-121.
    [141] P. J. Murphy, A. M. Posner, J. P. Quirk. Chemistry of iron in soils ferric hydrolysis products [J]. Aust. J. Soil Res., 1975, 13(2): 189-201.
    [142]田宝珍,汤鸿霄. Ferron逐时络合比色法测定Fe(III)溶液聚合物的形态[J].环境化学, 1989, 8(4): 27-34.
    [143]郑怀礼,彭德军,黄小红,等.聚合硫酸铁混凝剂的混凝形态光谱研究[J].光谱学与光谱分析, 2007, 27(12): 2480-2484.
    [144] S. J. Jiao, H. L. Zheng, R. Chen. Characterization and coagulation performance of polymeric phosphate ferric sulfate on eutrophic water [J]. J.Cent.South Univ.Technol., 2009, 16(s1): 345-350.
    [145] H. L. Zheng, Y. X. Pan, X. Y. Xiang. Oxidation of acidic dye eosin Y by the solar photo-Fenton processes [J]. Journal of Hazardous Materials, 2007, 141(3): 457- 464.
    [146] A. Maezawa, H. Nakadoi, K. Suzuki, et al. Treatment of dye wastewater by using photo-catalytic oxidation with sonication [J]. Ultrasonics Sonochemistry, 2007, 14(5): 615-620.
    [147] L. Zhou, W. Z.Wang, L. S. Zhang. Ultrasonic-assisted synthesis of visible-light induced Bi2MO6 (M=W, Mo) photocatalysts [J]. Journal of Molecular Catalysis Achemical, 2007,268(1-2): 195-200.
    [148] Z.M. Zhang, H.L. Zheng.Optimization for decolorization of azo dye acid green 20 by ultrasound and H2O2 using response surface methodology [J]. Journal of Hazardous Materials, 2009, 172(2-3): 1388-1393.
    [149] K. Murugesan, A. Dhamija, I. Nam, et al. Decolourization of reactive black 5 by laccase: Optimization by response surface methodology [J]. Dyes Pigments, 2007, 75 (1): 176-184.
    [150] X. D. Li, R. Jia, P. S Li, et al. Response surface analysis for enzymatic decolorization of congo red by manganese peroxidase [J]. Journal of Molecular Catalysis B-enzymatic, 2009, 56 (1) 1-6.
    [151] H. Ghodbane, O. Hamdaoui. Degradation of acid blue 25 in aqueous media using 1700 kHz ultrasonic irradiation: ultrasound/Fe(II) and ultrasound/H2O2 combinations [J]. Ultrasonics Sonochemistry, 2009, 16(5): 593-598.
    [152]相欣奕,郑怀礼,甄卓廉,等.光助Fenton反应降解水溶性染料曙红Y脱色研究[J].能源环境保护, 2006, 20(1): 27-30.
    [153]曹昉.微污染水源水处理工艺研究[J].河北化工, 2007, 30(9): 66-67,74.
    [154] B. E. Watt, R. L. Malcom, et al. Chemistry and poteneial mutagenicity of humic substances in water from different watersheds in Britain and Ireland [J]. wat.Res., 1996, 30(6): 1502-1516.
    [155]郭志顺.三峡库区重庆段典型持久性有机污染物的污染状况分析[D].重庆:重庆大学, 2006.
    [156]黄东勤,王盛才,陈一清,等.加速溶剂萃取-高效液相色谱法测定土壤中16种多环芳烃[J].中国环境监测, 2008, 24(3): 26-29.
    [157]陈代武,王芳,蒙松年,等.微波辅助-固相微萃取联用技术萃取腊肉中多环芳烃的研究[J].食品工业科技, 2008, 29(6): 197-202.
    [158]章汝平,郭萍,李锦辉.气相色谱-质谱法测定肉松、鱼干中的多环芳烃[J].食品科技, 2008, 33(6): 213-217.
    [159]王彻华,彭彪.长江干流主要城市江段微量有机物污染分析[J].人民长江, 2001, 32(7): 20-22, 36, 50.
    [160]蒋绍阶,刘宗源. UV254作为水处理中有机物控制指标的意义[J].重庆建筑大学学报, 2002, 24(2): 61-65.
    [161] S. Amir, M. Hafidi, G. Merlina, et al. Fate of phthalic acid esters during composting of both lagooning and activated sludges [J]. Proc. Bio., 2005, 40(6): 2183-2190.
    [162] R. Kavlock, K. Boekelheide, R. Chapin, et al. NTP Center for the evaluation of risks to human reproduction: phthalates expert panel report on the reproductive and developmental toxicity of di(2-ethylhexyl) phthalate [J]. Reproductive Toxicology, 2002, 16(5): 529-653.
    [163] R. Kavlock, K. Boekelheide, R. Chapin, et al. NTP Center for the Evaluation of Risks to Human Reproduction: phthalates expert panel report on the reproductive and developmental toxicity of di-n-butyl phthalate [J]. Reproductive Toxicology, 2002, 16(5): 489-527.
    [164]李升莲,黄玉明,舒为群,等.气相色谱-质谱测定邻苯二甲酸酯类内分泌干扰物[J].西南师范大学学报(自然科学版), 2008, 33(2): 59-63.
    [165] P. Ser?dio, J. M. F. Nogueira. Considerations on ultra-trace analysis of phthalates in drinking water [J]. Water Res., 2006, 40(13): 2572-2582.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700